
 

 

Int. J. Mol. Sci. 2015, 16, 14490-14510; doi:10.3390/ijms160714490 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Cloning and Characterization of Surface-Localized α-Enolase of 
Streptococcus iniae, an Effective Protective Antigen in Mice 

Jun Wang 1,2, Kaiyu Wang 1,2,*, Defang Chen 3, Yi Geng 1,2, Xiaoli Huang 3, Yang He 1,2,  

Lili Ji 1,2, Tao Liu 1,2, Erlong Wang 1,2, Qian Yang 1,2 and Weimin Lai 1,2 

1 Department of Basic Veterinary, Sichuan Agricultural University,  

Wenjiang District Huimin Road No. 211, Chengdu 611130, China;  

E-Mails: wangjunzl@126.com (J.W.); gengyisicau@126.com (Y.G.); heyang@sicau.edu.cn (Y.H.); 

jllsicau@126.com (L.J.); ltsicau@126.com (T.L.); welsicau@126.com (E.W.); 

yangqiansicau@126.com (Q.Y.); nwm_mm2004@163.com (W.L.) 
2 Key Laboratory of Animal Disease and Human Health of Sichuan Province,  

Sichuan Agricultural University, Wenjiang District Huimin Road No. 211,  

Chengdu 611130, China 
3 Department of Aquaculture, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, 

Chengdu 611130, China; E-Mails: chendf_sicau@126.com (D.C.); hxldyq@126.com (X.H.) 

* Author to whom correspondence should be addressed; E-Mail: kywangsicau@126.com or 

kywang@sicau.edu.cn; Tel.: +86-835-2885-910; Fax: +86-835-2885-302. 

Academic Editor: Bing Yan 

Received: 8 May 2015 / Accepted: 15 June 2015 / Published: 25 June 2015 
 

Abstract: Streptococcus iniae is a major fish pathogen that can also cause human 

bacteremia, cellulitis and meningitis. Screening for and identification of protective antigens 

plays an important role in developing therapies against S. iniae infections. In this study,  

we indicated that the α-enolase of S. iniae was not only distributed in the cytoplasm and 

associated to cell walls, but was also secreted to the bacterial cell surface. The functional 

identity of the purified recombinant α-enolase protein was verified by its ability to catalyze 

the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP), and both the 

recombinant and native proteins interacted with human plasminogen. The rabbit anti-rENO 

serum blockade assay shows that α-enolase participates in S. iniae adhesion to and invasion 

of BHK-21 cells. In addition, the recombinant α-enolase can confer effective protection 

against S. iniae infection in mice, which suggests that α-enolase has potential as a vaccine 
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candidate in mammals. We conclude that S. iniae α-enolase is a moonlighting protein that 

also associates with the bacterial outer surface and functions as a protective antigen in mice. 

Keywords: Streptococcus iniae; α-enolase; characterization; functions; surface location; 

protective antigen; mice 

 

1. Introduction 

Streptococcus iniae is an aquatic pathogen which has established itself as a zoonotic risk [1,2].  

To date, at least 27 human cases of invasive streptococcal infection attributed to S. iniae have been 

reported [1,3–7]. The most common manifestations of S. iniae infection are bacteremia cellulitis and 

meningitis [3], which produce symptoms very similar to those of infections caused by human-specific 

streptococcal pathogens such as S. pyogenes, S. agalactiae and S. pneumonia [8]. 

The pathogenesis of disease caused by S. iniae is not yet fully understood, however, adhesion and 

invasion are crucial steps for S. iniae to infect hosts and often aided by many surface proteins [9]. 

Previous data indicated that S. iniae was able to survive in serum, and expressed surface factors which 

could bind trout immune globulin (Ig) [10]. Subsequently, M-like protein was confirmed as a dominant 

virulence factor, which enables S. iniae to adhere to and invade host cells during infection [9]. 

Additionally, the capacity of adhesion and invasion of epithelial cells were both improved in S. iniae 

without a capsule which increased exposure of surface proteins and also demonstrated that the surface 

proteins play important roles in S. iniae to adhere to and invade host cells [11]. However, due to the 

complex structure of bacteria, a comprehensive understanding of S. iniae surface proteins is still not  

very clear. 

Increasing numbers of reports support the idea that cytoplasmic glycolytic enzymes such as  

fructose-1, 6-bisphosphate aldolase (FBA), α-enolase and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) can be exported to the cell surface of a variety of prokaryote and eukaryotes, and play  

a critical role in bacterial adhesion and invasion to host cells [12–16]. The function of α-enolase is to 

catalyze the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate when it is present 

in cytoplasm. Lack of known cell surface protein motifs such as a signal peptidase cleavage site, cell 

wall anchors or sequences, and membrane spanning domains suggests that the export of α-enolase may 

depend on covalent binding to the substrate [17]. It has been confirmed in many microorganisms that  

α-enolase is secreted and attaches to the cell surface, probably in a complex with plasminogen (Plg) to 

assist in microbial dissemination in hosts [16,18–20]. The α-enolases of other streptococcus were 

recognized as immunodominant antigens [21–23], suggesting that this also could be true for S. iniae  

in mice. In this study we identified and characterized a functional α-enolase amino acid sequence 

homologue, and confirmed that α-enolase is exposed on the surface of S. iniae. We further showed that 

recombinant α-enolase retained its enzymatic activity, and that surface glycolytic enzyme plays a role 

in plasminogen-binding, cell adhesion/invasion and protecting mice against S. iniae infection. 
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2. Results 

2.1. Molecular Cloning, Expression and Characterization of S. iniae α-Enolase 

Sequence analysis shows that the open reading frame (ORF) of S. iniae α-enolase, which is 1308 bp 

long, encoded a protein of 435 amino acids with a predicted molecular mass 47.24 KDa. A homology 

search for the protein performed using information obtained from NCBI revealed that S. iniae α-enolase 

shared the highest similarity of amino acid sequence with S. dysgalactiae (YP_006012850; 98%),  

S. pyogenes (YP_005388632; 97%), S. agalactiae (WP_000022829; 97%), S. suis (ACS66679; 95%), 

and S. pneumoniae (AAK75238; 93%) (Figure 1A). Based on the full-length amino acid sequence 

alignment of the α-enolase protein including the five Streptococcus above, some prokaryotes and 

eukaryotes, were further determined by phylogenic analysis (neighbour-joining tree) (Figure 1B). The 

result was in agreement with traditional taxonomy: prokaryotes and eukaryotes were classified in 

different branches: Homo sapiens, Bovinae, Mus musculus, Gallus gallus and Danio rerio grouped into  

a branch and compared with the Streptococcus with remote homology, and all of the Streptococcus 

sequences grouped into a separate branch. Putative active sites included two enzyme active sites  

(205 E, 343 K), three metal binding sites (242 D, 291 E, 318 D; magnesium), ten substrate binding sites 

(155 H, 164 E, 291 E, 318 D, 343 K, 370–373 SHRS, 394 K) and a plasminogen-binding region  

(248–256 FYDKERKVY) (Figure 1A). Neither signal peptide cleavage sites nor transmembrane helices 

in the amino acid sequences or proteins were found. Predictive linear B-cell epitope (score above 

threshold 0.7) were situated in a lot of amino acids residue (Figure 1A). 

The S. iniae α-enolase ORF was sub-cloned into the pET32a (+) prokaryotic expression vector,  

and the recombinant protein was overexpressed in E. coli BL21(DE3) cells with an N-terminal  

histidine-tagged fusion protein (~67 KDa). After 3 h of induction in 0.1 mmol/L IPTG, high-level 

expression of the recombinant protein was observed both in the supernatant and precipitate of the 

bacteria pyrolysis products (Figure 2, lanes 4–5). After purification by affinity chromatography using 

His-binding columns under non-denaturing conditions, the rENO proteins were identified by means of 

SDS-PAGE (Figure 2, lane 6). The purified rENO yield was approximately 1.2 mg/mL from 3.5 L of 

bacterial culture. 
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Figure 1. Multiple sequence alignments and phylogenetic analysis of S. iniae α-enolase with homologous enolase. (A) Alignment of the deduced 

amino acid sequence of S. iniae α-enolase (AGT63054) with those of homologous α-enolase from other Streptococcus. These α-enolase 

sequences were used from S. dysgalactiae (YP_006012850; 98%), S. pyogenes (YP_005388632; 97%), S. agalactiae (WP_000022829; 97%), 

S. suis (ACS66679; 95%), S. pneumoniae (AAK75238; 93%), and aligned using the ClustalW2 program. Regions of identity (*), strong 

similarity (:) and weak similarity (.) were indicated. The putative plasminogen-binding regions were shaded in red. The residues involved in 

enzyme active sites (205 E, 343 K), metal-binding sites (242 D, 291 E, 318D; magnesium), substrate-binding sites (155 H, 164 E, 291 E,  

318 D, 343 K, 370-373 SHRS, 394 K) were shaded in blue, black and yellow, respectively. But there were no any signal peptidase cleavage  

site or membrane-spanning domains in the amino acid sequence. A residue annotated with a blue “E” was predicted as being part of a linear  

B-cell epitope (score above threshold 0.7); (B) The tree of the α-enolases from the Streptococcus of above, some other prokaryotes and 

eukaryotes was constructed by the neighbour-joining method and plotted with MEGA 4.1. Evolutionary distances were computed using the 

Poisson correction method. Branch support values (10,000 bootstraps) for nodes were indicated. 
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Figure 2. SDS-PAGE and western-blot analysis of S. iniae α-enolase. SDS-PAGE was used 

to analyze the expression of rENO. Recombinant vectors pET32-eno and pET32a (+) were 

transformed into E. coli BL21 (DE3) and induced by 0.1 mM IPTG for 4 h at 37 °C. All the 

samples were analyzed by SDS-PAGE, and the protein was stained with Coomassie Blue 

R250 in the gel. M, molecular mass marker in KDa; Lane 1–2, the E. coli BL21 (DE3) 

including pET32a (+) was no-induced and induced, respectively; Lane 3, the E. coli BL21 

(DE3) including pET32-eno was no-induced; Lane 4–5, the supernatant and precipitation of 

the E. coli BL21 (DE3) including pET32-eno was induced; Lane 6, purified rENO protein. 

Western-blot was used to analyze the localization of S. iniae α-enolase. The rabbit anti-rENO 

antibodie (1:100) was used to probe the cell wall and cytoplasmic protein fraction of S. iniae, 

and purified rENO was used as control; Lane 7, purified rENO; Lane 8, cell wall protein 

fraction; Lane 9, cytoplasmic protein fraction. 

2.2. Subcellular Location of S. iniae α-Enolase 

To determine the subcellular location of α-enolase in S. iniae, purified rabbit anti-rENO serum  

was analyzed by western-blot to probe the cell wall and cytoplasmic protein fractions of S. iniae.  

Purified rENO was used as a control. Analysis using anti-rENO serum revealed reactivity to a ~47 KDa 

protein in both the cell walls and cytoplasmic protein fractions (Figure 2, lanes 8–9). The rENO (with  

an N-terminal Histidine-tagged fusion protein) was revealed at about 67 KDa (Figure 2, lane 7). 

2.3. Surface Display of S. iniae α-Enolase 

Indirect immunofluorescence analysis using rabbit anti-rENO serum was carried out to assess 

possible surface localization of α-enolase on S. iniae. The results showed that S. iniae α-enolase was 

located on the bacterial cells’ outer surface (Figure 3A,B). Next, we used the rabbit anti-rENO serum to 

directly detect α-enolase on the cell surface and the rabbit anti-S. iniae whole cell serum was used to 

detect rENO by ELISA. The 96-well plate was coated with different concentrations of S. iniae cells.  

The anti-rENO serum could recognize the α-enolase on the whole cell surface dose dependently  

(Figure 3C). Significant differences only existed between higher concentrations of bacteria cells and the 

control (p < 0.05). That being said, the data showed that rabbit anti-S. iniae whole cells serum included 

the anti-enolase antibody and had the ability to combine the rENO (Figure 3D). However, our surface 

staining and ELISA analysis with rabbit anti-rENO serum showed a relatively low signal; this result 

could be attributed to scarce distribution of α-enolase on the surface as is the case with that of  

S. pneumonia, S. suis and Bacillus anthracis [18,23,24]. One possible explanation for this could be that 



Int. J. Mol. Sci. 2015, 16 14495 

 

 

other surface structures like proteins might affect the availability of α-enolase epitopes and hinder  

the reaction with antibody [23]. In addition, environmental conditions were also important factors 

influencing the transcription and export of α-enolase in vitro [25]. 

 

Figure 3. Identification of S. iniae α-enolase expression on the cell surface. (A,B) Indirect 

immunofluorescence analysis of cell surface α-enolase was carried out with rabbit anti-rENO 

serum (1:100) or PBS. The fluoresced bacteria cells were showed in chain cocci when 

bacteria cells were observed by fluorescence microscopy after incubated with FITC 

conjugated goat anti-rabbit antibody (1:64) and (panel A), but the naive rabbit sera control 

was not observed (panel B); (C) Rabbit anti-rENO serum was used to detect the surface  

α-enolase of S. iniae by ELISA. The data showed that the absorbance value (OD450 nm) 

increased with the bacteria cells concentration, and the higher concentration bacteria  

(3.5 × 104−6 cfu/mL) were significant difference compared with negative control (p < 0.05); 

(D) Rabbit anti-S. iniae whole-cell serum was prepared by our laboratory with formalin 

inactivated S. iniae. The absorbance of rENO incubated with anti-S. iniae serum were 

significant higher than the control incubated with negative serum or PBS (p < 0.05).  

* p < 0.05. Error bars indicate SD. 
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2.4. α-Enolase Activity and Enzyme Kinetics Analysis 

After purification of rENO, it was determined that the recombinant protein possessed the capacity  

to catalyze the conversion of 2-PGE to PEP. In a coupled-enzyme assay, the rENO protein converted 

terminal NADH to NAD with dose dependent (Figure 4A). This result indicated the conversion of pyruvate 

to lactate by lactate dehydrogenase and NADH, confirming the conversion of phosphoglycerate to 

phosphoenolpyruvate by α-enolase and further conversion to pyruvate with the presence of external 

pyruvate kinase and ADP. Enzyme reaction kinetics were performed using purified rENO protein with 

various concentrations of 2-PGE. The Michaelis-Menten plots and double-reciprocal Lineweaver-Burk 

plots were made to determine Vmax and Km for α-enolase (Figure 4B). This analysis revealed a Km value 

of 1.52 mM for 2-PGE and a Vmax of 65.36 mM PEP/min for rENO. The Km observed for PEP, 1.52 mM, 

falls within the range (1.492 mM for a-enolase from Streptococcus pyogenes [26] to 3.3 mM for  

α-enolase present in Bacillus anthracis [18]) reported for enolase from different bacteria. 

 

Figure 4. α-enolase activity and enzyme kinetics analysis. (A) The coupled-enzyme assay 

of the rENO was detected by the catalytic rate of conversion of NADH to NAD min−1 in  

the presence of lactate dehydrogenase, ADP, and pyruvate kinase were measured as  

A340 nm·min−1; (B) Enzyme kinetics of rENO were determined by measuring the rate  

of conversion of 2-PGE to PEP in the presence of various concentrations of substrate  

(2-PGE; 0.5–3.5 mM) and 5 μg of the purified rENO and monitored the changes of 

absorbance at 240 nm. Data was plotted by the method of Michaelis–Menten (inset) and  

Vmax and Km were calculated from double reciprocal plots. 

2.5. hPlg Binding Activity of S. iniae α-Enolase 

For the ELISA, whole cell bacteria and hPlg were coated on the polystyrene plates. The results 

demonstrated a concentration dependent increase in binding of S. iniae or rENO to hPlg. The statistically 

difference were significant both in S. iniae or rENO compared with the control (p < 0.05) (Figure 5A,B). 

This result confirmed the specificity of the interaction between hPlg and α-enolase on the surface of S. iniae. 
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Figure 5. Interaction of human plasminogen with S. iniae whole cells and rENO.  

(A) Different concentration of normal S. iniae cells (0.3125–10 × 107 cfu/well) and S. iniae 

cells (10 × 107 cfu/well) were blocked by rabbit anti-rENO serum (1:100) or native rabbit 

serum (1:100) were coated in plates to demonstrate the interaction of human plasminogen  

(1 μg) with α-enolase of the cells surface. The absorbance values of the high concentration 

of S. iniae cells (5, 10 × 107 cfu/well) and native rabbit serum blocked S. iniae cells were 

significantly higher than other concentration cells and blocked cells (p < 0.05); (B) The 

rabbit anti-PLGLA (N-term) IgG (1:1000) was used to analyze the direct interaction of the 

hPLG (0.03125-1 μg) and rENO (1 μg). The binding ability of the rENO to hPLG showed a 

concentration-dependent increase, and the absorbance values were significant difference 

compared to the negative control (p < 0.05). * p < 0.05. NS denotes no statistically significant 

difference, and error bars indicate SD. 

2.6. Adherence and Invasion Assays of S. iniae to BHK-21 Cells 

Adherence is the first step in the pathogenesis of any streptococcal disease, which is carried out by  

a large number of surface proteins, such as α-enolase. Streptococci can then secrete a great quantity of 

enzyme and toxin to contribute to their invasion and multiplication by damaging the structure of cells 

and tissues [8,9]. In order to evaluate the underlying role of α-enolase in S. iniae adhesion to and invasion 

of BHK-21 cells, bacterial α-enolase was blocked with purified rabbit anti-rENO IgG. The results 

showed that anti-rENO IgG treatment decreased the adhesion of S. iniae strain DGX07 to BHK-21 cells 

to 51.47% (p < 0.05) compared with the control (Figure 6A). Invasion of BHK-21 by S. iniae was also 

decreased to 68.43% (p < 0.05) compared with the control (Figure 6B). These data show that α-enolase 

participates in S. iniae adhesion to and invasion of BHK-21 cells. 
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Figure 6. Adhesion (A) and invasion (B) analyses. Decrease in the adhesion to and invasion 

of BHK21 cells by S. iniae DGX07 through use of rabbit anti-rENO serum. S. iniae DGX07 

was pre-incubated with the appropriate concentrations of antibodies (1:100) at 37 °C for  

60 min prior to infection. The percentage of adhesion to and invasion of cells were 51.47% 

(p < 0.05) and 68.43% (p < 0.05) in experimental groups compared to control groups, 

respectively. Each treatment and control group test was performed in three replicate wells. 

* p < 0.05 in comparison with the level of adhesion/invasion with control antibodies 

(considered to be 100% adhesion/invasion). Error bars indicate SD. 

2.7. Immunoprotection of rENO as a Subunit Vaccine against S. iniae in Mice 

Blood was collected from both immune and control mice two weeks after the last immunization, and 

antibodies in the serum were assessed by ELISA. The antibody levels in mice immunized by rENO  

(with or without adjuvant) were significantly higher than the antibody levels in control mice (p < 0.05). 

However, the difference was not significant between rENO immunized mice with adjuvant and without 

adjuvant (p > 0.05) (Figure 7C). It appeared that rENO could induce the mice to produce higher levels 

of IgG compared to the unimmunized group. 

In order to evaluate the efficacy of the rENO protein vaccine against S. iniae DGX07 infection, the 

rENO-immunized mice were challenged intraperitoneally with 3.2 × 106 cfu/mL of S. iniae. The tissue 

lesions in target organs were assessed by histopathology. In the immunized group, the structures of 

kidney, liver, spleen, brain and lung tissues were intact without obvious pathological changes. In the 

control group, the alveolar walls were thickened and some of the epithelial cells were shedding. A large 

number of the inflammatory cells were infiltrated and the homogeneous red serous exudation led to 

alveolar lumen narrowing or even disappearance; the bacteria-like structures also were observed in 

macrophages (Figure 7B). Narrowed renal capsules appeared in some of the shed epithelial cells, and 

inflammatory cell infiltration was observed in glomerulus (data not shown). The livers were severely 

congested, and there were many inflammatory cells in the blood vessels. The meninges exhibited 

thickening and hemorrhage (Data not shown). 
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Figure 7. Immunoprotective analysis of rENO against S. iniae in mice. (A,B) 

Histopathological assessment of lung of immunized mice and control mice. The structure of 

lungs, were intact and no obvious pathological changes in the immunized group (A); 

However, in the control group, the alveolar walls were thickening and some epithelial cells 

were shedding; a large number of inflammatory cells infiltrated (as indicated by solid arrow) 

and the homogeneous red serous exudation led to alveolar lumen narrowing or even 

disappearance; the bacteria-like structures were observed in macrophages (as indicated by  

red circle); (C) Antibody level analysis of the immune mice. Analysis of total IgG with 

antiserum 1:100 dilution in response to rENO, the PBS injected mice serum were as the 

negative control. The antibody levels of immune mice by rENO (with or without adjuvant) 

were significant higher than the negative control mice (p < 0.05). The differences were not 

significant between rENO immune mice with adjuvant and without adjuvant (p > 0.05);  

(D) RPS rates in immunized mice. Mice were immunized two times with rENO-FCA/ 

FIC (□), rENO (×), FCA/FIC (∆) or PBS (O), followed by challenge with S. iniae  

(3.2 × 106 cfu/mice). Each group consisted of 10 mice. All mice were monitored for  

mortality for 14 days after the challenge, and the cumulative mortality rates (left side) 

corresponding to RPS rates (right side) are shown. * p < 0.05. NS denotes no statistically 

significant difference, and error bars indicate SD. 



Int. J. Mol. Sci. 2015, 16 14500 

 

 

The control group mice began to die at 12 h after the challenge, whereas the mice in the immunized 

groups began to die on the fifth or sixth day after the challenge (Figure 7D). The cumulative mortalities 

of the mice vaccinated with adjuvanted rENO, PBS plus rENO, PBS plus adjuvant and PBS alone were 

10%, 30%, 100% and 100%, respectively, which corresponded to a relative survival percentage of  

90% or 70% for rENO vaccinated mice with or without adjuvant, respectively (Figure 7D). Altogether, 

these results confirmed that immunization of mice with recombinant α-enolase effectively protected 

mice against infection by S. iniae DGX07. 

3. Discussion 

S. iniae is a major etiological agent of streptococcosis in farmed and wild fish in many regions of the 

world [27]; it was noted at the 2000 International Conference on Emerging Infectious Diseases as an 

emerging zoonotic disease transmitted by food animals [28]. In accordance with case reports of humans 

infected with S. iniae, the greatest zoonotic risk appears to be associated with the handling and 

preparation of infected fish, and the strains isolated from fish and dolphins also showed virulence to 

humans by phagocytosis assay [3,7]. Our previous studies have confirmed that virulence of S. iniae 

DGX07 (an isolate from farmed channel catfish) in mice was stronger than that in channel catfish [29]. 

Similar to other virulent and invasive streptococci, such as S. pyogenes and S. pneumoniae, adhesion 

and invasion are the key steps in pathogenesis of S. iniae. These functions are often performed by a 

number of surface proteins [30,31], such as α-enolase, a surface exposed moonlighting protein present 

in a variety of pathogenic microorganisms [17]. We found that the native protein did not only disperse 

into the cytoplasm and cell walls, but was also secreted to the bacterial cell surface (Figures 2 and 3).  

The mechanisms of protein exposure to the bacterial cell surface remains unclear, because there are 

neither signal peptidase cleavage site nor membrane-spanning domains in the deduced amino acid 

sequence of α-enolase (Figure 1A). So the reassociation of secreted α-enolase to the bacterial cell 

surface, confirmed by immunoelectron microscopy and binding experiments in S. pneumonia, is a 

potential explanation for surface localization [32]. 

Previous results suggested that streptococcal surface α-enolase (SEN) has much stronger affinity for 

direct binding of Plg compared to other described streptococcal surface PLG binding proteins, such as 

PAM (Plg-binding group A streptococcal M protein) and GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase) [33,34]. The Plg-enolase interaction is mediated by the C-terminal lysyl residues of  

S. pneumonia α-enolase at position 433 and 434, which have been identified as binding sites for the 

kringle motifs of Plg [32]. A peptide of nine amino acids (FYDKERKVY) located between amino acids 

248–256, was indicated as the minimal second binding epitope mediating binding of Plg to S. pneumonia 

α-enolase [35]. Currently, the two dimensional structure of S. iniae α-enolase is not known, however, 

primary sequence analysis and ClustulW2 alignment has shown that S. iniae α-enolase possesses a 

conserved internal PLG-binding motif (FYDKERGVY) located between amino acids 249 and 257 

(Figure 1A). Plg is a single-chain glycoprotein that is inactive until cleaved by Plg activators to form 

plasmin [36]. The active enzyme consists of five kringle domains, each with three disulfide bonds  

that contain the lysine binding sites and the catalytic domain. Equipped with proteolytic plasmin  

activity, pathogenic microorganisms may degrade aggregated fibrin thrombi, thereby promoting  

the dissemination of pathogens in tissue. The Plg-binding property of many bacteria, notably the 
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Streptococcus species, has been suggested to be a contributing factor in tissue invasion and survival  

in hosts [18,21,31,37]. Our data suggests that both the surface exposed α-enolase of S. iniae and 

recombinant α-enolase have the ability to bind human Plg (Figure 5). Other studies indicated that 

bacterial binding of plasminogen can facilitate penetration in different systems. The addition of plasminogen 

to cultures of Borrelia burgdorferi can enhance penetration of endothelial cell monolayers [38]. The 

interaction between bacterial enolase and plasminogen promotes adherence of S. pneumoniae to 

epithelial and endothelial cells [31]. We found that the rabbit anti-rENO serum treatment decreased the 

adhesion to and invasion of S. iniae DGX07 to the baby hamster kidney-21 (BHK-21) cells compared 

with the unblocked bacteria cells (Figure 6). These experiments implied that the capture of Plg by surface 

α-enolase may represent a potent virulence mechanism in S. iniae infection hosts. 

The surface α-enolase exhibits strong immunogenicity and has been confirmed as an effective vaccine 

candidate in a variety of pathogenic microorganisms [39–42]. Recent reports suggested that specific 

antibodies against α-enolase are likely involved in the protection conferred to Nile tilapia by vaccination 

with the modified S. iniae [43] and the recombinant α-enolase also has the ability to protect turbot 

(Scophthalmus maximus) against S. iniae infection [44]. In this study, we explored the immunological 

protection of S. iniae α-enolase in mice; immunization with α-enolase significantly increased the specific 

IgG level of mice compared with the control group. After infected with lethal S. iniae, the tissues in the 

control group displayed severe pathological changes, especially in the lung (Figure 7A), which were  

not observed in the immunized group with the relative protection ratio above 70% (the relative  

protection ratio was 90% in the group of rENO plus FCA/FIA). Altogether, these results confirmed  

that immunization of mice with recombinant α-enolase effectively protects mice against systemic 

infection by lethal S. iniae. Interestingly, rabbit anti-rENO serum can combine with the native α-enolase 

of both type I and II S. iniae, which suggests that α-enolase may have the potential to protect fish against 

different serotypes S. iniae (data not shown). 

4. Experimental Section 

4.1. Strains, Plasmids and Media 

A highly virulent strain DGX07 of S. iniae was isolated from a diseased channel catfish  

(Ictalurus punctatus) [45]. The strain was grown in brain–heart infusion (BHI) broth (Oxoid, 

Basingstoke, UK) in an airtight conical flask without agitation at 37 °C [46]. Escherichia coli strains 

DH5α and BL21 (DE3) (Invitrogen, Carlsbad, CA, USA) were used for cloning and expression 

experiments, respectively. E. coli strains were grown in Luria-Bertani (LB) broth or on agar plates  

at 37 °C. Ampicillin (100 μg/mL; Sangon Biotech, Shanghai, China) was used in growth media when 

required. The vectors pMD19-T (Takara, Dalian, China) and pET-32a (+) (Invitrogen, Carlsbad, CA, USA) 

were used for polymerase chain reaction (PCR) cloning and protein expression in vitro, respectively. 

4.2. Animals 

This study was reviewed and approved by the Animal Ethics Committee of Sichuan Agricultural 

University (Ya’an, China; Approval No. 2011–028). New Zealand white rabbits and six week-old male 

specific-pathogen-free (SPF) BALB/c mice were purchased from the Laboratory Animal Center of 
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Sichuan University. All animals were housed under a barrier environment in sterile cages in the 

laboratory animal house (ambient temperature of 21–25 °C, humidity of 40%–60%, and a 12-h light/dark 

cycle) and fed pelleted food and sterilized water ad libitum. Animals were acclimated to these conditions 

for one week prior to the experiment. All surgical procedures were performed under isoflurane anesthesia 

and all mice were sacrificed by cervical dislocation. All efforts were made to minimize suffering. 

4.3. Amplification and Bioinformatics Analyses 

Total DNA for S. iniae DGX07 was used as the template for PCR amplification with a sense primer 

(5′-ATGTCAATTATTACTGATG-3′) and an antisense primer (5′-TTATTTTTTTAGGTTGTAG-3′) 

designed to target the S. iniae 9117 genome sequence (GenBank accession: AMOO01000001). The PCR 

amplified product was gel-purified, cloned into the pMD19-T vector and sequenced. The Lasergene 

software package for Windows (DNASTAR, Madison, WI, USA) was used to analyze the open  

reading frame (ORF) of the nucleotide sequence and deduce the amino acid sequence. The sequence  

was assigned GenBank accession number AGT63054 from the National Center for Biotechnology 

Information (NCBI). Similarity comparisons with previously reported sequences in GenBank were 

performed using DNAMAN version 3.0 (Lynnon Biosoft, Vaudreuil, QC, Canada) and on-line Blast 

tools at the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Based on their similarities, multiple 

sequence alignment by ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html), and phylogenetic 

analysis was built using the neighbour-joining (NJ) method with 10,000 bootstrapping replications  

of the Mega 4.1 program. The conserved active sites of S. pneumonia Q97QS2 (ENO_STRPN) 

(UniProtKB/Swiss-Prot) α-enolase protein were used as a reference to S. iniae α-enolase. The signal 

peptide cleavage sites and transmembrane helices were predicted by SignalP 4.1 Server 

(http://www.cbs.dtu.dk/services/SignalP/) and TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/ 

TMHMM/), respectively. In addition, in order to further investigate the possible mechanism underlying 

the strong immunogenicity of S. iniae α-enolase, we conducted B cell epitope prediction using BepiPred, 

version 1.0 (http://www.cbs.dtu.dk/services/BepiPred). 

4.4. Cloning, Expression, and Purification of S. iniae α-Enolase 

The coding sequence of α-enolase was amplified by PCR using a sense primer (5′-CGCGGATCC 

ATGTCAATTATTACTGATG-3′) and an antisense primer (5′-CGGAAGCTTCTATTTTTTTAGGT 

TGTAG-3′) with BamHI and HindIII restriction enzyme sites (underlined), respectively. After pMD19-T 

cloning and direct sequencing, eno was inserted into pET32a (+) via digested BamHI and HindIII, 

generating pET32-eno. The pET32-eno was transformed into E. coli BL21 (DE3) and was induced by 

isopropyl-β-D-thiogalactopyranoside (IPTG) to express protein at a final concentration of 0.1 mM for  

4 h at 37 °C. Bacterial cells were collected from the solution by centrifugation and resuspended in  

Ni-Native-0 buffer (50 mM NaH2PO4, 300 mM NaCl, pH 8.0). The resuspended bacterial cells were 

broken up by sonication and the supernatant that may contain soluble protein was collected by 

centrifugation at 12,000 rmp at 4 °C for 20 min, then the supernatant with Ni-Native-0 buffer was  

added into the equilibrated Ni-NTA-Sefinose column (Sangon Biotech, Shanghai, China). Then, the  

resin-absorbed histidine-tagged fusion protein was washed using Ni-Native-250 buffer (50 mM 

NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0). The purified product was analyzed by means of 
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12.5% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Final concentrations 

of purified proteins were measured with the micro-BCA protein assay reagent (Sangon Biotech, 

Shanghai, China), and any potential endotoxins were removed by the EndotoxinOUT™ Resin (Sangon 

Biotech, Shanghai, China). 

4.5. Preparation of Anti-rENO Serum 

To obtain rabbit polyclonal sera against rENO, two male New Zealand white rabbits were immunized 

with a subcutaneous injection of 1 mg of rENO purified as described above and mixed with Freund 

complete adjuvant (1:1) (Sigma, St. Louis, MO, USA). After 2 weeks each rabbit received a booster 

injection with the same antigen concentration emulsified with Freund incomplete adjuvant (1:1) (Sigma, 

St. Louis, MO, USA). A second booster injection was administered three days after the first. Serum 

samples were collected three days after the second booster injection. All surgical procedures were 

performed under isoflurane anesthesia. 

4.6. Isolation of Cellular Protein Fractions 

In order to confirm the location of S. iniae α-enolase, cytosolic and cell wall fractions of S. iniae 
DGX07 were isolated as described by Jones and Holt, with some modifications [37]. Briefly, the S. iniae 

DGX07 cells were harvested by centrifugation (12,000× g) from 50 mL of cultures grown 48h without 

agitation at 37 °C in BHI broth. The cells were washed twice with 20 mM phosphate buffered saline 

(PBS, pH 7.0), and resuspended in the same PBS. The cell suspension was ruptured with a  

Mini-Beadbeater using 0.1 mm silica beads for 3 min. Then the supernatant (total cell extract) was 

removed from the mixture. Cytoplasmic protein fractions were isolated by centrifugation (48,000× g for 

45 min, 4 °C) from the final supernatant and the pellet comprised of cell wall protein fractions was 

resuspended in PBS. The cellular protein fraction solution was stored in small aliquots at −80 °C. 

4.7. SDS-PAGE and Western-Blot Analysis 

SDS-PAGE and western-blot analyses were performed as described by Xie et al. [47]. Protein 

samples were separated in 12.5% SDS-PAGE and electrophoretically transferred onto PVDF 

membranes. The membranes were incubated for 2 h in Tris-Buffered Saline with Tween-20 (TBST) 

containing 3% Bovine Serum Albumin (BSA, Sangon Biotech, Shanghai, China). To separate the α-enolase 

from the cytoplasmic and cell wall protein fractions, anti-rENO rabbit serum and naive rabbit serum 

(negative control) were used. After three washes with TBST, the membranes were further incubated for 

2 h with 1:5000 diluted HRP goat anti-Rabbit IgG Antibody (ABGENT, San Diego, CA, USA). Protein 

signals were visualized with the DAB Substrate Kit (20×) (ABGENT, San Diego, CA, USA). 

4.8. Indirect Immunofluorescence Assay 

The α-enolase on the bacterial cell surface was detected by indirect immunofluorescence assay as 

described elsewhere [18]. Briefly, the S. iniae was grown to an OD600 of 0.6 in BHI broth. One mL of 

the cell suspension was washed three times with PBS and fixed in solution (acetic acid and methanol in 

1:3 ratio). Samples were stored at 4 °C for 1 h and dropped on pre-cleaned, chilled glass slides, which 
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were then air-dried and washed three times with PBS. Cells coated on the glass slides were incubated 

for 2 h with a 1:100 dilution of anti-rENO rabbit serum or naive rabbit serum (negative control) at  

37 °C, followed by three washes with PBS. Samples incubated for 1 h at 37 °C after addition of 

fluorescein isothiocyanate (FITC) conjugated goat anti rabbit IgG (1:64; ABGENT, USA) to each 

sample. After incubation, samples were mounted in a solution containing glycerol and PBS in a 1:1 ratio. 

The slides were examined using a fluorescence microscope (Eclipse 80i, Nikon, Tokyo, Japan). 

4.9. ELISA Analysis 

ELISA was performed to test for the presence of α-enolase on the surface of S. iniae. In reference to 

the method described above, 100 μL of differing concentrations of S. iniae cells (3.5 × 102−7 cfu/mL) or 

purified rENO (1–50 μg) were coated in 96-well plates. Control wells were coated with the highest 

concentration of cells or protein. The plates were incubated for 16 h at 4 °C and 1:100 diluted rabbit 

anti-rENO serum or rabbit anti-formalin inactivated whole cell serum of S. iniae (prepared by Defang 

Chen of our laboratory) was used to detect α-enolase. After adding 1:2000 dilution of HRP Goat  

anti-Rabbit IgG (ABGENT, USA), TMB (Tiangen, Beijing, China) was used to stain the samples, and 

absorbance was measured at 450 nm in a microplate ELISA reader (Bio-Rad, Hercules, CA, USA). 

4.10. Determination of α-Enolase Activity 

The a-enolase activity was measured as described by Pancholi and Fischetti for both the coupled and 

the direct assays [48]: 

(i) Coupling analysis. The a-enolase activity was determined by measuring the transformation of 

NADH.H+ to NAD+ (Figure 8). 

 

Figure 8. The reactions of transformation of NADH.H+ to NAD+ associate with a-enolase. 

The enzymatic reactions were performed at room temperature in 100 mM HEPES buffer (pH 7.0, 

containing 3.3 mM MgSO4, 0.2 mM NADH, 1.0 mM 2-PGE, 1.2 mM ADP, 10.3 IU of lactate 

dehydrogenase, and 2.7 IU of pyruvate kinase in a final reaction volume of 1.0 mL; Sigma, USA), and 

the total volume was 1 mL in a 1 cm quartz cuvette. The decrease in absorbance at 340 nm was recorded 

as the change per minute by continuous spectrophotometer CE-1021 (Cecil, Cambridge, UK). 

(ii) Enzyme kinetics analysis. To study α-enolase enzyme kinetics, different amounts of 2-PGE  

(0.5–3.5 mM) were pre-incubated at room temperature for 3 min using 5 μg of purified α-enolase  

protein in HEPES buffer (100 mM HEPES, 10 mM MgCl2, and 7.7 mM KCl; pH, 7.0). The release of 

PEP was measured at 240 nm on a continuous spectrophotometer CE-1021 (Cecil, Cambridge, UK).  

Michaelis-Menten kinetics of rENO showed that rENO was able to convert 2-PGE to PEP for all 

substrate concentration levels. Vmax and Km for rENO were determined from double-reciprocal 

Lineweaver-Burk plots. 
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4.11. Plasminogen Interaction of α-Enolase 

S. iniae cells prepared from overnight cultures (10, 5, 2.5, 1.25, 0.625, 0.3125 × 107 cfu/well) or  

S. iniae cells (10 × 107 cfu/well) that were blocked by rabbit serum (1:100, anti-rENO rabbit serum or 

native rabbit serum) or human plasminogen (1, 0.5, 0.25, 0.125, 0.0625, 0.03125 μg, hPlg; Sigma, USA), 

in 50 mM carbonate coating buffer at pH 9.6, were used to coat 96-well plates. After incubating the  

cells for 16 h at 4 °C in triplicates, the wells were washed with phosphate buffer saline (PBS) containing 

0.05% Tween 20 (PBST) and blocked with 100 μL of 3% BSA-PBST for 1 h at 37 °C. One μg of hPlg 

was added in the wells containing immobilized bacteria to assess the interaction of S. iniae cells with 

hPlg. One μg of rENO was added to the wells containing hPlg to assess the direct interaction between 

hPlg and rENO. After incubation for 1 h at 37 °C the wells were washed thrice, and 100 μL rabbit  

anti-PLGLA (N-term) IgG (1:1000; ABGENT, San Diego, CA, USA) or mouse anti-His Tag IgG 

(1:1000; ABGENT, San Diego, CA, USA) was added, and incubated for 1 h at 37 °C, respectively. 

Subsequent incubation was followed with 1:2000 dilution of HRP goat anti-rabbit IgG and HRP goat 

anti-mouse IgG for 1 h at 37 °C, respectively. The color was developed by adding 100 μL TMB (Tiangen, 

Beijing, China) and absorbance was measured at 450 nm in a microplate ELISA reader (Bio-Rad, 

Hercules, CA, USA). 

4.12. Adherence and Invasion Assays 

Baby hamster kidney-21 (BHK-21) cells were grown to confluence in 24-well tissue culture plates 

(1–5 × 105 cells/well) and washed with DMEM high glucose medium without fetal calf serum and 

antibiotics. S. iniae from a mid-log-phase culture (~1 × 107 cfu/mL) were incubated with equal 

concentrations of either native rabbit IgG or purified rabbit anti-rENO IgG for 1 h at 37 °C in fresh 

DMEM medium without antibiotics. Confluent cell monolayers were inoculated with 1 mL aliquots of 

either bacterial suspension. Following centrifugation at 350× g for 5 min, the plate was incubated for  

30 min at 37 °C with 5% CO2. The cells were washed five times with DMEM, then three times with 

PBS, and lysed by adding 100 μL of 0.01% Triton X-100 (Sigma, St. Louis, MO, USA). The adherent 

bacteria were quantified by plating serial dilutions of lysed cell suspension on BHI. Invasion assays were 

carried out in a similar manner except that the bacteria were incubated with the cells for 1 h. After 

washing the cells three times, the samples were incubated in fresh DMEM with a 100 U/mL penicillin 

streptomycin combination (Sangon Biotech, Shanghai, China) for 2 h to kill extracellular bacteria. Cells 

were washed three times and lysed by Triton X-100 prior to enumeration of CFU. Each treatment and 

control group were performed in three replicate wells. 

4.13. Immune Protection Assay 

For immunization, rENO proteins were diluted in PBS (0.01 M, pH 7.4) at a concentration of  

500 μg/mL and mixed with an equal volume of Freund’s complete adjuvant (FCA) or Freund’s 

incomplete adjuvant (FIA) (Sigma, St. Louis, MO, USA) as described previously [39]. Control FCA or 

FIA mixed with PBS and control PBS were also used for challenge studies. Eighty mice were randomly 

assigned to four groups and injected subcutaneously with the rENO mixed with FCA, rENO mixed with 

PBS, FCA mixed with PBS or PBS alone (200 μL per animal). The booster injections were prepared in 
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the same method and dosage at 14-day intervals after the first injection, but the FCA was replaced by 

FIA. Five mice from each group were sacrificed two weeks after the final booster injection, and the 

serum was removed aseptically for rENO-specific serum IgG antibody measurements. The remaining 

15 animals in each group were injected with 3.2 × 106 cfu/mouse S. iniae (tenfold LD50) via the  

intra-abdominal cavity, as previously described by Chen [29]. Five mice were sacrificed on day 7 after 

infection as for histopathological assessment, and the dying mice infected by S. iniae (confirmed by 

bacteria isolation and identification from kidney and lung) were also collected for histopathological 

observation. The brains, kidneys, livers, spleens and lungs were removed, suspended in 10% (v/v) 

formalin for 24 h, dehydrated, and embedded in paraffin. Sections 3–4 μm-thick were prepared, stained 

with Hematoxylin and Eosin [39], and observed under a light microscope (Nikon, Tokyo, Japan). For 

the last 10 remaining mice in each group, mortality was monitored over a period of 14 days after the 

challenge, and dying mice were randomly selected for examination of bacterial recovery from the liver, 

kidney and spleen as described by Zhang et al. [49]. Relative percent of survival (RPS) was calculated 

as follows: RPS = (1 − (% mortality in immunized mice/% mortality in control mice)) × 100 [50]. 

4.14. Statistical Analysis 

The data were expressed as the mean ± standard deviation (SD). Comparisons between experimental 

groups were performed by one-way ANOVA. LSD and Duncan’s test using SPSS17.0 Data Editor 

(SPSS Inc., Chicago, IL, USA). p values < 0.05 were considered to be significant. 

5. Conclusions 

The data presented here illustrated that the native α-enolase protein did not only distribute in the 

cytoplasm, but also can be secreted to the S. iniae cell surface. The surface α-enolase participates in  

S. iniae adhesion to and invasion of BHK-21 cells and has affinity for binding of hPlg, and it exhibits 

potential as an effective subunit vaccine against S. iniae infections in mice. However, how the pathogen 

utilizes the Plg-enolase interaction to promote S. iniae’s adhesion to host cells and invasion of tissue is 

not clear, and whether the α-enolase produces cross protection effects to different serotypes of S. iniae 

in fish or mammals, are both questions that need to be investigated in further studies. 
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