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Abstract. 

 

Cell transformation by Rous sarcoma virus re-
sults in a dramatic change of adhesion structures with the 
substratum. Adhesion plaques are replaced by dot-like at-
tachment sites called podosomes. Podosomes are also 
found constitutively in motile nontransformed cells such 
as leukocytes, macrophages, and osteoclasts. They are rep-
resented by columnar arrays of actin which are perpendic-
ular to the substratum and contain tubular invaginations 
of the plasma membrane. Given the similarity of these tu-
bules to those generated by dynamin around a variety of 
membrane templates, we investigated whether dynamin is 
present at podosomes. Immunoreactivities for dynamin 2 
and for the dynamin 2–binding protein endophilin 2 
(SH3P8) were detected at podosomes of transformed cells 

and osteoclasts. Furthermore, GFP wild-type dynamin 2aa 
was targeted to podosomes. As shown by fluorescence re-
covery after photobleaching, GFP-dynamin 2aa and GFP-
actin had a very rapid and similar turnover at podosomes. 

 

Expression of the GFP-dynamin 2aa

 

G273D

 

 abolished podo-
somes while GFP-dynamin

 

K44A

 

 was targeted to podo-
somes but delayed actin turnover. These data demonstrate 
a functional link between a member of the dynamin fam-
ily and actin at attachment sites between cells and the sub-
stratum.
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Introduction

 

Dynamin is a GTPase that plays a critical role in endocyto-
sis. In mammals it occurs as three distinct isoforms (dy-
namin 1, 2, and 3) with different cellular and subcellular
distributions (Urrutia et al., 1997; Schmid et al., 1998).
Based on studies of the 

 

Drosophila

 

 

 

melanogaster

 

 

 

shibire

 

mutant which harbors a temperature-sensitive mutation in
the dynamin gene, dynamin was proposed to mediate the
fission of endocytic vesicles from the plasma membrane in
nerve terminals (Koenig and Ikeda, 1989; Chen et al.,
1991; van der Bliek and Meyerowitz, 1991). Subsequent
studies have generalized this putative function of dynamin
to clathrin-mediated endocytosis in all cells (Herskovits
et al., 1993; van der Bliek et al., 1993) and more recently to
other forms of endocytosis (Schnitzer et al., 1996; Henley
et al., 1998; Gold et al., 1999). Ultrastructural analysis of
nerve terminals of 

 

shibire

 

 mutants after exposure to the re-
strictive temperature (Koenig and Ikeda, 1983) and of mem-
brane templates incubated with brain cytosol, ATP and

 

GTP

 

g

 

S (Takei et al., 1995), have shown that dynamin can
oligomerize into rings or stacks of rings at the neck of en-
docytic vesicles, consistent with its putative role in the sepa-

ration of endocytic vesicles from the plasma membrane.
Stacks of rings produce in peculiar elongations of the neck of
endocytic pits into narrow tubules (Takei et al., 1995).

The precise mechanism of action of dynamin in the
pinching-off reaction of endocytic vesicles remains unclear
and several models have been proposed. While some mod-
els suggest that dynamin acts as a mechanochemical en-
zyme which severs the vesicle stalk (Hinshaw and Schmid,
1995; Takei et al., 1995; Sweitzer and Hinshaw, 1998), other
models propose that dynamin acts indirectly by recruiting
or regulating downstream effectors (De Camilli and Takei,
1996; Roos and Kelly, 1997). The latter possibility has re-
cently been supported by the report that GTP hydrolysis
by dynamin may not be required for the endocytic reac-
tion (Sever et al., 1999).

Although the majority of studies implicate dynamin in
endocytosis, there is evidence to suggest that this GTPase
may play additional functions in cell physiology. Dynamin
alone, or dynamin in combination with amphiphysin, was
shown to evaginate lipid membranes into tubules with a
diameter very similar to that of collars of deeply invagi-
nated clathrin-coated pits (Sweitzer and Hinshaw, 1998;
Takei et al., 1998, 1999). This finding indicates that mem-
brane tubulation by dynamin does not require a coated
endocytic pit as a template, and hints to a possible role
of dynamin in membrane dynamics independent of an en-
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docytic vesicle bud. In growth cones, dynamin colocalizes
with actin, and disruption of the function of either dy-
namin or the dynamin-binding protein amphiphysin im-
pairs growth cone dynamics (Torre et al., 1994; Mundigl
et al., 1998). Dynamin also binds profilin II (Witke et al.,
1998), a major regulator of the actin based cytoskeleton, as
well as syndapin/pacsin/FAP52 (Merilainen et al., 1997;
Qualmann et al., 1999; Ritter et al., 1999), a protein impli-
cated in the attachment of the actin cytoskeleton to mem-
branes. Many studies have implicated actin in endocytosis
(Munn et al., 1995; Lamaze et al., 1997; Wendland and
Emr, 1998; Merrifield et al., 1999). Thus, one potential
downstream effector of dynamin may be the actin cyto-
skeleton and effects of dynamin on actin may underlie its
role both in endocytosis and in other cellular functions.

The proline-rich COOH terminus of dynamin was
shown to interact with a variety of SH3 domain containing
proteins including Src (Gout et al., 1993) a non-receptor
tyrosine kinase that plays a key role in actin-mediated cell
adhesion and motility (Thomas and Brugge, 1997). Previ-
ous studies have shown that activated forms of Src induce
a profound change in attachment structures between the
cell and the substratum (Tarone et al., 1985). Focal adhe-
sions are replaced by dot-like contacts sites, called podo-
somes (Tarone et al., 1985; Marchisio et al., 1988; Nitsch
et al., 1989) which are columnar arrays of actin cytoskele-
ton often containing a narrow tubular invagination of the
plasmalemma roughly perpendicular to the substratum. In
some cells, podosomes cluster in a peculiar rosette-like ar-
rangement (Nitsch et al., 1989). Podosomes are constitu-
tively found in osteoclasts (Zambonin-Zallone et al., 1988)
where Src plays an essential role (Soriano et al., 1991;
Tanaka et al., 1996). In these cells podosomes are ar-
ranged in a ring at the cell periphery where they mediate
the attachment and motility of the osteoclast on bone and
generate the sealed compartment where bone resorption
takes place (Zambonin-Zallone et al., 1988; Tanaka et al.,
1996). Furthermore, podosomes are present in leukocytes
and macrophages where they play a role in migration and
diapedesis (Wolosewick, 1984; DeFife et al., 1999; Linder
et al., 1999). The membrane tubules which represent the
core of podosomes are very similar in diameter to tubules
generated by the oligomerization of dynamin around
membrane templates (Takei et al., 1995, 1998; Sweitzer
and Hinshaw, 1998). Prompted by this similarity, and by
the potential connection of dynamin both to actin function
and to Src, we investigated whether dynamin is concen-
trated at podosomes.

 

Materials and Methods

 

Antibodies and Reagents

 

Monoclonal antibodies directed against dynamin (Hudy-1 and D25520),
vinculin and actin were purchased from Upstate Biotechnology, Trans-
duction Laboratories, Boehringer, and ICN Biomedicals, respectively.
Rabbit polyclonal antibodies specifically directed against endophilin 2 were
raised using a peptide corresponding to sequence unique to rat endophilin
2 (SH3P8) within the region of the protein which differs among endophilin
1, 2 and 3, also called SH3P4, SH3P8, and SH3P13 (Ringstad et al., 1997).
Rabbit pan-endophilin antibodies (serum 2 of Ringstad et al., 1997), rab-
bit anti-dynamin-2 polyclonal antibodies (Dyn2; Cao et al., 1998) and a
monoclonal anti-Src antibody (#327; Horne et al., 1992) were previously

 

described. Monoclonal antibodies directed against clathrin’s heavy chain
(X-22) and cortactin were kind gifts of Dr. Francis Brodsky (University of
California) and Dr. J. Thomas Parsons (University of Virginia), respec-
tively. Rhodamine and fluorescein-labeled phalloidin was purchased from
Molecular Probes. Secondary antibodies conjugated with CY3 and Ore-
gon Green were purchased from Jackson Immunochemicals and Molecu-
lar Probes, respectively. Cyclosporin A was purchased from Calbiochem-
Novabiochem.

 

Cell Culture and Immunocytochemistry

 

BHK21 and RSV-transformed BHK21 cells were cultured at 37

 

8

 

C in
GMEM, 10% (vol/vol) Tryptose Phosphate Broth, 10% (vol/vol) FBS,
and 100 U/ml each of penicillin and streptomycin. Before fixation, RSV-
transformed BHK21 cells were grown in 2% FBS for 12 h and then for ad-
ditional two hours in 0.2% FBS. BHK21 cells were transfected using Lipo-
fectAMINE Plus (GIBCO BRL) reagent according to the manufacturer’s
protocol.

Cells were fixed in 4% formaldehyde (freshly prepared from para-
formaldehyde) in 0.1 M phosphate buffer, detergent-permeabilized, im-
munostained and prepared for microscopic observation as previously
described (Cameron et al., 1991). Cells were visualized using a Zeiss Axio-
phot 2.

 

cDNAs

 

In this manuscript the term dynamin 2aa (rat) applies to the Genebank se-
quence #B53165. This sequence was previously referred to as either dy-
namin 2aa (Cao et al., 1998) or dynamin 2ba (Sontag et al., 1994) by differ-
ent groups. Constructs encoding GFP-dynamin 2aa (COOH-terminal–
linked GFP) were previously described (Cao et al., 1998). GFP-dynamin
2aa

 

G273D

 

 and GFP-dynamin 2aa

 

K44A

 

 were generated by a modified Strat-
agene “QuickChange” site-directed mutagenesis technique following
manufacturer’s instructions. The Pfu DNA polymerase was replaced by
Pwo DNA polymerase (Roche) for initial amplification reaction. Muta-
tions were verified by sequencing. A construct encoding GFP-actin (NH

 

2

 

-
terminal GFP linked by 5 glycines to chicken 

 

b

 

-actin in a CMV driven vec-
tor) was a kind gift of Dr. Michael Way (EMBL, Heidelberg).

 

Electron Microscopy

 

RSV-transformed BHK21 cells and osteoclasts were washed with phos-
phate buffered saline (PBS) at 37

 

8

 

C, then fixed in 1.5% glutaraldehyde in
0.1 M Na-Cacodylate, and postfixed with 1% OsO

 

4 

 

and 1.5% K

 

3

 

FeCN

 

6 

 

in
0.1 M Na-Cacodylate. En bloc staining with 0.4% uranyl acetate (Mg) was
performed before Epon embedding by standard procedures. Cell-free in-
cubations of brain membranes with brain cytosol, ATP and GTP

 

g

 

S and
immunolabeling of these preparations for dynamin and actin were per-
formed as described (Takei et al., 1995).

 

Immunoprecipitation and Affinity Chromatography

 

RSV-transformed BHK21 cells were washed with 120 mM phosphate
buffer pH 7.4, and removed with a cell scraper (Becton Dickinson) in the
presence of 10 mM Hepes, 150 mM NaCl, and 1% Triton X-100. The ex-
tract was then centrifuged for 10 minutes at 14,000 rpm in an Eppendorf
centrifuge. 200 

 

m

 

g of extract was incubated with 2 

 

m

 

g of affinity-purified
antibodies for 1 h at 4

 

8

 

C. Immune complexes were precipitated with 50
ml of protein A–Sepharose, extensively washed with 10 mM Hepes/150
mM NaCl, and eluted in 200 

 

m

 

l of SDS/PAGE sample buffer. Conditions
for affinity-chromatography on the GST fusion protein of the SH3 domain
of endophilin 2 were previously described (Ringstad et al., 1997).

 

Isolation and Preparation of Osteoclasts

 

Mouse osteoclasts were isolated according to procedures previously de-
scribed (Chambers and Magnus, 1982; Ali et al., 1984). In brief, long
bones from 14–21-d-old mice were dissected free of adherent tissue and
placed in 

 

a

 

-MEM containing 10% FBS. They were minced into small
pieces and pipetted vigorously to release osteoclasts. Bone particles were
then allowed to sediment for 30 s and the remaining suspension containing
osteoclasts was seeded onto serum coated coverslips. Coverslips were in-
cubated 18–24 h at 37

 

8

 

C to allow cell attachment. Cells on coverslips were
then fixed with 3.7% formaldehyde in PBS for 10 min at room tempera-
ture, washed in PBS and processed for double immunofluorescence as de-
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scribed above for BHK21 cells. In some experiments cells were treated
with cyclosporin A (20 

 

m

 

M) for 20 min before fixation.

 

Microinjection of Osteoclasts

 

cDNA constructs were microinjected using an Eppendorf 5246 microin-
jector with Femtotip needles. During injection osteoclasts were main-
tained in 

 

a

 

-MEM, 10% FBS and 1 mM Hepes. After injection they were
returned to the 

 

a

 

-MEM media lacking Hepes and left to grow at 37

 

8

 

C for
6 h before fixation and immunostaining.

 

Fluorescence Recovery after Photobleaching

 

Fluorescence recovery after photobleaching (FRAP)

 

1

 

 experiments were
conducted on a BioRad MRC 1024 two photon scanning laser microscope
equipped with a krypton/argon laser and a sapphire Ti laser. The krypton/
argon laser was used to excite the GFP-tagged proteins at 488 nm and
emissions above 515 nm were collected. In each experiment, at least 20
consecutive baseline images were obtained. Then a region in the podo-
some rosette was selected and photobleached using the sapphire Ti laser
at 920 nm for 20 s at 50% power. After photobleaching, fluorescence of
the entire field was collected by the krypton/argon laser at 3% power ev-
ery second for at least 1 min after bleaching. The fluorescence intensity
in the photobleached region of the podosome rosette at various times of
recovery was normalized to the fluorescence intensity measured in a non-
bleached region of the same rosette at the same post-bleaching time. This
procedure allowed to account for the decreased fluorescence due to overall
bleaching of the entire field. The fluorescence recovery curve was F(t) 

 

5

 

F

 

ss

 

(1

 

2

 

e

 

2

 

kt

 

)

 

1

 

F

 

0 

 

where F(t) is the fluorescence in the bleached area at time

t, F

 

ss

 

 is the net amount of fluorescence recovered at steady state, F

 

0

 

 is the
fluorescence in the bleached area immediately after photobleaching, and
k is the constant that describes the rate of fluorescence recovery. Statisti-
cal analysis was performed with all values given as a means of at least 6
sets of measurements 

 

6 

 

SEM. A 

 

t

 

 test was performed to compare the rate
constants of the various curves and a

 

 P 

 

value of 

 

,

 

0.05 was taken as signif-
icant. Nonlinear regression and 

 

t

 

 tests were performed using Microsoft
Excel 4.0.

 

Results

 

Presence of Dynamin 2aa at Podosomes of Rous 
Sarcoma Virus-transformed BHK21 Cells

 

Rous sarcoma virus (RSV)-transformed BHK21 cells were
stained with a variety of antibodies which recognize one or
more of the three main dynamin isoforms, dynamin 1, 2,
and 3. In these BHK21 cells, podosomes cluster in a typi-
cal rosette-like arrangement which can be visualized at the
light microscopic level by staining for filamentous actin
(Fig. 1, B and D) and for other podosome markers such as
vinculin and talin (Fig. 1 A and data not shown; Marchisio
et al., 1988). Electron micrographs of the rosette in sec-
tions cut perpendicular and parallel to the substratum
demonstrate the characteristic juxtaposition of individual
podosomes, i.e., of columns of actin cytoskeleton sur-
rounding a central membrane tubule (Fig. 2 A–D; Nitsch et
al., 1989). As shown in sections perpendicular to the sub-

 

1

 

Abbreviation used in this paper: 

 

FRAP, fluorescence recovery after pho-
tobleaching. 

Figure 1. Colocalization of
dynamin 2 and endophilin 2
with a variety of podosomal
markers and with filamentous
actin in podosomes rosettes
of RSV-transformed BHK21
cells. Serum-starved cells
were reacted by immunofluo-
rescence for the proteins indi-
cated and counterstained
with phalloidin. Dynamin
was labeled with two differ-
ent antibodies, Dyn2 and
Hudy-1, and only Dyn 2 la-
bels podosomes. Bar, 14 mM.
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stratum, these tubules are continuous with the cell surface
(Fig. 2, B–D). Their diameter (

 

z

 

25 nm) is the same as that
of dynamin coated tubules observed in synaptic mem-
branes (Takei et al., 1995). Of the several anti-dynamin
antibodies tested, the Dyn2 antibody, which was raised
against the proline-rich region of human dynamin 2aa
(data are available from GenBank/EMBL/DDBJ under
accession number B53165; Jones et al., 1998), labeled very
intensely podosome rosettes, as revealed by double stain-
ing for filamentous actin with phalloidin (Fig. 1, C and D).
In homogenates of BHK21 cells this antibody specifically
recognized a band with the expected mobility of dynamin
2 (Fig. 3 A). In addition, the Dyn2 antibody specifically
depleted BHK21 cell extracts of dynamin 2 immunoreac-

tivity recognized by another anti-dynamin antibody which
recognizes dynamin 2 (D25520) (Fig. 3 B). Colocalization
of the Dyn2 immunoreactive materials with actin did not
occur throughout the cell. The few stress fibers present in
these transformed cells were not stained (data not shown),
demonstrating a selective association of dynamin with the
podosome pool of actin.

Podosomes were not labeled by antibodies directed
against either clathrin (Fig. 1, E and F) or the endocytic
clathrin adaptor AP-2 (Fig. 1, G and H), thus indicating
that podosomes are not a preferential site for clathrin-
mediated endocytosis. Similarly, internalized transferrin,
which is taken up by receptor-mediated endocytosis, did
not show any preferential association with podosome ro-

Figure 2. Comparative elec-
tron micrographs of tubular
membrane invaginations sur-
rounded by an actin sheath at
podosomes and in synaptic
membrane preparations in-
cubated in cell-free condi-
tions. (A) RVS-transformed
BHK21 cell cut parallel to the
substratum demonstrating an
actin-rich ring (dashed lines)
which excludes other or-
ganelles and which results
from the rosette-like apposi-
tion of individual podosomes.
The presence of a cross-sec-
tioned tubule in the core of
each podosomes (arrows) is
shown in A9, which repre-
sents a high magnification of
the regions enclosed by a
square. (B–D) High power
views of three podosomes
from sections of RVS-trans-
formed BHK21 cells cut per-
pendicular to the substratum
and demonstrating the pres-
ence of tubular plasma mem-
brane invaginations. (E)
High magnification of two
podosomes from the periph-
eral region of a mouse osteo-
clast grown on a coverslip
and cut parallel to the
substratum. Arrows point
to cross-sectioned tubules.
(F–H) Dynamin-coated tu-
bules from synaptic mem-
branes incubated with brain
cytosol, ATP, and GTPgS. G
and H show immunolabeling
for dynamin and actin, re-
spectively. Note the similarity
of these structures to podo-
somes. Bar: (A) 0.6 nm; (A9
and B–H) 200 nM.



 

Ochoa et al. 

 

Dynamin at Podosomes

 

381

 

settes (data not shown). Dynamin immunoreactivity rec-
ognized by Hudy-1 antibodies, previously shown to recog-
nize dynamin at clathrin coated pits (Damke et al., 1994),
was also not localized at podosomes (Fig. 1, I and J).

 

Podosomes Are Positive for a Dynamin-binding Protein

 

Podosomes, however, were intensely and specifically labeled
with antibodies directed against endophilin 2 (SH3P8; Fig.
1, K and L) a member of a family of three highly homolo-
gous proteins (endophilin 1, 2, and 3, also referred to as

SH3P4, SH3P8, and SH3P13) that interact with dynamin
via a COOH-terminal SH3 domain (Sparks et al., 1996;
Ringstad et al., 1997, 1999; Schmidt et al., 1999). This im-
munofluorescence pattern was blocked by the presence in
the immunostaining solution of the endophilin 2 peptide
used as the immunogen for the generation of the antibod-
ies (data not shown). Furthermore, presence of authentic
endophilin 2 immunoreactivity in RSV-transformed BHK21
cells was confirmed by Western blot analysis (Fig. 3 C).
The anti-endophilin 2 antibody recognized a 45-kD band
with the expected mobility of endophilin 2 (Fig. 3 C, lanes
1 and 2) and this band comigrated with a band recognized
by an antibody directed against all members of the endo-
philin family (Fig. 3 C, lane 3). Endophilin 1, 2, and 3 have
a pattern of expression which closely mimics that of dy-
namin 1, 2, and 3, respectively (Ringstad et al., 1997), and
recent studies have suggested a functional partnership be-
tween dynamin 1 and endophilin 1 (SH3P4; Ringstad et
al., 1999; Schmidt et al., 1999). An interaction between dy-
namin 2 and the SH3 domain of endophilin 2 was demon-
strated by the property of a GST fusion protein of this do-
main to affinity-purify dynamin 2 immunoreactivity from
BHK21 cell extracts (Fig. 3 D). Thus, the presence of en-
dophilin 2 at podosomes supports a physiological role for
dynamin 2 at these attachment sites. Podosome rosettes
are also immunoreactive for Src (Fig. 1, M and N; Gavazzi
et al., 1989; Nermut et al., 1991), which bind and phos-
phorylate dynamin (Gout et al., 1993; Foster-Barber and
Bishop, 1998; Ahn et al., 1999) and for cortactin (Fig. 1, O
and P) another SH3 domain containing protein (Wu and
Parsons, 1993) which binds dynamin in vitro (McNiven,
M., unpublished observation).

The rosette-like distribution of dynamin 2 immunoreac-
tivity and of other podosome markers was not observed in
non–RSV-transformed BHK21 cells (Fig. 4, A–D), al-
though even in these cells a fraction of Dyn2 immunoreac-
tivity was colocalized with peripheral actin (Fig. 4, C and
D). Finally, the localization of Dyn2 immunoreactivity at
podosomes was not unique to RSV-transformed BHK21
cells but was also observed in v-Src–transformed Balb 3T3
cells, where podosomes remain isolated and scattered
throughout the cell (data not shown).

 

GFP-dynamin 2aa Is Targeted to Podosomes

 

Since some antibodies reported to react with dynamin 2 did
not label podosomes (not shown), we next searched for
more direct evidence demonstrating the property of a dy-
namin 2 isoform to concentrate at podosomes. RSV-trans-
formed BHK21 cells were transiently transfected with a
construct encoding rat GFP-dynamin 2aa (dynamin 2aa;
data are available from GenBank/EMBL/DDBJ under ac-
cession number B53165). GFP-tagged dynamin 2aa accu-
mulated at podosomes, as shown by the analysis of living
cells (Fig. 5 A), or of fixed cells counterstained for actin by
phalloidin (Fig. 5, B and C). Individual podosomes were
clearly resolved by high power observation of these cells
(Fig. 5 A). The lack of reactivity with podosomes of some
antibodies which recognize dynamin 2 reflects a selective
immunoreactivity of podosomal dynamin. This result may
have several explanations including one or more of the fol-
lowing possibilities: alternative splicing, epitope masking,

Figure 3. The Dyn2 antibody recognizes selectively dynamin in
RSV-transformed BHK21 cell extracts and dynamin 2 specifi-
cally interacts with endophilin 2. (A) Western blot of a detergent
extract of RSV-transformed BHK21 cells with the Dyn2 anti-
body. (B) Triton X-100 extracts of RSV-transformed BHK21
cells were immunoprecipitated with Dyn2 antibodies or control
IgGs and the immunoprecipitates were reacted by Western blot-
ting with either the Dyn2 antibody (top) or a commercial anti-
dynamin antibody (#D25520 from Transduction Laboratories)
which recognizes both dynamin 1 and 2. Note that the Dyn2 anti-
body depletes dynamin immunoreactivity (arrows) from the ex-
tract. The slower mobility of dynamin 2 in the bound material
was consistently observed and may reflect the absence of Triton
X-100 in the load. (C) Extracts of RSV-transformed BHK21 cells
extracts were reacted by Western blotting with an endophilin
2-specific antibody in the presence or absence of the peptide used
as the immunogen (lanes 1 and 2) or with a pan-endophilin anti-
body (lane 3). (D) A Triton X-100 extract of RSV-transformed
BHK21 cells was incubated with either a GST fusion protein of
the SH3 domain of endophilin 2 (lane 1) or GST alone (lane 2).
The bound material was then reacted by Western blotting with
the Dyn2 antibody.
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covalent modifications or other forms of posttranslational
protein modification.

 

Dynamin 2 Is Also Present at Podosomes of Osteoclasts

 

To insure that this localization of dynamin was not a con-
sequence of cell transformation or specific of v-Src ex-
pressing cells, we then examined a nontransformed cell
known to contain podosomes. In osteoclasts, a peripheral
actin-rich ring comprising podosomes, which may be seen
as an exaggeration of the podosome rosette present in
RSV-transformed BHK21 cells, forms the tight seal with
the bone which delimits the compartment of bone resorp-
tion (Zambonin-Zallone et al., 1988; Tanaka et al., 1996).
A similar podosome-enriched actin ring is formed by os-
teoclasts when they are cultured in vitro on serum-coated
coverslips. Presence of narrow tubular invaginations within
these podosomes was confirmed by electron microscopy
(Fig. 2 E). When mice osteoclasts cultured on coverslips
were immunostained for dynamin 2 and endophilin 2, in-
tense immunoreactivity for both proteins was observed in
the peripheral actin-rich ring (Fig. 6, A–D). In addition,
after microinjection of DNA encoding GFP-dynamin 2aa,
the expressed GFP fusion protein localized predominantly
at podosomes (Fig. 6, E and F). Treatment of osteoclasts
with cytochalasin B disrupted the peripheral actin ring re-
sulting in a major change in cell morphology and a con-
comitant redistribution of dynamin 2 immunoreactivity
(data not shown).

 

Disruption of Podosomes by Cyclosporin A

 

Studies in the nervous system have demonstrated that

dynamin 1 is a substrate for the enzymatic activity of the
calcium-dependent phosphatase calcineurin (Liu et al.,
1994; Bauerfeind et al., 1997). Furthermore Dynamin 1 was
shown to bind directly to calcineurin (Lai et al., 1999). Dy-
namin 1 undergoes constitutive phosphorylation in the nerve
terminal and its Ca

 

2

 

1

 

-triggered calcineurin-dependent de-
phosphorylation is thought to be required for the en-
docytic reaction (Liu et al., 1994). Dephosphorylation
enhances the interaction of dynamin with its binding
partners (Slepnev et al., 1998) and decreases its GTPase
activity (Liu et al., 1994), thus prolonging the half-life of
GTP-dynamin. Accordingly, calcineurin inhibitors such
as cyclosporin A and FK506 were reported to inhibit
synaptic vesicle recycling (Marks and McMahon, 1998).
Interestingly, cyclosporin A was also shown to inhibit os-
teoclast differentiation and bone resorption in culture
(Chowdhury et al., 1991; Orcel et al., 1991; Klein et al.,
1997). Based on our findings implicating dynamin in podo-
some function, we tested whether inhibitors of calcineurin
disrupts podosomes. Treatment of mouse osteoclasts for
20 min with cyclosporin A resulted in a disruption of their
morphology (Fig. 7). Cyclosporin A–treated osteoclasts
resembled osteoclasts from Src

 

1/1

 

 mice that lack a periph-
eral ring of podosomes and have decreased motility (Neff
et al., 1997). A similar disruption of podosomes was pro-
duced by cyclosporin A in Src-transformed fibroblasts
(not shown). These results may underlie the reported in-
hibitory effect of calcineurin antagonists on bone resorp-

Figure 4. Colocalization of dynamin 2 immunoreactivity and
actin in RSV-transformed and nontransformed BHK21 cells.
(A–D) RSV-transformed and nontransformed BHK21 cells were
stained by immunofluorescence for dynamin 2 with the Dyn2 an-
tibody and for actin with phalloidin. In both cells a partial colo-
calization of dynamin 2 with actin is observed even though the
podosomes rosette is only visible in transformed cells.

Figure 5. Targeting of transfected dynamin 2aa to podosomes of
RSV-transformed BHK21 cells. (A) A RSV-transformed
BHK21 cell was transfected with GFP-dynamin 2aa and ex-
amined by a CCD camera 12 h after transfected. In this living cell
GFP fluorescence reveals individual podosomes. Most, but not
all of them, are clustered at the rosette. (B and C) RSV-trans-
formed BHK21 were transformed with GFP-dynamin 2aa, fixed,
and then counterstained for actin with phalloidin. Bar: (A) 7 mM;
(B and C) 14 mM.
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tion (Chowdhury et al., 1991; Orcel et al., 1991; Klein et
al., 1997).

 

Disruption of Podosomes by a Temperature-sensitive 
GFP-Dynamin 2aa Mutant

 

Studies of dynamin 1 have defined mutations that impair
its function and that have a dominant negative effect on

endocytosis (Herskovits et al., 1993; van der Bliek et al.,
1993; Damke et al., 1994, 1995). A Gly to Asp mutation at
position 266 of 

 

Drosophila

 

 dynamin is responsible for the
temperature-sensitive phenotype of the 

 

shibire

 

 mutant. A
dynamin 1 mutant harboring the analogous mutation was
shown to be functional at 30

 

8

 

C but to have a dominant
negative effect at 38

 

8

 

C (Damke et al., 1995). A corre-
sponding mutation was introduced in GFP-tagged dy-

Figure 6. Immunolocalization
of dynamin 2 and endophilin
2 in the podosomes of osteo-
clasts. (A–D) Mouse osteo-
clasts were immunostained
for dynamin 2 and counter-
stained for actin with phalloi-
din. All three proteins colo-
calize in the peripheral sealing
zone known to be enriched
in podosomes. (E and F)
The cDNA encoding GFP-
dynamin 2aa was microin-
jected in the nuclei of the
osteoclast. After 6 h, cells
were fixed and counterstained
for actin with phalloidin. Bar,
42 mM.
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namin 2aa (Gly to Asp mutation at position 273) and its
effect was tested by transient expression in RSV-trans-
formed BHK21 cells or in v-Src–transformed Balb/c 3T3
cells. At 30

 

8

 

C this mutant localized at podosomes but did
not affect their structure (Fig. 8, C and D). In contrast, po-
dosomes were only seldomly observed in transfected cells
maintained at 38

 

8

 

C for 12 h after transfection (Fig. 8, A
and B). Neighboring untransfected cells had normal podo-
somes indicating that mutant dynamin, and not the tem-
perature shift was responsible for podosome disappear-
ance. A morphometric analysis revealed that 98 of 100
transfected Balb 3T3 cells had podosomes at the 30

 

8

 

C, but
7 of 100 cells had podosomes at 38

 

8

 

C. In the few cells
containing podosomes at this temperature, GFP-dynamin
2aa

 

G273D

 

 was still localized at podosomes.
We also tested whether another well characterized dom-

inant negative mutation of dynamin 1, the K44A mutation
(Herskovits et al., 1993; Damke et al., 1994), had a similar
effect on podosomes if introduced into dynamin 2aa.
Based on studies of the Ras GTPase, this mutation inhibits
GTP binding and hydrolysis. GFP-dynamin 2aa

 

K44A

 

 was
targeted to podosomes but did not disrupt their structure
(Fig. 8, E and F). Therefore, we explored the possibility
that the K44A mutation may affect functional properties
of dynamin 2aa at podosomes not resulting in an obvious
modification of their structure.

We used fluorescence recovery after photobleaching
(FRAP; Denk et al., 1990; Yuste and Denk, 1995; Xu et
al., 1996) to determine the turnover of GFP-actin at po-
dosomes, which are thought to be highly dynamic struc-
tures relative to focal adhesion plaques. RSV-transformed
BHK21 cells were transfected with GFP-actin and exam-
ined by time-lapse two-photon excitation microscopy. Af-
ter photobleaching, fluorescence nearly recovered within
60 s (Fig. 9, A and B). Jaspakinolide, a potent membrane
permeant stabilizer of actin filaments (Bubb et al., 1994),
completely abolished the recovery of fluorescence indi-
cating that such recovery is a result of actin dynamics

 

(Fig. 9 C). The FRAP of wild-type GFP-dynamin 2aa had
a time course similar to that of actin (Fig. 9 D) and also
did not recover in the presence of jasplakinolide (not
shown). The rate constants of the recoveries of GFP-actin
and GFP-dynamin 2aa were not statistically different
(

 

P

 

 5 

 

0.187) and were 1.89

 

 6 

 

141 min

 

2

 

1

 

 and 1.89

 

 6 

 

0.236
min

 

2

 

1

 

, respectively. In contrast, GFP-dynamin 2aa

 

K44A

 

exhibited a slower recovery (Fig. 9, E and F) with a rate
constant of 0.55

 

 6 

 

057 min

 

2

 

1

 

. Based on these findings we
investigated whether dynamin 2aa

 

K44A

 

 has an effect on
the recovery rate of actin, as expected if this mutant dy-
namin delays actin turnover. FRAP analysis was per-
formed on RSV-transformed BHK21 cells which had
been comicroinjected with GFP-actin and a dynamin
2aa

 

K44A

 

 lacking the GFP-tag. In these cells, GFP-actin had
a slower recovery than in control cells with an average
rate constant of 1.05

 

 6 

 

126 min

 

2

 

1

 

 (Fig. 9, F and G). This
was a statistically significant reduction as compared with
the rate constant of recovery observed with GFP-actin
alone (

 

P

 

 5 

 

0.02).

 

Presence of an Actin Sheath around
Dynamin 1–Coated Tubules In Vitro

 

The working hypothesis of this study, i.e., the possible
presence of dynamin at tubular membranes of podosomes,
had been triggered by the similarity of these tubules to the
dynamin coated tubules visible on cell membranes incu-
bated with ATP and GTP

 

g

 

S (Takei et al., 1995; see also
Fig. 2, F–H). Based on the close spatial relationship be-
tween actin and dynamin observed at podosomes, we re-
examined synaptic membranes incubated with brain cyto-
sol, ATP and GTP

 

g

 

S for the possible presence of analogous
structural relationship between the actin cytomatrix and
dynamin. As previously reported, dynamin coated tubules,
which are also positive for endophilin (Ringstad et al., 1999)
are very abundant in this material (Takei et al., 1995).
Strikingly, these tubules were not randomly dispersed

Figure 7.  Treatment of osteoclasts with the calcineurin inhibitor cyclosporin A has disruptive affect on podosomes. Phalloidin staining
revealing the progressive disruption of podosomes in osteoclasts which were treated with 20 mM cyclosporin A for either 45 (B) or 90
min (C), as compared with a nontreated osteoclast (A). Bar, 70 mM.
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among other organelles. Instead, they were frequently sur-
rounded by a cytoskeletal matrix and they appeared to
represent the core of such matrix, thus generating struc-
tures very reminiscent of podosomes in situ (Fig. 2, F and
G; see also Ringstad et al., 1999). The presence of actin in this
matrix was confirmed by immunogold labeling (Fig. 2 H).

 

Discussion

 

Our results reveal a structural and functional link between
a pool of dynamin and actin. They demonstrate that dy-
namin 2aa is a component of the sheath that surrounds the
tubular invaginations of the plasma membrane of podo-
somes. This sheath was previously shown to be composed
of a dense actin cytoskeleton containing a variety of actin
binding proteins (Tarone et al., 1985; Marchisio et al.,
1988; Nermut et al., 1991; Hiura et al., 1995). Thus, our re-
sults are convergent with those of recent studies reporting
that dynamin directly binds regulatory components of the
actin cytoskeleton, such as profilin (Witke et al., 1998),
proteins of the syndapin/pacsin/FAP52 family (Merilainen

et al., 1997; Qualmann et al., 1999; Ritter et al., 1999), and
cortactin (McNiven, M., unpublished observation). The
previous link of syndapin/pacsin to dynamin is of special
interest because of the localization of a member of this
protein family, FAP52, at another actin attachment site,
the focal adhesion plaque (Merilainen et al., 1997). Podo-
somes are present in cells with high levels of motility, Src
activity, or both (Tarone et al., 1985; Tanaka et al., 1996).
Since dynamin binds Src (Gout et al., 1993; Foster-Barber
and Bishop, 1998) and can be a substrate for Src (Ahn et al.,
1999), their partnership is likely to be important in podo-
some function.

Podosomes are highly dynamic structures, even when
they cluster in organized arrays, such as in the rosettes of
RSV-transformed BHK21 cells and in the peripheral re-
gion of osteoclasts. The fast and similar recoveries after
photobleaching of GFP-actin and GFP-dynamin 2aa dem-
onstrate that the cytoskeletal meshwork surrounding the
central tubule undergoes very rapid turnover. This fast
turnover is consistent with the function of podosomes as
transient attachment sites in migrating cells such as leuko-

Figure 8. Expression of dynamin 2aaG273D and
dynamin 2aaK44A in transformed BHK21 cells.
RSV-transformed BHK21 cells were transiently
transfected with GFP-dynamin 2aaG273D or with
GFP-dynamin 2aaK44A as indicated. After transfec-
tion cells were kept at either 308C or 388C as also in-
dicated. In the cells kept at 388C no podosomes are
present. GFP-dynamin 2aaK44A is targeted to the po-
dosome rosettes. All cells were counterstained for
actin with phalloidin. Bar, 14 mM.
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cytes (Wolosewick, 1984) and macrophages (Linder et al.,
1999). It is also consistent with the presence at podosomes
of WASP (Linder et al., 1999), a key regulator of actin dy-
namics via its action on the Arp2/3 complex (Rohatgi et al.,
1999). An attractive possibility is that dynamin may play a
role in the dynamics of podosomes, as suggested by our
analysis of dynamin 2aa mutants. GFP-dynamin 2aaK44A

had a slower recovery after photobleaching than wild-type
GFP-dynamin 2aa and dynamin 2aaK44A delayed actin dy-
namics. Furthermore, GFP-dynamin 2aaG273D disrupted

podosomes at the restrictive temperature of 388C, but not
at 308C. The different effects of the two dynamin muta-
tions may be dependent upon their different effect on fac-
tors downstream to dynamin. For example, the GFP-dyna-
min 2aaG273D mutant, but not the GFP-dynamin 2aaK44A

mutant, may sequester some factor(s) crucial for the for-
mation of podosomes.

Podosomes do not have a direct structural relationship
to clathrin coated pits or caveolae and are not thought to
have an endocytic function. Thus, our finding extends the

Figure 9. Fluorescence recovery after photobleaching (FRAP) of GFP-actin and GFP-dynamin. RSV-transformed BHK21 cells were
transiently transfected with GFP-actin or GFP-dynamin, then bleached for 20 s, and allowed to recover. (A) Micrographs of GFP-actin
appearance before bleaching, immediately after bleach, and 1 min post-bleach. (B) Time course of GFP-actin fluorescence in the sec-
tion of the rosette subjected to photobleaching (closed diamonds) and in a nonbleached region (open diamonds). Fluorescence fully re-
covered after 60 s with a rate constant of 1.89 6 1.41 min21 (r2 5 0.881 6 0.99). (C) Same as B in the presence of jasplakinolide (1 mM).
No recovery occurs in the presence of this drug. (D–F) GFP-dynamin 2aa recovered at a rate very similar to that of GFP-actin, while
GFP-dynamin 2aaK44A recovered at a much slower rate. E shows the rate constants for GFP-dynamin (k 5 1.89 6 0.236 min21, r2 5
0.845 6 0.01) and GFP-dynamin 2aaK44A (k 5 0.55 6 0.57 min21, r2 5 0.969 6 01) and illustrates the statistically significant difference
between the two rates. Bar, 14 mM.
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role of dynamin to processes beyond receptor-mediated
endocytosis. We note, however, that narrow membrane tu-
bules connecting clathrin-coated pits to the cell surface
have been observed in a variety of cell types and experi-
mental conditions. These tubules are surrounded by a cy-
toskeletal sheath, reminiscent of the one observed at po-
dosomes (Willingham and Pastan, 1983). Furthermore, it
cannot be excluded that membrane may flow through the
core of podosomes and that vesicles, non clathrin coated,
may pinch off at their tips (Fig. 10 A).

Tubular plasma membrane invaginations which are sur-
rounded by an actin cytomatrix and are very similar to
podosomes, albeit generally much shorter, are present in
yeast. They represent the core of the so-called actin
patches which some studies have suggested to be sites of
endocytosis (Fig. 10 A; Mulholland et al., 1994). Besides
actin, many other yeast actin binding proteins are present
in yeast actin patches and many of the mammalian homo-
logues of these proteins are present at podosomes (Bal-
guerie et al., 1999). Such proteins include Sla2 (Yang et al.,
1999), Bee1/Las17 (Li, 1997), Sac6 (Adams et al., 1991),
and their mammalian homologues talin (Marchisio et al.,
1988), WASP (Linder et al., 1999), and fimbrin (Babb et al.,
1997), respectively. No dynamin-like proteins have been
localized at yeast actin patches so far. It should be noted,
however, that dynamin is not the only protein which can
generate membrane tubules. The dynamin-interacting pro-
tein amphiphysin, for example, is as potent as dynamin in
tubule generation (Takei et al., 1999). We note that the
yeast protein Rvs167, a homologue of amphiphysin, was
recently reported to be localized, and to be functionally
important, at yeast actin patches (Balguerie et al., 1999).

Our study provides evidence for a role of dynamin be-
sides the more conventional role of this protein in vesicle
fission during receptor-mediated endocytosis (Herskovits
et al., 1993; van der Bliek et al., 1993; Henley et al., 1998;
Oh et al., 1998). A role of actin in endocytosis is suggested
by a variety of studies (Lamaze and Schmid, 1995; Munn
et al., 1995; Wendland and Emr, 1998) and recent findings
have suggested the presence of a cytoskeletal scaffold
which determines sites at which clathrin coated pits form
(Gaidarov et al., 1999). As we have shown in Fig. 2, G and
H, a sheath of actin-like cytoskeleton can be observed
around dynamin coated tubular membranes generated in
vitro on synaptic membranes and the link between actin
and dynamin suggested by our study may also apply to dy-
namin isoforms implicated in endocytosis. A pool of actin
may be present physiologically around clathrin coated pits,
but may be very small and/or transient and therefore diffi-
cult to visualize (Fig. 10 B). Thus, the unique organization
of actin at podosomes may have revealed a connection be-
tween actin and dynamin which applies to other dynamin
family members as well, but which is more difficult to
demonstrate for dynamin 1 at clathrin coated pits. An im-
portant question which remains to be addressed is the pre-
cise role of actin in the endocytic reaction of clathrin
coated vesicles. Actin may assist fission of the vesicle bud
by constricting its neck via an actin-myosin-based mecha-
nisms or by propelling the coated bud away from the
plasma membrane via a polarized polymerization-depoly-
merization cycle, such as the one which propels Listeria
and Shigella within the cytoplasm (Loisel et al., 1999). A

direct role of comet-like actin polymerization in the sepa-
ration of endocytic vesicles from the plasma membrane
(Fig. 10 B) was recently suggested by a study of pinocytic
vesicles in mast cells (Merrifield et al., 1999). In conclu-
sion, the results of this study suggest a function for a
dynamin isoform at actin attachment sites and, conversely,
strengthen a putative role of actin in endocytosis.
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Figure 10. Schematic representation of podosomes and of poten-
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1989), which are represented by columnar arrays of actin enclos-
ing a very narrow tubular invagination of the plasma membrane,
have a structure very similar to that previously described for
yeast actin patches (inset; Mulholland et al., 1994). The drawing
on the right depicts the hypothesis that membrane may flow in
the tubular invaginations and that endocytic vesicles may pinch
off from their ends. (B) Drawing illustrating the possibility that a
cytoskeletal scaffold at the neck of clathrin coated pits may re-
semble the scaffold surrounding the tubular invagination of po-
dosomes. This scaffold could assist the fission reaction by twisting
the neck (left) or by pushing away form the plasma membrane
(right). The residual scaffold at the point of fission may drive the
formation of actin comets.
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