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Muscle regeneration is essential for vertebrate muscle homeostasis and

recovery after injury. During regeneration, muscle stem cells differentiate

into myocytes, which then fuse with pre-existing muscle fibres. Hence, dif-

ferentiation, fusion and contraction must be tightly regulated during regen-

eration to avoid the disastrous consequences of premature fusion of

myocytes to actively contracting fibres. Cytosolic calcium (Ca2+), which is

coupled to both induction of myogenic differentiation and contraction, has

more recently been implicated in the regulation of myocyte-to-myotube

fusion. In this viewpoint, we propose that Ca2+-mediated coordination of

differentiation, fusion and contraction is a feature selected in the amniotes

to facilitate muscle regeneration.

Introduction

The formation of multinucleated muscle fibres is essen-

tial for myogenesis from flies to humans. Myogenesis

initiates with the activation and asymmetric cell divi-

sion of muscle stem cells to generate both committed

myoblasts and muscle progenitors to maintain the

stem cell pool [1,2]. Myoblasts subsequently differenti-

ate into post-mitotic bipolar mononucleated myocytes

that fuse, forming multinucleated myotubes [3–8].
Myotubes mature into myofibers through the assembly

of the contractile apparatus (myofibrillogenesis) [9–11]
(Fig. 1; Box 1).

After embryonic myogenesis, the muscle progenitors

localize between the plasma membrane (sarcolemma)

and basement membrane of the myofibers and are,

therefore, called satellite cells (SCs) [1,2,20]. In response

to muscle injury, SCs activate and divide asymmetrically

to maintain the SC pool and expand a population of

myoblasts that will differentiate into myocytes and

repair the pre-existing fibres [18,21,22]. Myocytes either

fuse with each other (primary myogenesis) or with the

pre-existing fibres [3,5,6,8]. Distinct stages of myogene-

sis are defined by the expression of specific transcription

factors and myogenic regulatory factors (MRFs) in SCs,

myoblasts and myocytes (Fig. 1).

SC activation, myogenic
differentiation and fusion

Activated SCs downregulate Sprouty1 (Spry1), a

receptor tyrosine kinase signalling inhibitor, and divide
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asymmetrically to generate activated and quiescent

SCs [23]. The quiescent SCs, characterized by expres-

sion of Pax7 and myogenic regulatory factor 5 (Myf5),

upregulate Spry1 and enter a G (alert) state, priming

them for rapid entry into the cell cycle [23,24]. Acti-

vated SCs committed towards myogenic differentiation

express MyoD along with Myf5 and Pax7, and prolif-

erate to generate myoblasts. Activation of Wnt and

repression of Notch signalling drives SC exit from

senescence and initiation of myogenesis [25]. Myo-

blasts downregulate Pax7 and begin expressing MyoD

to differentiate into myocytes, which subsequently

express myogenin (MyoG) and downregulate MyoD

[26–32]. The appearance of MyoG expression marks

the exit of myoblasts from the proliferation phase and

their entry into the differentiation phase [33]. The ter-

minally differentiated MyoG-positive myocytes express

the fusion proteins Myomaker (MYMK) and Myo-

mixer (MYMX), align, adhere and fuse with each

other to form nascent myotubes with two to three

nuclei (primary fusion) [18,34,35]. Large multinucle-

ated myotubes are formed during and after embryoge-

nesis in mammals by additional rounds of myocyte

fusion to the nascent myotubes (secondary fusion/
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Fig. 1. Schematics of the role of myoblast fusion during embryonic myogenesis and regeneration across vertebrates. The figure shows

distinct stages of myogenesis along with stage-specific marker proteins. As activated SCs enter the differentiation programme, they

undergo significant morphological changes to generate myotubes that eventually mature into myofibers. Activated SCs divide asymmetrically

to generate both quiescent and activated SCs. The upregulation of Wnt signalling and downregulation of notch signalling pathways con-

tribute to the exit from senescence and the initiation of differentiation in activated SCs. Activated SCs generate MyoD-expressing myoblasts

that form terminally differentiated myocytes. Myocytes fuse with other myocytes during embryonic myogenesis and with pre-existing myofi-

bers during regeneration. The multinucleated myotubes then mature to contractile myofibers via myofibrillogenesis.

Box 1. Myotube maturation

During maturation, the myotubes express MyHC and a-actin (Acta2) [12]. The filaments of actin and myosin are

arranged in parallel to form the myofilaments of each myofibril. The formation of aligned myofibrils within myotubes

leads to their maturation into contractile myofibers [9–11]. Each myofiber is covered by an excitable membrane called

the sarcolemma, and its cytoplasm is called sarcoplasm [13]. While myosin forms the thick filament, actin forms the

thin filament and originates at the Z-disk. The area between the two consecutive Z-disks is called a sarcomere, the

basic contractile unit of a myofiber. The M-band is the transverse structure at the centre of the sarcomere that is

formed by antiparallel dimers of Myomesin. Myomesin facilitates myosin filaments crosslinking, which is necessary

for withstanding the stronger tension during muscle contraction [14–16]. Within a sarcomere, the alignment of actin

and myosin is maintained by regulatory proteins Titin and Nebulin [9,12,17]. During contraction, the Z-disks move

towards each other, and actin and myosin filaments slide over each other [12]. During the later stages of maturation,

the sarcolemma invaginates around the sarcomeres as the transverse tubular system (T-tubules) and ER align itself

into specific domains [sarcoplasmic reticulum (SR)] around the sarcomeres [9–11]. The regions of SR that contact the

T-tubules contact the SR are called terminal cisternae (TC), and the regions between TCs, which are largely tubular,

are called the longitudinal SR. Calcium (Ca2+) is stored in the SR, which also contains voltage-gated Ca2+ channels

and pumps on its membrane for muscle contraction. Ca2+-binding proteins such as troponin and tropomyosin regu-

late muscle contraction [9,10,18,19].
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hypertrophic muscle growth). Myotubes express myo-

sin heavy chain (MyHC) and undergo maturation to

form contractile myofibres via myofibrillogenesis

(Box 1) [9–11].

Calcium (Ca2+) signalling plays an
instrumental role in myogenic
differentiation, fusion and contraction
in amniotes

The endoplasmic reticulum (ER) functions as the cell’s

central Ca2+ storage facility in the vertebrates. The

release of Ca2+ from ER to the cytosol by Ca2+ chan-

nels and pumps triggers a decline in ER Ca2+ stores.

Ca2+ acts as a secondary messenger within the cytosol

and as a cofactor for various enzymes, triggering a

wide range of specific signalling pathways that fine-

tune cell physiology [36]. Ca2+ signalling is also linked

to the maintenance and activation of stem cells in vari-

ous tissues, including SCs [34,37].

Store-operated Ca2+ entry (SOCE) is a process

where the depletion of Ca2+ from the ER triggers an

influx of extracellular Ca2+ across the plasma mem-

brane (PM) to replenish the ER’s Ca2+ stores [38]. A

ubiquitous, central mechanism in cellular Ca2+ sig-

nalling, SOCE, relies on the function of two proteins:

stromal interaction molecule (STIM), an ER-Ca2+ sen-

sor, and Orai, a highly selective Ca2+ release-activated

Ca2+ channel that resides at the plasma membrane.

STIM senses ER Ca2+ levels through a low-affinity

EF-hand Ca2+-binding motif. In all cell types, upon

sensing a decline in ER calcium levels, STIM under-

goes activation and translocates to ER subdomains,

where it physically interacts with Orai to form ER-PM

membrane contact sites and activates Orai resulting in

an influx of Ca2+ into the ER lumen directly from the

extracellular milieu [39,40].

Ca2+ signalling in myogenic
differentiation

Ca2+ signalling plays a central role in myogenic differ-

entiation [34,41,42]. STIM1 is required in myoblasts

for neonatal muscle growth and differentiation [43].

STIM1- and Orai1-mediated SOCE have also been

shown to regulate post-natal myoblast differentiation

in humans [44]. Ca2+ efflux from the ER to the cytosol

occurs via ryanodine receptor 3 (RyR3), which acti-

vates the Ca2+ calmodulin-dependent phosphatase cal-

cineurin. Calcineurin triggers early myogenic

differentiation by activating MyoD and Myocyte

Enhancer Factor 2C (Mef2C) [45]. Consistently, lower-

ing cytosolic Ca2+ levels inhibit differentiation in the

C2C12 cell line [46], and blocking RyR activity inhi-

bits fetal myoblast differentiation in mice [47]. In

C2C12 myoblasts, insulin growth factor 1 (IGF1) trig-

gers Ca2+ release from ER to the cytosol via the inosi-

tol receptor (IPR3). Within the cytosol, Ca2+ binds to

a Ca2+-responsive transcription factor nuclear factor of

activated T cells (NFATC3) that translocates to the

nucleus to regulate the transcription of target genes

involved in myogenic differentiation (e.g. genes

involved in PI3K/AKT signalling). In parallel, the

NFATC3 transcriptionally represses myostatin, a neg-

ative regulator of myogenic differentiation [48,49]. The

release of Ca2+ from the ER during early myocyte dif-

ferentiation generates ER stress that leads to ER frag-

mentation [50–53].

Ca2+ signalling in muscle contraction

In addition to its involvement in myogenic differentia-

tion, Ca2+ is well known for its role as a secondary

messenger in skeletal muscle contraction [19]. Muscle

contraction initiates with the depolarization of the sar-

colemma, followed by Ca2+ transport from the extra-

cellular milieu into the cytosol. The transport of Ca2+

from extracellular space to cytosol occurs through

Ca2+ channels localized at membrane contact sites

between the SR and plasma membrane. Ca2+ is subse-

quently pumped into the SR and mitochondria

[51,52,54–57]. In mammals, during skeletal muscle

excitation–contraction (EC) coupling, membrane depo-

larization activates the sarcolemma L-type voltage-

dependent Ca2+ channel (CaV1.1), which is located in

the T-tubules of muscle cells. CaV1.1, in turn, associ-

ates with the sarcoplasmic Ca2+ release channel ryan-

odine receptor 1 (RyR1), located on the TC of the SR

and triggers its opening. Activation of RyR1 mediates

the release of Ca2+ from the SR to the sarcoplasm

[51,52,55,56]. In the sarcoplasm, Ca2+ subsequently

binds the troponin C subunit of the troponin protein

complex, thereby mediating the conformational

changes to the myofibrillar structures that lead to con-

traction [19]. During muscle relaxation, the P-type

ATPase pump SERCA takes up cytosolic Ca2+ back

into the SR [51,52,55,56]. In the sarcoplasm of matur-

ing myotubes, SR to cytosolic Ca2+ release from RyR1

activates calcineurin that leads to the accumulation of

contractile proteins, suggesting an active role in my-

otube maturation [58–60]. Many more Ca2+-responsive

genes (CRGs) such as myomesins (Myom1/2/3) and

myozenins (MyoZ1/2/3) are activated by calcineurin-

regulated muscle contraction by contributing to myo-

tube maturation. Myomesins contribute to the forma-

tion of M-bands in myofibers, and myozenins (a.k.a
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Calsarcins) are involved in linking Z-disk proteins (e.g.

alpha-actinin, gamma-filamin, TCAP/telethonin and

LDB3/ZASP) and in localizing calcineurin signalling

to the sarcomere [14–16,61–63]. On the other hand,

calcineurin is activated in mature myofibers under the

increased influx of Ca2+ from T-tubules to sarcoplasm,

which is associated with muscle fibre-type conversion.

Calcineurin in mature myofibers is related to convert-

ing fast fibres to slow ones via transcriptional activa-

tion of slow muscle fibre-type proteins via NFATC1

[58–60]. The underlying importance of Ca2+ signalling

in mammals is further highlighted in several pathologi-

cal conditions, including Brody’s disease and malig-

nant hyperthermia [53,64,65] and muscle dystrophies

associated with impaired Ca2+ homeostasis [66,67].

Interestingly, CaV1.1 in zebrafish (Danio rerio, teleost

fish; DrCaV1.1) acts only as a voltage sensor and not as

a voltage-gated Ca2+ channel, suggesting that in fish,

as opposed to mammals, the influx of extracellular

Ca2+ via CaV1.1 is not essential in triggering EC cou-

pling during muscle contraction [68]. DrCaV1.1 inter-

acts with RyR1 and RyR3 in slow and fast muscle

fibres, respectively, to trigger Ca2+ release from ER to

the cytosol. These observations suggest the emergence

of EC coupling via CaV1.1-mediated Ca2+ influx for

contraction of skeletal muscles in amniotes [69–72].

Calcium (Ca2+) signalling in myocyte-
to-myotube fusion

In addition to its role in myogenic differentiation and

muscle contraction, Ca2+ has recently been implicated

in myoblast fusion in C2C12 cells and human and

mice primary myoblasts [73,74]. In regenerating myo-

tubes, the intracellular Ca2+ influx via the mechanosen-

sitive channel PIEZO1 at the plasma membrane

inhibits myotube-to-myotube fusion to ensure polar-

ized growth of the existing myotubes through the addi-

tion of myocytes [73]. In another recent study,

PIEZO1 knockdown suppressed myoblast fusion dur-

ing myotube formation and maturation. PIEZO1

knockdown was accompanied by downregulation of

TMEM8C/Myomaker (MYMK) and a reduction in

Ca2+ influx after stretch stimuli [74]. Both studies sug-

gest a role for PIEZO1-mediated Ca2+ influx in myo-

tube formation and maturation via modulation of

MYMK expression. These studies are consistent with

previous studies wherein depletion of Ca2+ in media

did not affect proliferation or the generation of nas-

cent myotubes but strongly inhibited the formation of

large multinucleated myotubes, suggesting that Ca2+

signalling is specifically required to initiate secondary

fusion [34]. The specific role of cytosolic Ca2+ in

triggering secondary fusion is also supported by the

activation and nuclear translocation of Ca2+-

responsive transcription factor NFATC2 in nascent

myotubes. Consistently, mice lacking NFATC2 exhibit

myofibers with fewer myonuclei and diminished regen-

erative capacity in vivo [75].

Hypothesis: Ca2+-signalling regulates
fusion and contraction, specifically in
amniotes

We recently demonstrated that elevated cytosolic Ca2+

and the subsequent activation of CaM-kinase-II (Cam-

KII) in myotubes are essential for myocyte-to-myotube

fusion in cultured primary mouse and chick myoblasts

[76]. We found that the same Ca2+ pumps that mediate

muscle contraction (RyRs, SERCA) are also essential

for myocyte-to-myotube fusion. During myocyte-to-

myotube fusion, RyRs and SERCA2 (ATP2A2) con-

tribute to ER-to-cytosol Ca2+ release, while SERCA1

(ATP2A1) contributes to the reuptake of Ca2+ from

the cytosol back into the ER. Consistently, treatment

of myoblasts with RyR inhibitor blocked secondary

fusion but not myogenic differentiation and primary

fusion. We further demonstrated that the release of

Ca2+ via RyRs and SERCA from ER to the cytosol of

the nascent myotubes activates CamKII, resulting in

myocyte recruitment and preferential fusion with mult-

inucleated myotubes. We also showed that p-CamKII

regulates MYMK. These findings directly link the

Ca2+ pumps that mediate muscle contraction to

myocyte–myotube fusion during growth and regenera-

tion [76]. A shared role of membrane-bound CRGs in

fusion and contraction was also recently demonstrated

by a study on Ferlin family members myoferlin

(MyoF) and dysferlin (DysF), showing that they regu-

late myoblast fusion [77,78]. Interestingly, mice myofi-

bers lacking either of these proteins also show

aberrant Ca2+ handling and differences in the RyR

expression pattern [79]. These studies suggest that both

cytosolic Ca2+ and the responsive CRGs regulate both

fusion and contraction in at least two distant verte-

brate species within the amniotic lineage. Hence, we

hypothesize that while cytosolic Ca2+ regulates myo-

genic differentiation, and contraction in all the verte-

brate lineages, in addition to these processes, it also

regulates myoblast fusion specifically in amniotic skele-

tal muscles.

The hypothesis that Ca2+ signalling is involved in

coordinating fusion and contraction in amniotes is

supported by the observation that CRGs implicated in

muscle contraction are induced earlier during mouse

myotube formation and are deregulated in human
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muscle dystrophies [66,67,80,81]. In contrast, induction

of CRGs appears absent during muscle formation in

fish [82,83]. The expression of CRGs positively corre-

lates only with robust swimming in fish, which is con-

sistent with a shared role for CRGs in muscle

contraction and not in muscle differentiation [84].

Additionally, Ca2+ has recently been implicated in the

proliferation of myogenic progenitor cells during

spinal cord and skeletal muscle regeneration in frogs

[85], which resembles Ca2+-induced MyoD activation

during myogenic differentiation in mammals. How-

ever, the involvement of CRGs in myoblast fusion has

not been reported in amphibians, suggesting that the

induction of CRGs during late myogenic differentia-

tion and fusion is a feature unique to amniotes. This is

consistent with the involvement of Ca2+ signalling in

MyoG-driven late myogenic differentiation and muscle

contraction in the organisms of this lineage

[34,41,46,51,52,55]. The active involvement of CRGs in

secondary fusion in amniotes and their absence during

myocyte fusion in fish and Drosophila also support the

hypothesis that Ca2+ signalling plays a role in myo-

blast fusion, specifically in amniotes

[5,74,76,80,82,86,87]. Taken together with the role of

Ca2+ in regulating secondary fusion, it stands to rea-

son that Ca2+ signalling in amniotes serves as both a

master regulator of differentiation and a ‘switch’

between muscle contraction and fusion.

Why might coordination of fusion and
contraction be necessary for
amniotes?

It is tempting to speculate that myocyte fusion and

muscle contraction need to be coordinated in post-

natal amniotes to avoid the detrimental consequences

of myocytes fusing with contracting myotubes during

regeneration. While the fluidic nature of membranes

has been speculated to be critical for myoblast fusion

[35], the structurally complex nature of myofibre mem-

brane would pose challenges for the fusion of myocyte

to contractile myofiber. Therefore, myocyte-myofiber

fusion may involve complex membrane remodeling at

the site of fusion possibly by stalling contraction at

the site of fusion. Moreover, while the ER is frag-

mented in myocytes and sarcomeric in myofibers

[9,51], the opposing ER morphologies between the two

cell may stall myofibers contractions locally so as to

allow for organelle remodeling at the fusion synapse.

Therefore, while Ca2+ regulates fusion and contraction

in amniotes, we speculate that it temporally regulates

these processes to prevent their co-occurrence to avoid

detrimental consequences to the fusing cells. We

assume that this feature is evolutionarily selected in

amniotes due to their larger body sizes than fish. We

predict that amniote myofibers switch between a

fusion- and contraction-competent state to ensure

structural rearrangements like nuclei and organelle

repositioning could occur during the integration of

mononucleated cells into damaged myofibers. These

notions are consistent with the recently reported Ca2+-

triggered sarcomere rearrangements and nuclear move-

ments towards the injury site in mice [88] and with the

mechanistic differences in muscle formation and

growth between the amniotes and anamniotes.

Divergent mechanisms of muscle
formation and growth between
amniotes and anamniotes

Muscle formation

Muscles arise from the somites, paired blocks of meso-

dermal cells located paraxially to the notochord [89–
92]. During embryogenesis, as the somites develop

(somitogenesis), they differentiate to form the myo-

tome, sclerotome and dermomyotome cells, which give

rise to muscle, skeleton (bone and cartilage) and der-

mis (skin) respectively. While in the anamniotes, the

myotome differentiates at a very early stage of

embryogenesis and forms the bulk of the early somite,

in amniotes, the sclerotome differentiates first [89–92].
All vertebrates contain two populations of muscle

fibres: slow- and fast-twitching muscle fibres. In

amniotes, the same myoblast pool generates slow and

fast muscle fibres. While the slow fibres are generated

during embryogenesis via the fusion of mononucleated

myocytes, the fast fibres are formed by the fusion of

myocytes with pre-existing primary fibres [72,81,83,93].

In contrast, in zebrafish, the two fibre types are

formed from spatially separate pools of myoblasts that

give rise to the two muscle types in distinct phases of

embryonic myogenesis [72,81,83,93]. The slow,

mononucleated muscle fibres are formed in the initial

phase of myoblast differentiation and the fast, multin-

ucleated muscle fibres later on, in the second phase.

In zebrafish, slow muscle fibres remain mononucle-

ated during embryonic development and grow by

multinucleation only after birth [82,94–97]. The fast,

multinucleated muscle fibres are formed from late-

differentiating somite cells that undergo a 90° whole-

somite rotation and then migrate towards the top of

the basement membrane, where they fuse. While these

myoblasts form multinucleated myofibers in teleost

fish, they form multinucleated muscle lamellae in lung-

fish that only later undergo longitudinal division to
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form cylindrical myofibers [98] (Fig. 2). Only the fast

myoblast fraction fuse to generate the multinucleated

myotubes during embryonic development in the fish

lineage [78,95,99,100]. These observations suggest that

zebrafish fusion mechanisms differ between embryonic

and post-embryonic development in contrast to mice.

The 90° rotation of whole somite and the presence of

two kinds of myoblasts (slow and fast myoblasts) is a

unifying feature of anamniotes, contrary to amniote

embryogenesis [78,95,99,100].
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Fig. 2. Illustration summarizing the evolutionary changes in muscle formation during embryonic myogenesis across chordates. The lineage

(left) and the corresponding muscle structure (right) are shown. In all vertebrates, the muscle forms after somitogenesis. In the anamniotes

(fish and amphibians; blue lines), the somite undergoes a 90° rotation during embryonic myogenesis and later differentiates to form muscle

progenitor cells. This feature of whole somite rotation is specific to anamniotes. Myoblasts in amniotes and lower amphibians bypass fusion

during embryonic myogenesis and differentiate directly into mononucleated myotubes. Later, the SCs fuse with mononucleated myotubes

and form multinucleated myotubes that later mature to form myofibers. Different lineages of fish differ in the process of muscle formation.

For example, in teleost fish, myoblast fuse to form multinucleated myotubes during embryonic myogenesis, and these grow further in

adulthood by adding mononucleated myocytes derived from SC differentiation. However, in Neoteleost and Euteleost fish lineages,

myoblasts fuse to form multinucleated muscle lamellae that undergo longitudinal splitting to form cylindrical muscle fibres. Therefore, while

all vertebrates possess multinucleated myotubes, the process of their formation varies across the vertebrates. Unlike vertebrates, the non-

vertebrates contain mononucleated muscle lamellae instead of multinucleated muscle fibres. While EC coupling for muscle contraction

emerged in the vertebrate lineage within chordates, EC coupling with Ca2+ influx for muscle contraction appeared for the first time in

amniotes (shown in pink lines in the figure). The vertebrates also mark the first emergence of fusion proteins MYMK and MYMX and CRGs

such as RyRs. Thus, the amniote-specific involvement of cytosolic Ca2+ and its responsive CRGs in myoblast fusion and muscle contraction

appears to align with the changes in skeletal muscle architecture and with the emergence of EC coupling with Ca2+ influx in muscles in the

organisms of this lineage.
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Amphibian myoblasts either differentiate directly

into mononucleated myofibers (bypassing fusion) or

fuse to form multinucleated myofibers (Fig. 2). While

mammals (amniotes) use SCs-derived myocytes for

fusion, amphibians derive mononucleated cells by ded-

ifferentiating injured myofibers to myocytes that fuse

with injured myofibers (dedifferentiation model for

muscle regeneration) [85,101–103].

Muscle growth

Amniotes and anamniotes also differ in the aspects of

muscle growth in adulthood. In amniotes, the number

of muscle fibres in adults is determined during embryo-

genesis, and the addition of new fibres to pre-existing

ones stops after birth. Muscle fibres in adult amniotes

are only regenerated by hypertrophy [104,105]. In con-

trast to amniotes, fish muscles continue to grow until

adulthood by adding new muscle fibres (hyperplasia)

to the pre-existing ones. The type of muscle growth in

fish also depends on body size. While the fish with

smaller body sizes continue to grow muscles by hyper-

trophy, the larger fish (> 22 cm) grow muscles by

hyperplasia [98,106,107]. Given the differences in mus-

cle formation and growth between amniotes and

anamniotes, it is presumable that the genes involved in

these processes (including the CRGs) also vary across

the two lineages. Despite the differences in the genes

involved in myoblast fusion and muscle formation and

growth differences between amniotes and fish, the mar-

ker proteins and the signalling pathways involved in

SC activation, myogenic differentiation, and myotube

maturation are conserved between the two lineages

[30,72,83]. Moreover, in both the lineages during myo-

genesis, the myotubes only fuse with SCs and not

between themselves [72]. Therefore, the basic scheme

of myogenesis has only been fine-tuned as per habitat

and growth requirements between the two lineages.

Divergent fusion machinery between
amniotes and anamniotes

The fusion proteins employed by vertebrates also vary

considerably. Studies aimed at understanding myocyte

fusion in vertebrates have identified several muscle-

specific myogenic genes that have first appeared in verte-

brates [48,72,77,78,108–110]. These include MYMK

(221aa in humans) and Myomerger/Minion/Myomixer

(MYMX), which are essential and together sufficient for

myoblast fusion in vertebrates [111–114]. While MYMK

and MYMX are present in all vertebrates, their

sequences vary between the amniote and anamniote lin-

eages [112,115,116]. As opposed to other vertebrates,

including the teleost fish, the MYMK orthologs in neo-

teleost and euteleost fish such as Protacanthopterygian

fish (salmonids) are longer (~ 434aa) with a functionally

important additional C-terminal 224aa region [115].

The specific differences in the MYMK protein

sequences between fish and amniotes indicate the neo-

functionalization of MYMK in the fish lineage, possibly

to regulate primary and secondary myogenesis. This

may imply that CamKII does not interact with MYMK

in fish muscles, probably because: (a) fish rely on hyper-

plasia for muscle growth [98,106,107], and (b) fish mus-

cles do not require Ca2+ and CRGs for fusion

[83,95,117,118]. Hence, it would be interesting to study

the deregulation of Ca2+ and CRGs like CamKII in the

context of fusion in fish. These lineage-specific protein-

sequence differences also appear in MYMX sequences

across vertebrates [113,114,116].

A recent study has suggested that MYMK and

MYMX have coevolved in the vertebrates [119]. These

observations indicate that MYMK and MYMX

evolved together for myoblast fusion, parallel to the

emergence of sarcomeric muscle and EC coupling in

this lineage [120]. The emergence of fast- and slow-

twitching muscle fibres in the vertebrates appears to

align with differences in the mechanism of myoblast

fusion and the sequence divergence in MYMK and

MYMX paralogs. A similar appearance and subse-

quent divergence of genes within chordates were previ-

ously reported for the molecular evolution of other

myopathy-associated CRGs such as the RyRs and fer-

lin family members, suggesting that MYMK, MYMX

and the CRGs coevolved in the chordate lineage [121–
123]. In addition, Kirrel and the receptor–ligand pair

Jam-b/Jam-c, which are essential for myoblast fusion

in zebrafish [5,83,115,124], do not exhibit an apparent

muscle phenotype in knockout mice [125–127].
Taken together, the difference in the involvement of

Ca2+ and its responsive CRGs in myoblast fusion

between the amniotes and the anamniotes (fish and

amphibians) aligns well with the molecular and mor-

phological differences in muscle formation and growth

and with variation in the identity of fusion proteins

between the two lineages. Hence, the amniote-specific

involvement of CRGs in fusion and contraction

appears to be a lineage-specific adaptation in line with

muscle regeneration in this lineage.

Concluding remarks

In summary, in this viewpoint article, we propose that

Ca2+ signalling is involved in myogenic differentiation,

fusion and contraction in amniotes. We hypothesize

that Ca2+ was selected during evolution to coordinate
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these processes in amniote myofibers to support robust

regeneration. If this hypothesis is correct, it follows

that regenerating muscle fibres do not fully contract

upon excitation, suggesting that muscle innervation

could regulate regeneration. Hence, identifying addi-

tional Ca2+-regulated effector proteins with a dual role

in fusion and contraction would help elucidate the

mechanisms that shape amniote regeneration and

develop novel avenues for muscle therapy [128].
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