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ABSTRACT: This review examines the convergence of silver
nanoparticles (AgNPs), three-dimensional (3D) printing, and
wound healing, focusing on significant advancements in these
fields. We explore the unique properties of AgNPs, notably their
strong antibacterial efficacy and their potential applications in
enhancing wound recovery. Furthermore, the review delves into
3D printing technology, discussing its core principles, various
materials employed, and recent innovations. The integration of
AgNPs into 3D-printed structures for regenerative medicine is
analyzed, emphasizing the benefits of this combined approach and
identifying the challenges that must be addressed. This
comprehensive overview aims to elucidate the current state of
the field and to direct future research toward developing more effective solutions for wound healing.

1. INTRODUCTION
The process of 3D printing, also referred to as additive
fabrication, involves the creation of three-dimensional objects
through the gradual deposition of materials, enabling the
construction of intricate structures with high precision.1,2 One
of the most promising applications of 3D printing in healthcare
is in the field of drug delivery.3−5 This technology allows for
the precise fabrication of drug delivery systems tailored to the
individual patient needs. For instance, 3D printing can produce
oral drug delivery devices with customizable release profiles,
enhancing the efficacy and safety of medications.3,6 The ability
to design and manufacture dosage forms with specific
geometries and release characteristics opens new possibilities
for personalized medicine.7 Beyond drug delivery, 3D printing
has made significant strides in the development of medical
implants and prosthetics. Custom implants, such as cranial
plates and hip joints, can be created to match a patient’s
unique anatomy, improving the fit and function of these
devices.8−10 Additionally, 3D printing has enabled the
production of highly detailed anatomical models that assist
surgeons in preoperative planning and intraoperative guid-
ance.11−13 These models, derived from patient imaging data,
provide a tangible reference that can enhance surgical precision
and outcomes. Another exciting application of 3D printing in
healthcare is the creation of bioprinted tissues and organs.
While still in the experimental stages, researchers are exploring
the potential of 3D printing to fabricate living tissues, such as
skin, bone, and even entire organs.14−17 This technology holds
the promise of addressing the shortage of donor organs and
advancing regenerative medicine. Furthermore, 3D-printed

scaffolds are being used in tissue engineering to support the
growth and regeneration of damaged tissues.18 Hence, 3D
printing is transforming healthcare by enabling the production
of customized drug delivery systems, implants, prosthetics, and
even bioprinted tissues. These advancements not only improve
patient outcomes but also pave the way for more personalized
and effective treatments. As the technology continues to
evolve, its applications in healthcare are expected to expand,
offering new solutions to some of the most pressing medical
challenges.

Wound healing is a complex physiological process
characterized by a series of cellular and mediator responses.
Traditionally categorized into primary, secondary, and tertiary
stages, each phase encompasses hemostasis, inflammation,
proliferation, and remodeling.19−21 Despite advances in
understanding this process, challenges persist in managing
wounds, particularly in cases of chronic wounds that are
resistant to conventional treatments. In the field of wound
healing, 3D printing offers the potential to produce
personalized wound coverings and supports precisely tailored
to the shape and size of the wound, thereby enhancing
therapeutic efficacy.22−29
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Nanotechnology involves the precise manipulation of
materials at the nanometer scale, typically ranging from 1 to
100 nm. At this scale, materials often demonstrate unique
properties that are not apparent at larger scales.30,31 AgNPs
exemplify this characteristic and are known for their potent
antibacterial properties. When incorporated into wound
dressings or scaffolds, these nanoparticles effectively prevent
infection and promote the healing of wounds.32−39

The convergence of 3D printing and nanotechnology
presents significant transformative opportunities in the realm
of wound recovery. Incorporating AgNPs into 3D-printed
constructs, researchers have achieved the development of
wound dressings and scaffolds customized to individual
wounds while also enhancing their antibacterial efficacy. This
integration allows for precise control over the physical and
chemical properties of the structures, thereby amplifying their
effectiveness in promoting wound healing.40−47 For instance,
tailored porosities in 3D-printed frameworks can influence the
release rate of medications from the dressing or scaffold, while
surface chemistry manipulation can promote crucial cell
adhesion and proliferation processes essential for wound
healing. Moreover, the inclusion of AgNPs further reinforces
the antibacterial properties of these constructs.48−52 Con-
sequently, the combination of 3D printing and nanotechnology
offers innovative avenues for the development of advanced
wound healing solutions. However, further research is
imperative to optimize these technologies and fully exploit
their potential in clinical applications.

Numerous studies have explored the integration of AgNPs
onto 3D-printed scaffolds, leading to expanded biomedical
applications. AgNPs are renowned for their distinct properties
and broad utility in nanomedicine, including heightened
antimicrobial efficacy, anticancer properties, and diverse
therapeutic capabilities, making them a cost-effective and

versatile solution for various applications.42,45,53−60 However,
the full potential of AgNPs in the context of 3D printing and
wound healing remains to be fully realized. While each domain,
3D printing, AgNPs, and wound healing, has been extensively
investigated individually, there remains a significant gap in our
understanding of their integrated potential. Specifically, how
can we harness the antimicrobial and therapeutic properties of
AgNPs in 3D printing techniques to enhance wound healing?
This represents a frontier in wound healing research with
promising therapeutic strategies. Scaffolds, often composed of
materials such as poly(lactic acid) or poly(ether ether ketone)
(PEEK), have shown potential in infection management and
bone regeneration. Additionally, the development of multi-
layered scaffolds through a combination of 3D printing and
electrospinning techniques has attracted attention. These
scaffolds incorporate various substances, such as Mupirocin,
Pluronic F127, and quaternized chitosan, enhancing their
wound healing abilities. Research also extends to the
fabrication of superporous hydrogels and functionalized
membranes, characterized by high stretchability and directional
water transport, making them suitable for applications such as
joint wound therapy. Furthermore, the utilization of bioactive
materials such as collagen, hyaluronic acid, and silk protein in
3D-printed constructs has been investigated for chronic
diabetic wound rehabilitation and the repair of infective
bone defects. When combined with AgNPs or nanoclusters,
these materials give rise to composite hydrogels or
biofunctionalized, hierarchically structured scaffolds.61−73

Despite the advancements made, understanding the long-
term biocompatibility and in vivo performance of 3D-printed
structures incorporating AgNPs requires thorough in vitro and
in vivo analyses. It is crucial to assess the safety and efficacy of
these innovative wound healing solutions extensively.74−79

Moreover, further investigation into the potential cytotoxicity

Figure 1. An overview of the manuscript’s scope. The integration of silver nanoparticles and 3D printing for enhanced wound healing.
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of AgNPs within these structures is warranted. This review
aims to provide a comprehensive overview of the current state
of the field, including recent progress in the utilization of 3D
printing technology and AgNPs for wound healing. It will
discuss various methodologies employed to develop effective
wound dressings and scaffolds, such as in situ synthesis of
AgNPs on 3D-printed scaffolds, fabrication of multilayered
scaffolds, and the creation of superporous hydrogels and
functionalized membranes. Additionally, it will explore the use
of bioactive materials like collagen, hyaluronic acid, and silk
protein in 3D-printed constructs for chronic diabetic wound
rehabilitation and the repair of infective bone defects. The
discussion will also extend to how these materials, when
combined with AgNPs or nanoclusters, can generate
composite hydrogels or biofunctionalized hierarchically struc-
tured scaffolds. In addition to providing an overview of these
areas, the review will highlight areas for future exploration,
such as the prolonged biocompatibility and in vivo perform-
ance of these 3D-printed structures incorporating AgNPs.
Despite promising results in laboratory settings, more extensive
in vitro and in vivo analyses are essential to ensuring their safety
and efficacy in real-world scenarios. Another area requiring
further investigation is the potential cytotoxicity of AgNPs
within these frameworks. Although AgNPs are valued for their
antibacterial properties, thorough examination is necessary to
guarantee the safety of these innovative wound healing
solutions. By addressing these areas, the review aims to guide
future research efforts toward the development of more
effective wound healing treatments (Figure 1).

2. SILVER NANOPARTICLES (AGNPS): AN OVERVIEW
The synthesis of silver nanoparticles (AgNPs) can be achieved
through various methods, each with its own advantages and
disadvantages. Chemical reduction is the most common
approach, involving the reduction of silver ions to silver
atoms using a reducing agent. This method allows for precise
control over nanoparticle characteristics by adjusting param-
eters such as silver ion concentration and reaction
conditions.80−84 However, the use of hazardous chemicals
poses environmental risks and limits the suitability of these
nanoparticles for biological applications. Physical methods like
evaporation−condensation and laser ablation eliminate the
need for toxic chemicals but require significant energy and
sophisticated equipment.85−91 Biological methods, using
organisms like bacteria, fungi, or plant extracts, offer an
environmentally friendly alternative, though they typically have
lower and slower reaction rates.91−102

At the nanoscale, AgNPs exhibit unique properties,
including potent antimicrobial activity due to their large
surface area to volume ratio and silver ion release.103−114

These properties make AgNPs valuable in various fields such as
wound care, water purification, and biosensing.110−114 Their
antimicrobial efficacy is primarily due to the disruption of
microbial membranes by silver ions, leading to cell death.
Additionally, AgNPs’ optical properties, characterized by
surface plasmon resonance, have applications in biosensing
and bioimaging.115−127 Despite these benefits, the strong
antimicrobial activity of AgNPs can also harm beneficial
microorganisms, necessitating careful control and management
in their applications.

3. 3D PRINTING TECHNOLOGY
Revolutionizing traditional manufacturing approaches, 3D
printing, also known as additive manufacturing, revolutionizes
fabrication by creating three-dimensional objects from digital
blueprints. Unlike conventional methods that remove material
to shape objects, this innovative technique builds objects layer
by layer using various materials. The outcome? Highly detailed
structures, particularly valued across diverse sectors, notably in
the medical field.128−133 At its foundation, 3D printing begins
with the creation of a digital model, typically generated using
computer-aided design (CAD) software or acquired through
advanced 3D scanning techniques.134,135 The essence of this
process lies in its additive nature, with each layer incrementally
contributing to the formation of the final product. This
dynamic enables the production of complex geometries and
internal intricacies, areas in which subtractive methods are
limited.

The capabilities of 3D printing in the medical field have
reached a peak, as illustrated in Scheme 1. Customized medical

devices such as hearing aids and dental implants are now
crafted using this technological advancement, ensuring a
precise fit for each individual recipient. Additionally, prosthetic
limbs produced by 3D printing offer not only structural
integrity but also enhanced comfort and functionality,
significantly improving the quality of life for users.136−140

Furthermore, 3D printing extends its reach into the realm of
bioprinting, where living tissues are fabricated from bioinks
containing living cells. While still in its early stages, bioprinting
shows promise in regenerative medicine and organ recon-
struction. By mimicking the intricate structure of natural
tissues, bioprinted constructs represent a beacon of hope,
signaling a new era in medical interventions.141−145 Therefore,
3D printing has emerged as a disruptive force, transforming
industries with its ability to produce complex, personalized
entities. Its impact is particularly profound in medicine, where
it not only revolutionizes the manufacturing of medical devices
but also paves the way toward a future where the repair of
damaged tissues and organs becomes a feasible reality.

The versatility of 3D printing encompasses a wide range of
materials, including plastics, metals, ceramics, and biological
substances. Material selection is tailored to the specific
requirements of the objects being fabricated. For example, in
the field of wound healing, materials like poly(lactic acid)
(PLA) or polyetheretherketone (PEEK) are commonly used

Scheme 1. Key Application of 3D Printing in Medical
Sciences: A Schematic Representation
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due to their combination of biocompatibility and mechanical
strength.146−148 Plastics, such as PLA and acrylonitrile
butadiene styrene (ABS), are prominent in 3D printing due
to their ease of manipulation and cost-effectiveness. PLA, in
particular, is favored in biomedical applications for its
compatibility with living tissues and environmentally friendly
biodegradability.135,149,150 Metals, including titanium, stainless
steel, and gold, play a significant role in 3D printing,
particularly in applications requiring high strength and
durability, such as aerospace engineering and the production
of medical implants.151−153 Ceramics, known for their heat
resistance, hardness, and biocompatibility, are utilized in 3D
printing for crafting dental prosthetics and bone implants,
where precision and durability are essential considera-
tions.154−157

In the emerging field of bioprinting, a combination of
biological materials including cells, DNA, and bioinks is
utilized to construct tissue-like structures, representing a
significant advancement in regenerative medicine and wound
management.148,158−160 A recent focus of research involves the
incorporation of AgNPs into the 3D printing process. With
their strong antibacterial properties, AgNPs offer a promising
option for the production of wound dressings and scaffolds
aimed at combating infections and promoting faster healing.
The seamless integration of these nanoparticles into printing
materials facilitates the creation of structures with inherent
antibacterial capabilities.161−163 Material selection is intricately
tied to the specific requirements of the object being fabricated,
considering factors such as mechanical strength, intended
application, and desired properties like biocompatibility and
antibacterial activity, guiding the development and selection of
materials for 3D printing.135,164−166 Recent advancements in
3D printing technology have enabled printing with multiple
materials simultaneously, opening up possibilities for creating
structures with diverse mechanical characteristics and incor-
porating active substances such as pharmaceuticals and AgNPs
directly into the printed product. In wound healing, this
advancement holds significant potential for fabricating
customized coverings or frameworks that not only conform
accurately to the wound’s contours but also provide tailored
therapy.

The evolution of 3D printing technology into multimaterial
printing is facilitated by advanced printer heads capable of
transitioning between various materials during the printing
process. This adaptability enables the creation of structures
with a wide range of mechanical properties within a single
printing session. For example, imagine a single object with
both rigid and flexible segments, precisely tailored to meet
design requirements.167−169 Another significant advancement
is the incorporation of active substances, such as pharmaceut-
icals or AgNPs, directly into the printed object. In the medical
field, this feature allows for the precise dispensing of
medications to targeted areas using 3D-printed devices.
Consider a 3D-printed wound dressing infused with a
therapeutic drug, providing targeted therapy to accelerate
healing.135,170,171 Furthermore, 3D printing technology offers
unprecedented levels of customization that are unattainable
with conventional manufacturing methods. This aspect is
particularly advantageous in wound healing, where coverings or
frameworks can be intricately designed to match the precise
proportions and contours of the wound, ensuring optimal fit
and enhancing therapeutic effectiveness.135,158,172 Bioprinting,
an emerging area within 3D printing that utilizes biological

components such as cells and growth factors, represents a
significant advancement in the field. This technology has the
potential to create tissue-like structures conducive to wound
healing or tissue replacement. Bioprinting typically involves the
use of bioink, a combination of cells and biomaterials, which is
meticulously printed layer by layer to fabricate structures
resembling natural tissue. Such technology holds great promise
in regenerative medicine and wound management, envisioning
bioprinted skin grafts that transform the treatment of burn
victims or individuals with chronic wounds. Additionally, the
prospect of bioprinting complex tissues and organs for
transplantation is becoming increasingly feasible.146,173−175

In the dynamic field of 3D printing, persistent challenges
endure despite significant progress. These obstacles encompass
a range of issues, from the need to enhance both the accuracy
and speed of 3D printers to ensuring the long-term durability
and biocompatibility of 3D-printed medical devices. Addition-
ally, understanding the complex interaction between printed
materials and biological substrates presents another formidable
barrier.135,176−178 However, a steadfast commitment to
innovation and advancement continues to push the boundaries
of what can be achieved with 3D printing technology.
Particularly notable is the pursuit of improved resolution and
speed in 3D printers. Higher resolution enables the fabrication
of increasingly intricate and refined structures, while faster
printing speeds hold the potential to enhance the overall
manufacturing efficiency. Yet, striking the delicate balance
between resolution and speed remains a key focus of
exploration.179,180 Another significant challenge is ensuring
the stability and safety of 3D-printed medical devices. This
entails maintaining the mechanical integrity of printed
components over extended periods and ensuring that the
materials used demonstrate a high level of compatibility with
biological systems to prevent adverse reactions in the human
body. Furthermore, in the emerging field of bioprinting,
preserving the viability and functionality of printed cells is of
paramount importance for their intended biomedical applica-
tions.17,139,158,181−185

Despite the substantial challenges encountered, continuous
advancement in research and development drives the field of
3D printing forward. Each achievement brings us closer to fully
realizing the transformative capacity of this technology,
particularly in areas such as regenerative medicine and beyond.
The future holds great promise, positioning 3D printing as an
intriguing frontier with a trajectory that remains dynamic and
evolving.

4. AGNPS IN 3D PRINTING
Incorporating AgNPs into the framework of 3D-printed
structures represents a recent advancement in additive
manufacturing. Typically, this integration involves mixing
AgNPs with the base material, such as a polymer, used in
the 3D printing process. Subsequently, the resulting composite
material facilitates the creation of desired configurations and
dimensions in the structures.71,186,187 Initially, a critical step
involves blending AgNPs with the substrate material for the
3D-printed structures. This substrate material, often a polymer,
serves as the foundation of the 3D-printed object. The
dispersion of AgNPs within the substrate material can be
achieved through various methods, including fusion blending,
where the polymer undergoes fusion and incorporates the
AgNPs, or solvent casting, where both the polymer and AgNPs
are dissolved in a common solvent and then cast into a
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mold.187−191 Once the AgNPs are uniformly dispersed within
the substrate material, the resulting blend is utilized in the 3D
printing process. The specific method employed varies
depending on the type of 3D printing technology that is
utilized. This may involve heating the blend to produce a
semiliquid filament that can be extruded through a nozzle, as
seen in fused deposition modeling, or selectively solidifying a
liquid resin containing the AgNPs, as observed in stereo-
lithography.187−191 The primary benefit of incorporating
AgNPs into 3D-printed structures lies in their antibacterial
properties. AgNPs release silver ions, which possess broad-
spectrum antibacterial efficacy. When AgNPs are infused into
3D-printed structures, they enable a continuous release of
silver ions, providing persistent antibacterial protection. This
feature is particularly advantageous in medical applications
such as wound dressings or implants, where preventing
bacterial contamination is crucial.162,192,193 Additionally, 3D
printing technology offers the advantage of fabricating
customized structures. By optimization of the design of the
digital model used in the 3D printing process, structures can be
precisely tailored to fit the specific contours and dimensions of
a wound or implantation site. This level of customization
significantly enhances the effectiveness of therapeutic inter-
ventions, providing tailored solutions for individual needs.71,187

The integration of AgNPs into 3D-printed structures
combines the benefits of 3D printing technology, including
customization and the ability to create complex designs, with
the antimicrobial properties of AgNPs. This synergy presents
novel opportunities for applications in wound healing and
other areas. However, further research is necessary to optimize
this approach and fully realize its potential.

5. BENEFITS AND CHALLENGES
The integration of AgNPs into 3D-printed constructs offers
significant advancements, particularly due to their potent
antimicrobial properties. These properties are crucial in
medical applications such as wound dressings and implants,
where infection prevention is essential. The versatility of 3D
printing allows for the precise fabrication of structures tailored
to the specific shapes and dimensions of wound or implant
sites, thereby enhancing treatment efficacy.62,71 However,
challenges exist, notably in achieving a uniform dispersion of
AgNPs throughout the 3D-printed structure. This uniformity is
critical, as uneven distribution can reduce the antimicrobial
efficacy in certain areas of the construct.71,186 Additionally,
potential cytotoxic effects of AgNPs pose a significant concern
given their ability to harm human cells despite their
antibacterial capabilities. Addressing this issue requires careful
regulation of AgNP concentration and thorough safety
assessments to ensure the safety of the 3D-printed
devices.194−196 In summary, while the incorporation of
AgNPs into 3D-printed constructs presents substantial
benefits, it also necessitates addressing significant challenges
through continuous research and development.

6. AGNPS IN WOUND HEALING
6.1. Role of AgNPs in Wound Healing. In wound

healing, AgNPs serve as effective antibacterial agents,
preventing wound infections which can impede the healing
process and lead to chronic wounds.197−199 Recent research
suggests that AgNPs not only possess significant antibacterial
properties but also exhibit potential anti-inflammatory effects

and promote the proliferation and migration of skin cells,
essential for wound repair. The antibacterial efficacy of AgNPs
is attributed to the release of silver ions, which are effective
against various bacterial strains, thereby protecting against
infections. Furthermore, AgNPs may help regulate inflamma-
tion, which, while a natural part of the healing process, can be
detrimental if excessive.198,200 By modulation of inflammation,
AgNPs create an environment favorable for healing. Addition-
ally, they support the proliferation and migration of skin cells,
crucial steps in replacing damaged tissue and advancing wound
closure. Thus, AgNPs hold promise in enhancing wound
healing through multiple mechanisms, including antibacterial
action, inflammation modulation, and cell proliferation and
migration promotion.198,201

Explorations of 3D printing for wound healing applications
have highlighted the potential of integrating AgNPs into 3D-
printed constructs such as wound dressings or scaffolds. This
innovative approach leverages the antibacterial, anti-inflamma-
tory, and wound-healing properties of AgNPs, offering a
promising new method for enhancing wound care.148,202,203

However, advancing this technology requires comprehensive
research to fully understand the effects of AgNPs and to ensure
their safe application. Key considerations include the potential
cytotoxicity of AgNPs, necessitating a careful balance between
their antibacterial efficacy and safety.195,196,204

6.2. Mechanism Unveiled. The effectiveness of AgNPs is
largely attributed to their ability to release silver ions, which
possess significant antibacterial properties. These ions disrupt
bacterial cell walls and interfere with essential cellular functions
by binding to proteins and DNA, thereby compromising
cellular integrity.199,205−207 In the context of wound healing,
AgNPs play a crucial role in preventing infections, which is
essential for proper healing. Emerging research suggests that
AgNPs may also have anti-inflammatory and wound-healing
properties, further enhancing their therapeutic potential.208,209

However, the application of AgNPs requires careful consid-
eration due to potential cytotoxic effects. Thorough research is
necessary to fully understand their impact and to balance
antibacterial efficacy with safety.195,196,199,204,210,211

6.3. Clinical Studies and Results. In wound care, AgNPs
have been incorporated into various dressings, such as Acticoat
and PolyMem Silver, to enhance healing by reducing
infections, promoting re-epithelialization, and shortening
healing times. These dressings are primarily tested in burn
treatments but are also evaluated for other wound types,
including diabetic ulcers.212−214 Despite their demonstrated
efficacy, further research is essential to understanding the long-
term safety and potential toxicity of AgNPs. Studies on human
cells have shown that silver nanomaterials can cause varying
degrees of toxicity including cell death and DNA damage,
which are influenced by particle size. However, the overall risk
posed by AgNPs to human health is considered relatively
low.215−217 AgNPs offer a promising alternative to conven-
tional antibiotics, particularly in the context of rising
antimicrobial resistance (AMR). Their antimicrobial properties
make them effective against drug-resistant infections through
various mechanisms, although their efficacy can vary
significantly based on the biomaterials used in their syn-
thesis.218−221

A recent clinical trial (NCT05850819) evaluated the efficacy
of Gelatamp, a colloidal silver gelatin sponge, in promoting the
healing of intraoral wounds following mandibular teeth
extraction. The hypothesis posited that the AgNPs in
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Gelatamp would provide antibacterial properties, thereby
potentially accelerating the healing process. This randomized,
double-masked intervention study included 60 participants,
both healthy individuals and those with mild systemic disease,
requiring mandibular teeth extraction. Participants were
divided into two groups: the experimental group received
Gelatamp in the extraction socket, while the control group
received a gauze pack without Gelatamp. The primary
outcomes were postoperative wound healing and pain, assessed

using a 5-point early wound healing scale after 7 days and a
100 mm visual analogue scale on the first and second
postoperative days, respectively.

Another clinical trial (NCT04213716) focused on wound
healing by comparing the effectiveness of intracanal medi-
cations containing nanosilver combined with calcium hydrox-
ide versus conventional calcium hydroxide in reducing
postoperative pain in patients with symptomatic root canal
treatment failure. This interventional trial assigned participants

Figure 2. Various stages and analyses of the development of a porous biomedical dressing. (a) The designed prototype is depicted as a 3D model of
a yellow, grid-like structure intended for use as a template in creating biomedical dressings. (b) The printed PLA (poly(lactic acid)) template,
shown alongside a ruler, has dimensions of 15 × 15 × 3 mm, with pore sizes of 1.2 × 1.2 × 0.8 mm and PLA wire diameters of 0.8 × 0.8 × 0.8 mm.
This physical template is fabricated based on the initial 3D design. (c) Superporous AgNP-PAM/HPMC hydrogel dressings, derived from the PLA
template, are illustrated being held by tweezers, emphasizing their high porosity aimed at enhancing biomedical application performance. (d) The
SEM (scanning electron microscope) image offers a detailed view of the intricate porous structure of the superporous hydrogel dressing. (e) A bar
graph compares the porosity levels of solid and superporous AgNP-PAM/HPMC hydrogels, revealing higher porosity in the superporous variants.
(f) The stress−strain graph illustrates the mechanical properties of the superporous PAM/HPMC and AgNP-PAM/HPMC hydrogel dressings,
showing that AgNP-PAM/HPMC demonstrates greater stress resistance at similar strains compared to PAM/HPMC. This figure is adapted with
permission from the American Chemical Society.72,155
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to two groups: the experimental group received 1 mL of a
nanosilver particle solution (30 ppm) combined with 100 mg
of calcium hydroxide as intracanal medication, while the
control group received 100 mg of calcium hydroxide powder
mixed with 1 mL of distilled water. The primary outcomes
were evaluations of postoperative wound healing and pain.

Moreover, the clinical trial registered as NCT03401749
aimed to evaluate the effectiveness of preadmission Theraworx
wipes in preventing surgical site infections in adult orthopedic
surgery patients. This interventional study involved the
division of participants into two groups: the first adhered to
standard preadmission surgical instructions, while the second
incorporated the use of Theraworx skin wipes the night before
and 1 h prior to surgery. Primary objectives included safety
monitoring, comparison of perioperative skin cultures between
treatment groups, and assessment of surgical site infection
rates. Secondary objectives included evaluating patient
compliance, satisfaction levels among patients and nurses,
and visual assessments of wound healing. While the trial did
not explicitly outline the role of AgNPs, Theraworx likely
incorporated silver, potentially in nanoparticle form, to utilize
its antimicrobial properties for infection prevention in surgical
site prophylaxis. However, the study faced premature
termination due to funding constraints, recruitment challenges,
and patient compliance issues.

7. 3D PRINTING AND WOUND HEALING: A NEW
FRONTIER
7.1. Synergy of AgNPs and 3D Printing in Wound

Healing. The integration of AgNPs with 3D printing
represents a significant advancement in wound healing.
Known for their strong antibacterial properties, AgNPs play
a crucial role in preventing wound infections, which is a
common obstacle to healing. By incorporating AgNPs into 3D-
printed structures such as wound dressings or scaffolds, these
constructs not only conform closely to the unique contours of
wounds but also provide targeted antibacterial reinforcement.
The combination of AgNPs and 3D printing in wound healing
offers several advantages. First, it allows for the fabrication of
customized wound dressings or scaffolds tailored to enhance
treatment efficacy. Second, the inherent antibacterial proper-
ties of AgNPs act as a barrier against wound infections,
creating an environment conducive to optimal recovery.
Recent advancements in this field include the development
of multimaterial 3D printing techniques, enabling the
integration of various materials, including AgNPs, into a single
printed structure. This innovation enables the creation of
structures with diverse mechanical properties and antibacterial
capabilities, thereby enhancing their effectiveness in wound
healing (Table 1).
7.2. Case Studies or Examples. In the domain of

biomedical applications, AgNPs are notable for their robust
antimicrobial characteristics and extensive potential in tissue
engineering. A noteworthy approach involves incorporating
them into poly(lactic acid) (PLA) scaffolds, which can be
fabricated by using diverse methods. Recently, a study focused
on AgNP synthesis and characterization on 3D-printed PLA
scaffolds, particularly highlighting the UV irradiation technique
and its implications in biomedical engineering. Various
synthesis methods for AgNPs have been investigated, such as
photoreduction, in situ growth, and chemical reduction, each
carrying distinct advantages and disadvantages. For instance,
although chemical reduction offers efficiency, it also entails

environmental and biological risks due to the use of chemical
reducing agents. Conversely, the UV irradiation method, as
demonstrated in this study, offers a straightforward, nontoxic,
and cost-effective approach for AgNP synthesis on PLA
scaffolds, devoid of chemical reducing agents, thus holding
promise for biomedical applications due to its eco-friendliness
and scalability. Incorporating AgNPs into PLA scaffolds
modifies their mechanical, thermal, electrical, and biological
properties, with parameters such as size, shape, distribution,
and loading of AgNPs playing crucial roles. Research suggests
that AgNP-functionalized PLA scaffolds exhibit increased
surface hydrophilicity, enhancing cell adhesion and protein
adsorption, making them suitable for various applications, such
as cell culture, biosensing, and wound healing. Experimental
validations have confirmed the effectiveness of the UV
irradiation method in synthesizing AgNPs on 3D-printed
PLA scaffolds. Utilizing a range of characterization techniques,
including TEM, zeta sizer, UV−visible spectroscopy, ATR-
FTIR, and DSC, researchers have successfully synthesized
monodisperse AgNPs ranging in size from 20 ± 2.2 nm to 50
± 4.8 nm. Furthermore, evaluations of surface wettability have
supported the enhancement of surface hydrophilicity following
AgNP integration, confirming its biomedical potential. In
summary, the UV irradiation method has emerged as a
promising approach for AgNP synthesis on PLA scaffolds,
offering simplicity, safety, and cost-effectiveness. However,
further research is necessary to fully determine its suitability
across various biomedical contexts and optimize synthesis
parameters for specific applications. By leveraging advance-
ments in AgNP synthesis and characterization, researchers can
pave the way for innovative solutions in biomedical engineer-
ing, contributing to advancements in tissue engineering,
antimicrobial coatings, and beyond.71

In a recent investigation, scholars delved into the advance-
ment of antibacterial superporous hydrogel dressings for
wound care. Employing a distinctive methodology that
integrated the silver−ethylene interaction and 3D printing
techniques, they engineered these dressings (as illustrated in
Figure 2). Within this process, AgNPs were generated,
dispersed, and cross-linked within the polyacrylamide
(PAM)/hydroxypropyl methylcellulose (HPMC) hydrogel
framework. This interaction facilitated the regulation of
AgNP release, striking a balance between cytocompatibility
and antibacterial efficacy. The application of 3D printing
technology facilitated the fabrication of hydrogels character-
ized by high porosity and open pores, thereby enhancing water
absorption and retention capabilities while mitigating the
likelihood of swelling and detachment. Experimental findings
corroborated the effectiveness of the AgNP-cross-linked
superporous hydrogel dressings in fostering the healing of
infected wounds and impeding scar tissue formation in vivo.
These dressings demonstrated superior efficacy in reducing
wound size compared to alternative hydrogel formulations,
alongside noteworthy antibacterial properties against Escher-
ichia coli (E. coli) and Staphylococcus aureus (S. aureus),
underscoring their potential utility in wound management.72

Embarking on innovative research, a recent investigation
focused on the development and assessment of 3D-printed
PGSA composites engineered to possess biodegradability and
conductivity with a specific emphasis on nerve tissue
regeneration. Utilizing poly(glycerol sebacate) acrylate
(PGSA) as the base material, researchers augmented it with
polyvinylpyrrolidone (PVP), AgNPs, and graphene to enhance
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its electrical conductivity and biocompatibility. This intricate
synthesis was accompanied by a comprehensive evaluation
encompassing electrical conductivity, biodegradability, 3D
printability, and cell proliferation. The results revealed that
these composites demonstrate notable conductivity upon
swelling alongside rapid degradation and hydrolysis rates
while simultaneously promoting cell growth and guidance.
Moreover, employing PGSA composites in fabricating micro-
grooved scaffolds and conduits exhibited the ability to direct
cell growth and enhance proliferation. The intricate micro-
structures within the printed materials, combined with
electrical stimulation, particularly emphasized in PGSA−PVP
compositions, underscore the significant potential of 3D-
printed nerve conduits utilizing PGSA composites for nerve
tissue regeneration, especially when complemented with
electrical stimulation. These pioneering findings not only
corroborate existing literature but also signify a substantial
advancement in the field, highlighting the promising trajectory
of these composites in nerve tissue regeneration applications.52

Concurrently, a separate investigation conducted an
extensive inquiry into the development of biocompatible 3D-
printed polycaprolactone (PCL) scaffolds integrated with
potent antibacterial attributes (as depicted in Figure 3). This
innovative approach combines plasma-assisted surface mod-
ification with the immobilization of AgNPs. Initially, PCL
scaffolds were fabricated via fused deposition modeling,
followed by a coating process with an allylamine plasma
polymer. Subsequent steps involved the synthesis and
immobilization of AgNPs onto the plasma-coated scaffolds
for varying durations. A comprehensive array of character-
ization techniques was employed to evaluate the scaffolds for
antibacterial efficacy, biocompatibility, immune response, and
in vivo performance. Results demonstrated that the modified
scaffolds maintained mechanical integrity while exhibiting

improved hydrophilicity and surface energy, essential traits that
enhance their functionality in biological environments.
Incorporating immobilized AgNPs conferred robust antibacte-
rial activity against common pathogens, such as S. epidermidis
and P. aeruginosa, critical for combating wound infections. In
vivo assessments on Sprague−Dawley rats revealed heightened
angiogenesis and reduced foreign body reactions for scaffolds
functionalized with AgNPs for 6 h, emphasizing their
significant role in wound healing and tissue regeneration.
The optimization potential of nanoparticle immobilization
duration emerges as a noteworthy consideration crucial for
achieving optimal outcomes.62

In conclusion, this groundbreaking research contributes
substantially to the field of tissue engineering by highlighting
the potential of 3D-printed PCL/silver nanoparticle scaffolds
in advancing wound healing, consistent with prior studies
emphasizing the crucial role of AgNPs in augmenting the
antibacterial effectiveness of 3D-printed scaffolds.62,71 How-
ever, the inherent variability arising from methodologies and
materials emphasizes the necessity of additional comparative
studies to refine the scaffold design and fabrication processes.

Innovatively contributing to the spectrum of solutions, a
pioneering investigation has revealed the emergence of an
unprecedented 3D-printed poly(ether ether ketone) (PEEK)
implant enhanced with AgNPs, meticulously designed to
confer augmented antibacterial and osteogenic properties.
Employing fused deposition modeling (FDM), researchers
fabricated 3D PEEK scaffolds with varied pore dimensions and
porosities. Subsequently, these structures underwent a
comprehensive coating process involving polydopamine
(PDA) and AgNPs via catechol-Ag+ chemistry. The
antibacterial efficacy against E. coli and S. aureus, alongside
biocompatibility and osteogenic differentiation potential, were
meticulously evaluated through a series of in vitro analyses

Figure 3. Components, chemistry, and processes involved in the immobilization and creation of plasma-polymer-modified PCL scaffolds
incorporating silver nanoparticles (AgNPs), designated as pPCL−Ag. (a) Elements and chemical reactions involved: Polycaprolactone (PCL)
reacts with allylamine in the presence of AgNPs, resulting in pPCL-Ag, which is noted for its antibacterial properties. (b) Illustrates the equipment
and processes used in the material’s fabrication, including a 3D printer that constructs the material’s layers and a plasma reactor that modifies the
material to achieve a grid-like structure coated with pPCL-Ag. (c) Targeted outcomes of utilizing pPCL-Ag, emphasizing its biocompatibility,
antibacterial, and anti-inflammatory properties, which make it suitable for skin regeneration applications. This figure is licensed under a Creative
Commons Attribution-NonCommercial 3.0 Unported License.62
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utilizing MG-63 cells. The findings revealed uniform and well-
dispersed AgNPs adorning the surface of 3D PEEK/Ag
constructs, highlighting notable antibacterial effectiveness
against both Gram-negative E. coli and Gram-positive S.
aureus. Furthermore, these constructs demonstrated com-
mendable biocompatibility, fostering robust cellular adhesion,
proliferation, and osteogenic differentiation, as validated by the
increased expression of osteogenic genes and proteins. This
underscores the significant potential of 3D PEEK/Ag
constructs in clinical osseous tissue engineering, amalgamating
the advantages of 3D printing, PEEK, and AgNPs into a
cohesive solution poised to redefine bone regeneration.66

In a concurrent endeavor, Alizadehgiashi et al. introduced a
groundbreaking approach in the development, character-
ization, and application of hydrogel dressings engineered to
deliver a variety of therapeutic agents, including AgNPs, to
wound sites with precisely controlled release profiles. The
hydrogel ink, formulated with cellulose nanocrystals and
chitosan methacrylamide, yielded a shear-thinning and self-
healing bionanocomposite (as depicted in Figure 4). This ink,
incorporating diverse biologically active agents, was adeptly
3D-printed into customizable structures using microfluidic
printheads. Demonstrating adjustable mechanical and trans-
port properties, these hydrogel dressings facilitated precise
modulation of therapeutic agent release, including AgNPs. The
effectiveness of these dressings was reinforced by compre-
hensive characterization of release profiles in phosphate-
buffered saline along with thorough in vitro evaluations against
3T3 fibroblast cells and bacterial strains, revealing potent
antibacterial properties associated with AgNPs. In vivo
experiments on murine wound models unveiled the efficacy
of these dressings in promoting granulation tissue formation
and vascularization, contingent upon the release regimen of
growth factors such as VEGF. Embarking on a multifaceted
trajectory, these 3D-printed hydrogel wound dressings offer
tailored solutions for wound management, promising expe-

dited healing, and improved patient outcomes. However,
further research and clinical validation are imperative to fully
realize the therapeutic potential of this innovative technology
in wound care practice.67

Yang et al. described the creation of a double-layer
membrane for joint wound treatment by using solution
electrospinning and melt electrowriting techniques. They
developed a hydrophilic layer of SBS nonwoven fabric through
electrospinning and plasma treatment and a hydrophobic layer
of PCL-AgNP scaffolds via melt electrowriting, each with
distinct structures. By employing a hybrid manufacturing
approach that integrates solution electrospinning (SE) and
melt electrowriting (MEW), they produced a double-layer
membrane with a hydrophilic electrospun SBS nonwoven
fabric treated with oxygen plasma and a hydrophobic MEW
scaffold containing PCL and AgNPs. The MEW scaffold was
printed in four patterns: lattice, serpentine, sinusoidal, and
knit-like. Morphological analysis confirmed the presence of
AgNPs in the hydrophobic layer. Mechanical strength
evaluation using a tensile tester indicated that the knit-like
pattern exhibited superior mechanical performance among the
four patterns. The directional water transport performance of
the membrane was assessed by using a moisture management
tester (MMT), which measured the water contact angle and
breakthrough pressure. Results demonstrated efficient direc-
tional water transport and excellent moisture management
capabilities. Additionally, the presence of AgNPs in the
hydrophobic layer conferred high antibacterial activity against
E. coli and S. aureus. Thus, the double-layer membrane,
fabricated through a combination of solution electrospinning
and melt electrowriting, shows promise as a wound dressing for
joint wounds, offering stretchability, directional water trans-
port, and antibacterial properties. Further research is needed to
evaluate the biocompatibility and in vivo performance of this
membrane.68

Figure 4. Process of creating multifunctional wound dressings using cellulose nanocrystals (CNCs), chitosan methacrylamide (Chit-MA), and
biologically active ingredients. Part (A) depicts the initial mixing of CNCs, Chit-MA, and biologically active substances such as proteins, small
molecules, or nanoparticles. In the diagram, blue dots represent methacrylamide groups; red plus signs indicate positive charges; and green minus
signs denote negative charges. Part (B) shows the formation of a shear-thinning hydrogel ink from this mixture, characterized by its solid-like
behavior under low stress and liquidlike flow under high stress, suitable for extrusion-based 3D printing. Part (C) describes the extrusion of the
hydrogel ink through a microfluidic printhead to fabricate sheets on a Tegaderm backing layer, followed by UV irradiation to initiate cross-linking
and stabilize the hydrogel structure, with a scale bar indicating a thickness of 6 mm. Finally, part (D) details the extrusion process for creating
multifunctional wound dressings on a Tegaderm backing layer, with subsequent UV exposure for cross-linking, and a scale bar indicating 1 cm. The
use of food dyes demonstrates the capability to print filaments loaded with distinct active ingredients. This figure is adapted with permission from
the American Chemical Society.67
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Mirhaj et al. recently advanced the field of infected wound
treatment by developing a biomimetic three-layer scaffold
using a combination of 3D printing and electrospinning
techniques. The scaffold features a top layer of polyurethane
nanofibers, a middle layer of Pluronic F127-quaternized
chitosan-silver nitrate, and a bottom layer of core−shell
nanofibers composed of F127-mupirocin/pectin-keratin. This
innovative structure exhibits significant mechanical strength, a
high swelling ratio, and the sustained release of silver ions and
mupirocin. These properties result in enhanced antibacterial
efficacy, improved cell adhesion and viability, stimulated
angiogenesis, and accelerated wound healing. Due to its
exceptional biological performance and wound healing
capabilities, this scaffold represents a promising advancement
in skin tissue engineering, with significant potential for treating
skin injuries.47

A recent study has introduced a pioneering approach for
fabricating 3D-printed titanium scaffolds using biofunctional-
ized silk protein/nanosilver multilayers, as illustrated in Figure
5. This method aims to address infective bone defects by
integrating 3D printing, surface nanomodification, and self-
assembly techniques to produce structures with hierarchical
organization, antibacterial properties, and osteogenic potential.
The release kinetics of Ag+ from the m-SFAg scaffolds show an
initial burst followed by sustained release over 6 weeks, with
the total Ag+ release remaining below the cytotoxic threshold
for MC3T3-E1 cells, ensuring safety. These scaffolds
demonstrate significant antibacterial activity against Staph-
ylococcus aureus, with high antibacterial rates observed after 12
h and sustained efficacy under continuous bacterial challenges
for 6 weeks. Additionally, they exhibit effective antibiofilm
activity, preventing visible biofilm formation on scaffold
surfaces and inactivating preformed biofilms on titanium

Figure 5. Synthesis and structural design of the SFAg composite and its application in biomimetic scaffolds. (A) The SFAg composite is
synthesized by mixing silk fibroin (SF) with silver nitrate (AgNO3) and exposing the mixture to UV light. The tyrosine residues in the silk chain
play a key role by donating electrons to the Ag+ ions, reducing them to silver nanoparticles (AgNPs), thus forming the SF-AgNP composites. (B)
This part details the combinatorial strategy for constructing hierarchically biomimetic and biofunctionalized scaffolds. Initially, a titanium-based
scaffold is fabricated by using metal 3D printing with an electron beam melting process, followed by the hydrothermal growth of titania nanowires
on this scaffold. The scaffold is then treated with polydopamine (PDA), leading to a silk-on-silk assembly process that results in the formation of m-
SFAg. (C) The envisioned m-SFAg architecture comprises multiple layers and interactions among the different components. A titanate layer is
hydrothermally grown in situ on the porous titanium scaffold, followed by a tightly adhered self-polymerized PDA layer. The PDA reacts with the
silk precursor layer via Michael addition or Schiff base reactions, covalently grafting the silk onto it. Multiple SFAg layers are then constructed
through a silk-on-silk assembly process, held together by the physical cross-links of silk secondary structures such as β-sheets. Nanosilver is
encapsulated within the SF chains and fully embedded within the multilayered matrix. This figure is adapted with permission from the American
Chemical Society.73
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foils. The m-SFAg scaffolds also enhance osteogenic differ-
entiation, indicated by increased alkaline phosphatase (ALP)
activity and mineralization compared to control scaffolds while
supporting cytoskeletal development and spatial growth of
cells. This research suggests that 3D-printed titanium scaffolds
biofunctionalized with silk protein/nanosilver multilayers
present a promising solution for the tailored restoration of
infective bone defects, combining robust antibacterial activity
with osteogenic support.73

Exploring the capabilities of 3D-printed collagen−hyaluronic
acid composite hydrogels fortified with silver nanoclusters, a
recent investigation aimed to tackle the challenging issue of
chronic diabetic wounds. Acknowledging the pressing need for
effective treatments in this area, the study proposed hydrogels
as adaptable tools suitable for various wound shapes and sizes
through 3D bioprinting (as depicted in Figure 6). Researchers
synthesized recombinant human collagen (RHC) and
hyaluronic acid (HA), modified with methacrylate groups for
UV cross-linking, and incorporated them with silver nano-
clusters (AgNCs) for their antibacterial properties. Assess-
ments covering morphology, mechanical properties, rheology,
printability, biocompatibility, and in vitro and in vivo wound
healing performance highlighted the favorable characteristics of
the hydrogels. Notably, these hydrogels demonstrated notable
UV responsiveness, porosity, mechanical strength, and
biocompatibility. They effectively inhibited bacterial growth
while promoting fibroblast proliferation, migration, and tissue
regeneration both in vitro and in vivo, indicating a promising
therapeutic effect on wound repair. Trials conducted on
chronic diabetic wounds in rats demonstrated accelerated
wound closure, reduced inflammation, and enhanced tissue
regeneration and collagen deposition compared to controls.
Histomorphological analysis further confirmed improvements
in epidermal structure, gland and hair follicle formation,
collagen fiber alignment, and reduction of the level of
macrophage infiltration at wound sites. In conclusion, the

study advocates for the 3D-printed RHAg hydrogels as
promising candidates for addressing chronic diabetic wounds,
owing to their UV responsiveness, biocompatibility, anti-
bacterial efficacy, facilitation of cell migration, and potential for
tissue regeneration.70

In a comprehensive investigation, Ahmed et al. conducted an
extensive study of the development of 3D-printed scaffolds
tailored for skin tissue engineering applications. Utilizing a
combination of sodium alginate (Na-ALG), poly(vinyl
alcohol) (PVA), and copper−silver-doped mesoporous bio-
active glass nanoparticles (Cu−Ag MBGNs), the researchers
synthesized scaffolds employing an in-house-built 3D bio-
printer and systematically characterized their properties.
Investigation of various Na-ALG and PVA solution ratios
revealed that the 3:1 ratio exhibited optimal printability and
shear thinning behavior. The resulting scaffolds displayed a
porous structure, homogeneous elemental distribution, and
hydrophilic surfaces with confirmed chemical bonding between
Na-ALG, PVA, and Cu−Ag MBGNs. Mechanical testing
indicated satisfactory tensile strength and ductility attributed to
cross-linking and porosity. Antibacterial evaluations against S.
aureus and E. coli demonstrated robust antibacterial activity
proportional to Cu−Ag MBGN concentration. Degradation
and swelling studies revealed gradual degradation, facilitating
water molecule diffusion and ion release. Assessment of
angiogenic and cytocompatibility potential showcased the
scaffolds’ proangiogenic nature and compatibility with human
fibroblast cells. Overall, the study highlights the optimal
printability and mechanical stability of the Na-ALG/PVA
blend at a 3:1 ratio, the enhanced antibacterial and angiogenic
potential conferred by Cu−Ag MBGNs, and the scaffolds’
hydrophilicity, biodegradability, and cytocompatibility.69

Bioactive glasses (BGs) serve as surface-reactive bioceramics
capable of degrading within the body, thereby promoting tissue
healing. However, their fabrication via 3D printing encounters
challenges due to their inherent stiffness and brittleness. To

Figure 6. Intricate overview of the synthesis of RHCMA and HAMA, the formation of RHAg composite hydrogels, and their implications in
chronic wound healing, emphasizing their significance in medical and health sciences, particularly in wound healing and tissue engineering. (a) The
synthesis of RHCMA involves the combination of recombinant human collagen (RHC) with methacrylate, yielding RHCMA, a crucial compound
for hydrogel formation. (b) Similarly, the synthesis of HAMA entails the fusion of hyaluronic acid (HA) with methacrylate anhydride (MA),
resulting in HAMA, another vital component of the hydrogel. (c) The formation of RHAg composite hydrogels initiated with a hydrogel precursor
comprising AgNCs, which is subsequently transformed into a hydrogel through 3D bioprinting and UV light exposure, rendering it suitable for
wound healing applications. (d) Demonstrating practical application, the figure showcases a STZ-treated mouse undergoing wound-making,
dressing with antibacterial hydrogel, repair, and eventual healing stages, highlighting the RHAg composite hydrogels’ potential in promoting wound
healing. This figure is adapted with permission from the American Chemical Society.70
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overcome this, a study incorporated mesoporous bioactive
glass nanoparticles (MBGNs), known for their increased
surface area and porosity compared to traditional BGs, into a
polymer matrix consisting of sodium alginate (Na-ALG) and
poly(vinyl alcohol) (PVA) to enhance scaffold printability and
mechanical properties. Sodium alginate (Na-ALG), a biocom-
patible and biodegradable polysaccharide, forms hydrogels
when cross-linked with calcium ions but exhibits limited
mechanical strength and stability. The addition of poly(vinyl
alcohol) (PVA) aimed to improve the mechanical integrity and
stability of Na-ALG hydrogels while enhancing hydrophilicity
and water retention essential for wound healing. Incorporating
copper and silver ions provides antibacterial and angiogenic
benefits, although high concentrations may pose cytotoxic and
inflammatory risks. Utilizing copper−silver doped MBGNs
(Cu−Ag MBGNs) enabled controlled release of metal ions,
with optimized MBGN composition balancing antibacterial,
angiogenic, and cytocompatible properties. The study
positions its fabrication approach and material selection as
advancements in skin tissue engineering, acknowledging
inherent limitations and challenges such as the need for
further optimization of printing parameters, long-term scaffold
performance evaluation, and the integration of stem cells and
growth factors. Thus, the study refrains from claiming
unrivaled success but presents a novel and promising avenue
that warrants refinement and validation. The findings under-
score the potential of 3D-printed Na-ALG/PVA/Cu−Ag
MBGN scaffolds as promising candidates for skin regeneration
and wound healing applications.69

7.3. Cytotoxicity Concerns of Excipients in 3D-
Printed Wound Healing Applications. While the integra-
tion of AgNPs with 3D printing for wound healing presents
numerous advantages, it is essential to consider the potential
cytotoxic effects of the various excipients used in these
applications. Excipients, which are inactive substances
formulated alongside the active ingredients, can sometimes
exhibit cytotoxic behavior, affecting the overall biocompati-
bility of wound healing devices. Here, we explore several
examples of excipients commonly used in 3D-printed wound
healing applications and their associated cytotoxic effects.

Poly(lactic acid) (PLA) is a widely used biopolymer in 3D
printing due to its biodegradability and mechanical properties.
However, its degradation products, primarily lactic acid, can
lead to localized decreases in pH, which may induce
cytotoxicity and inflammation.222−225 Research has shown
that high concentrations of lactic acid can adversely affect cell
viability and proliferation, potentially impeding wound healing
processes. Polycaprolactone (PCL) is another commonly used
polymer in 3D-printed scaffolds. Although it is generally
considered biocompatible, the long-term degradation of PCL
can result in the release of caproic acid, which can exhibit
cytotoxic effects.226−229 Studies have reported that high
concentrations of caproic acid can cause cellular damage and
inflammation, highlighting the need for careful consideration
of PCL’s degradation kinetics in wound healing applica-
tions.230,231

The synthesis of AgNPs often involves chemical reducing
agents that can pose environmental and biological risks. For
instance, sodium borohydride (NaBH4) is a common reducing
agent used in AgNP synthesis but is known for its cytotoxicity.
The presence of residual NaBH4 in 3D-printed wound
dressings can lead to adverse cellular responses, including
reduced cell viability and increased oxidative stress.232,233 UV-

curable resins, used in some 3D printing processes, often
contain photoinitiators that can generate reactive oxygen
species (ROS) upon exposure to UV light. These ROS can
induce cytotoxic effects, including DNA damage and apoptosis
in the surrounding tissues. Common photoinitiators like
benzoin methyl ether and camphorquinone have been
associated with cytotoxicity in various cell lines.234−236

During the fabrication of 3D-printed scaffolds, solvents are
sometimes used to dissolve or process the materials. Residual
solvents, such as dichloromethane or dimethyl sulfoxide
(DMSO), can remain trapped within the scaffold structure.
These solvents are known for their cytotoxic properties, and
their gradual release over time can negatively impact cell
viability and tissue integration.237−239

The integration of AgNPs and 3D printing technology in
wound healing presents a promising frontier, offering the
potential for customized, effective, and antibacterial wound
care solutions. However, the cytotoxicity associated with
certain excipients used in these applications cannot be
overlooked. Understanding the interactions between these
excipients and biological tissues is crucial for developing safer
and more effective wound healing devices. For instance, while
PLA and PCL are favored for their biodegradability and
mechanical properties, their degradation products can lead to
localized cytotoxic effects, necessitating careful consideration
of their use in wound healing applications.231,240,241 Similarly,
the use of chemical reducing agents in AgNP synthesis and
photoinitiators in UV-curable resins highlights the importance
of optimizing synthesis and fabrication processes to minimize
cytotoxic residues.242,243

To address these challenges, part of future research should
focus on developing alternative, nontoxic reducing agents for
AgNP synthesis, optimizing polymer compositions and
degradation rates to minimize cytotoxic effects, investigating
the long-term biocompatibility of residual solvents and other
additives, and exploring advanced fabrication techniques that
reduce the need for potentially harmful excipients. By
addressing these cytotoxicity concerns, researchers can
enhance the safety and efficacy of 3D-printed wound healing
devices, paving the way for innovative solutions in tissue
engineering and regenerative medicine. Moreover, ongoing
advancements in material science and 3D printing technologies
will likely yield new biocompatible materials and fabrication
methods, further improving the landscape of wound healing
applications.
7.4. Insights into Skin Dysbiosis. Skin dysbiosis, also

termed skin dysbacteriosis, is an imbalance in the skin
microbiome, which can lead to various dermatological
conditions and impede wound healing. This condition arises
when the delicate equilibrium between beneficial and
pathogenic microorganisms on the skin is disrupted.244,245

Factors contributing to skin dysbiosis include environmental
stressors, underlying health conditions, and the use of
antibiotics or antimicrobial agents such as AgNPs.246−248

Silver nanoparticles are known for their potent antimicrobial
properties, making them a common component in wound
dressings and other medical applications. However, their
impact on skin microbiota is a double-edged sword. While
AgNPs are effective in eliminating pathogenic bacteria and
preventing infections, they may also disrupt the balance of the
skin microbiome, potentially leading to dysbiosis.249−252 The
mechanisms of dysbiosis induced by AgNPs could include
broad-spectrum antibacterial action, which does not differ-
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entiate between pathogenic and beneficial microorganisms,
potentially reducing the population of commensal bacteria
essential for skin health.253 Additionally, the antibacterial
mechanism of AgNPs often involves the generation of reactive
oxygen species (ROS), which can damage microbial cells.
However, this oxidative stress can also harm skin cells and
disrupt microbial communities.253−255 Long-term or high-dose
exposure to AgNPs can lead to a decrease in microbial
diversity, which is crucial for a healthy skin micro-
biome.199,256,257 The integration of AgNPs with 3D printing
technology has revolutionized wound care by enabling the
creation of customized wound dressings and scaffolds with
enhanced antibacterial properties. These 3D-printed constructs
can be tailored to the unique contours of wounds, providing
targeted antibacterial reinforcement and promoting optimal
healing environments (Table 1). The advantages of combining
AgNPs and 3D printing include customization, antibacterial
protection, and material integration. Studies have shown that
incorporating AgNPs into poly(lactic acid) (PLA) scaffolds
enhances their antibacterial properties, making them effective
for wound healing applications. The UV irradiation method for
synthesizing AgNPs on PLA scaffolds offers a nontoxic and
cost-effective approach, ensuring biocompatibility and scal-
ability. Researchers have developed superporous hydrogel
dressings incorporating AgNPs, which exhibit high porosity,
water absorption, and retention capabilities. These dressings
have shown superior efficacy in reducing wound size and
preventing scar tissue formation in vivo. Investigations into 3D-
printed polycaprolactone (PCL) scaffolds with immobilized
AgNPs have demonstrated robust antibacterial activity and
biocompatibility. These scaffolds promote angiogenesis and
reduce foreign body reactions, making them suitable for skin
regeneration applications. The interplay among AgNPs, 3D
printing, and skin dysbiosis highlights the need for balanced
approaches in medical applications (Table 1). Future research
should focus on optimizing the use of AgNPs to harness their
antibacterial benefits while minimizing the risk of dysbiosis.
Additionally, exploring alternative antimicrobial agents and
developing strategies to restore and maintain a healthy skin
microbiome will be crucial in advancing wound care and skin
regeneration technologies.
7.5. AgNPs as Inducers of Cellular Stress and

Proliferation. AgNPs have been shown to induce cellular
stress, initiating a complex signaling cascade that can lead to
changes in the cell’s structure and increased cell growth. The
mechanisms underlying these effects are intricate, involving
oxidative stress, modulation of growth factor signaling, and
interactions with cellular proteins.258−260 AgNPs disrupt the
redox balance within cells, which activates signaling pathways
such as MAPK (Mitogen-Activated Protein Kinase)261,262 and
PI3K/Akt (Phosphoinositide 3-Kinase/Protein Kinase
B).263−267 These pathways are crucial for cell proliferation
and survival. Furthermore, AgNPs have been found to promote
the release of growth factors and cytokines, which further
stimulate cell growth and tissue regeneration.268−273 AgNPs
possess significant anti-inflammatory properties due to their
ability to modulate immune responses and reduce the
production of pro-inflammatory cytokines.274,275 They can
inhibit the activation of NF-κB (Nuclear Factor kappa-light-
chain-enhancer of activated B cells), a critical transcription
factor in the inflammatory response.

Despite these promising findings, several aspects of AgNPs’
interactions with biological systems are still not fully

understood. Key areas that require further investigation include
the mechanisms of uptake, distribution within the body,
excretion, toxicological effects, and detailed mechanisms of
action. Gaining a deeper understanding of these parameters is
essential for optimizing the use of AgNPs in biomedical
applications and minimizing potential adverse effects.

8. FUTURE STUDIES
Moving forward, the field of 3D printing in wound recovery
demonstrates significant potential for further exploration.
Subsequent investigations may focus on enhancing the
integration of AgNPs into 3D-printed frameworks, exploring
alternative antibacterial nanoparticles, and rigorously evaluat-
ing the long-term safety and efficacy of these frameworks in
wound treatment.

Enduring biocompatibility and in vivo functionality: Despite
the potential demonstrated by the integration of 3D printing
and nanotechnology in wound recovery, understanding the
long-term biocompatibility and in vivo functionality of these
3D-printed structures incorporating AgNPs presents a
significant challenge. Biocompatibility refers to a material’s
ability to perform its intended function in medical therapy
without inducing undesirable local or systemic effects in the
recipient. Long-term assessments are crucial to determine
whether these structures elicit any adverse reactions upon
interaction with bodily tissues over an extended period.
Additionally, in vivo functionality concerns how these
structures function within a living organism. More compre-
hensive in vivo evaluations are necessary to evaluate the safety
and efficacy of these structures in real-world settings beyond
the controlled environment of a laboratory.

Potential cytotoxicity of AgNPs: Despite their antibacterial
properties, which make them attractive for wound recovery,
AgNPs raise concerns regarding potential cytotoxicity.
Cytotoxicity refers to the ability to cause harm to cells,
suggesting that while AgNPs can eliminate bacteria they may
also pose risks to healthy cells. This issue is especially relevant
in wound recovery, where promoting the growth of healthy
cells is crucial. Therefore, further investigation is necessary to
fully understand the cytotoxic effects of AgNPs within these
3D-printed structures and to develop strategies for mitigating
these effects.

These gaps represent significant areas of uncertainty in the
current understanding of 3D-printed structures incorporating
AgNPs for wound recovery. Addressing these gaps through
future research efforts could lead to the development of safer
and more effective wound recovery solutions. It is essential for
upcoming studies to recognize these limitations and design
experiments to specifically investigate these areas. This
approach will not only enhance the knowledge base in this
field but also ensure the development of solutions that are both
effective and safe for patients.

Moreover, as bioprinting advances, there is the potential to
create 3D-printed structures that incorporate not only
antibacterial nanoparticles but also biological components,
such as cells and growth factors. This has the potential to open
up new avenues for regenerative medicine and wound healing,
expanding the boundaries of the current feasibility.

Therefore, the integration of AgNPs and 3D printing
represents a new frontier in wound healing, offering promising
opportunities for the advancement of advanced wound care
solutions. However, further research is necessary to exploit this
potential and address the associated challenges.
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9. CONCLUSION
The integration of silver nanoparticles (AgNPs) with three-
dimensional (3D) printing presents a groundbreaking advance-
ment in the field of wound healing. The antibacterial properties
of AgNPs, when combined with the customization and
precision of 3D printing, offer significant potential for
developing advanced wound care solutions. Recent studies
have demonstrated the efficacy of AgNP-infused 3D-printed
scaffolds in promoting wound healing, reducing infection rates,
and enhancing tissue regeneration. These constructs have
shown promise in various applications from chronic wound
management to bone regeneration, highlighting the versatility
and effectiveness of this approach. Despite these promising
advancements, several challenges and areas for further research
remain. One of the primary challenges is ensuring the uniform
dispersion of AgNPs within the 3D-printed structures.
Achieving a consistent distribution is crucial for maintaining
the antibacterial efficacy and overall functionality of the
constructs. Additionally, the potential cytotoxic effects of
AgNPs, particularly at higher concentrations, necessitate a
thorough investigation to ensure the safety of these materials
for clinical use. Understanding the long-term biocompatibility
and in vivo performance of AgNP-infused 3D-printed scaffolds
is essential to their successful application in wound healing.
Future research should focus on optimizing the integration of
AgNPs into 3D-printed frameworks, exploring alternative
antibacterial nanoparticles, and rigorously evaluating the
long-term safety and efficacy of these technologies in clinical
settings. Advances in bioprinting techniques could also enable
the incorporation of biological components such as cells and
growth factors into 3D-printed scaffolds, opening new avenues
for regenerative medicine and tissue engineering. Moreover,
addressing the potential cytotoxicity and environmental impact
of the materials and processes used in the synthesis of AgNPs
is critical. Developing ecofriendly and biocompatible synthesis
methods will enhance the sustainability and safety of these
advanced wound care solutions. Hence, the convergence of
AgNPs and 3D printing technology offers a promising frontier
in wound healing with the potential to revolutionize the
treatment of chronic wounds and other complex medical
conditions. Ongoing research and innovation in this field are
essential to fully harness the benefits of these technologies and
overcome the associated challenges, ultimately leading to more
effective and personalized wound healing therapies.
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