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Abstract CTCF and cohesin are key drivers of 3D-nuclear organization, anchoring the

megabase-scale Topologically Associating Domains (TADs) that segment the genome. Here, we

present and validate a computational method to predict cohesin-and-CTCF binding sites that form

intra-TAD DNA loops. The intra-TAD loop anchors identified are structurally indistinguishable from

TAD anchors regarding binding partners, sequence conservation, and resistance to cohesin

knockdown; further, the intra-TAD loops retain key functional features of TADs, including

chromatin contact insulation, blockage of repressive histone mark spread, and ubiquity across

tissues. We propose that intra-TAD loops form by the same loop extrusion mechanism as the larger

TAD loops, and that their shorter length enables finer regulatory control in restricting enhancer-

promoter interactions, which enables selective, high-level expression of gene targets of super-

enhancers and genes located within repressive nuclear compartments. These findings elucidate the

role of intra-TAD cohesin-and-CTCF binding in nuclear organization associated with widespread

insulation of distal enhancer activity.

DOI: https://doi.org/10.7554/eLife.34077.001

Introduction
The mammalian genome is organized into stereotypical domains, averaging ~700 kb in length, called

Topologically Associating Domains (TADs) (Dixon et al., 2012; Nora et al., 2012). TADs are insu-

lated chromatin domains whose genomic boundaries are often retained across tissues (Dixon et al.,

2012) and have been conserved during mammalian evolution (Vietri Rudan et al., 2015;

Dixon et al., 2015). TADs provide a stable genomic architecture that constrains enhancer-promoter

contacts, while allowing for dynamic tissue-specific interactions that stimulate gene expression within

TADs, thereby linking chromatin structure and positioning to gene expression (Dowen et al., 2014;

Sexton et al., 2007).

Hi-C, an unbiased genome-wide chromosome conformation capture method (Lieberman-

Aiden et al., 2009), identifies TADs based on their insulation from inter-domain interactions and by

the increased frequency of intra-domain interactions that occurs within individual TADs (Dixon et al.,

2012; Nora et al., 2012). TADs show substantial overlap with features of nuclear organization identi-

fied using other approaches, including replication domains, lamina-associated domains, and A/B

chromatin compartments (Dixon et al., 2015; Pope et al., 2014; Nora et al., 2013). TADs impact

gene expression by insulation, which limits a given gene’s access to regulatory regions (Le Dily

et al., 2014). While TAD structures are often shared across tissues within a species, some individual

TADs show tissue-specific differences in their spatial positioning within the nucleus, and in their over-

all activity, transcription factor (TF) binding patterns, and patterns of expression of individual genes
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(Dixon et al., 2015). It is unclear to what extent these large megabase-scale chromatin structures

exert regulatory control over the multiple, often variably-expressed, genes found within their

boundaries.

Two key protein factors, CCCTC-binding factor (CTCF) and the multi-subunit cohesin complex,

are the primary architects of nuclear organization in mammals (Ong and Corces, 2014;

Sanborn et al., 2015; Guo et al., 2015). CTCF and cohesin cooperatively engage genomic DNA via

a loop extrusion complex, which is dynamically mobile within TAD boundaries and may help orga-

nize TAD structure (Sanborn et al., 2015; Fudenberg et al., 2016; Rao et al., 2014). CTCF is an 11

zinc finger protein that stably binds DNA and can serve as an insulating enhancer-blocker and a

modulator of 3D chromatin structure (Phillips and Corces, 2009). Sites bound by both cohesin and

CTCF (cohesin-and-CTCF (CAC) sites) are associated with insulator function (Dowen et al., 2014;

Zuin et al., 2014) and are found at TAD boundaries (Dixon et al., 2012; Nora et al., 2012). In con-

trast, sites bound by cohesin but not CTCF (cohesin-non-CTCF (CNC) sites) are found at tissue-spe-

cific promoters and enhancers (Kagey et al., 2010) and may help to stabilize large TF complexes

(Faure et al., 2012). CAC complexes are also associated with topoisomerase-IIb (Top2b), which pre-

sumably relieves the torsional strain of the extrusion complex (Uusküla-Reimand et al., 2016).

Complete knockout of either CTCF or cohesin is embryonic lethal (Heath et al., 2008;

White et al., 2013; Xu et al., 2010), whereas partial depletion of CTCF or cohesin results in altered

gene expression but has more limited phenotypic impact, increasing radiation sensitivity, DNA repair

defects, and cell cycle arrest (Ong and Corces, 2014; Xu et al., 2010; Moore et al., 2012). Com-

plete removal of CTCF or cohesin-related factors, achieved using inducible degradation systems,

eLife digest The human genome contains the complete set of DNA instructions – including all

genes – needed to build and maintain an organism. To fit all of this genetic information in the cell’s

nucleus, the DNA is neatly wrapped around so-called histone proteins, which help to package the

genetic material into chromatin, which forms thread-like structures, the chromosomes.

Chromatin is further folded into large DNA loops held together by an anchor protein, CTCF, and

by a second protein, cohesin, whose ring-shaped structure ties each loop at its base. DNA segments

that are within the same loop may interact frequently, whereas those outside the loop rarely do.

Many of these large DNA loops are further pinched off into sub-loops. These sub-loops may help a

cell fine-tune whether a gene needs to be turned on or off by limiting the contact between genes

and the DNA regions that regulate the activity of genes.

Knowing where these DNA sub-loop are located is very important for understanding how each

gene is controlled. However, this can be very costly to determine, and therefore, is only known for a

few cell types. Now, Matthews and Waxman tackle this issue by creating a computer model that can

correctly predict many of these sub-loops. The method used experimental data obtained from

mouse liver cells to identify the locations of CTCF and cohesin.

The results showed that DNA sub-loops in the liver cells can shield genes from regulatory DNA

segments outside the looped area. For example, a small sub-loop that contains a single gene

related to obesity is highly active, even though the large DNA loop containing the sub-loop is an

otherwise inactive gene region. Similarly, certain genes critical for liver function are positioned within

sub-loops containing DNA regions that greatly enhance the gene activity in liver cells. This allows

the selected genes to be highly active – unlike other genes that are close by but outside the sub-

loop.

This new approach will make it easier and cheaper to discover DNA loops and sub-loops across

the genome. A better knowledge of where these loops form may also allow us to better understand

how genes are turned on and off in different types of cells, and in response to biological stimuli or

environmental stresses. This may also help understand and treat conditions that arise from

mutations that disrupt the boundaries of DNA loops or sub-loops, which can allow certain DNA

segments to activate the wrong genes and can lead to developmental defects and diseases such as

cancer.

DOI: https://doi.org/10.7554/eLife.34077.002
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leads to a complete loss of virtually all loop structures in a highly dosage-dependent manner

(Nora et al., 2017; Rao et al., 2017; Schwarzer et al., 2017). Mutations affecting CAC loop anchors

are frequently seen in cancer and lead to dysregulation of adjacent genes, evidencing the functional-

ity of these loops (Ji et al., 2016; Katainen et al., 2015; Fujimoto et al., 2016). However, there are

many more CAC sites within TADs than at TAD boundaries, and it is not clear what factors differenti-

ate loop-forming CAC sites at TAD boundaries from other CAC sites in the genome.

Chromatin interactions can be studied by Hi-C analysis, which under standard conditions provides

a resolution of 25–100 kb and has been used to study nuclear organization at the level of megabase-

scale TAD structures. However, high resolution Hi-C datasets obtained using extreme deep sequenc-

ing (>25 billion reads) have led to two key discoveries (Rao et al., 2014). First, ~90% of DNA loops

(‘loop domains’, defined as local peaks in the Hi-C contact matrix) are associated with both CTCF

binding and cohesin binding, and 92% of such loops involve inwardly oriented CTCF anchors

(Rao et al., 2014). Thus, loop anchors are bound at asymmetric CTCF motifs that face the loop inte-

rior. This previously unappreciated feature of CTCF loops facilitates the identification of such loops

in silico (Sanborn et al., 2015; Oti et al., 2016). Furthermore, expression of neighboring genes

changes in a predictable manner when CTCF anchors are inverted or deleted by CRISPR/Cas9 geno-

mic editing (Dowen et al., 2014; Sanborn et al., 2015; Guo et al., 2015). Second, extreme deep

sequencing Hi-C studies identify a much larger number of shorter loops than previously recognized

(~10,000 loops with a median size of 185 kb) (Rao et al., 2014), many of which represent complex

nested structures (e.g., isolated cliques) (Sanborn et al., 2015). The ability to distinguish between

such substructures has led to predictions ranging from 103 to 106 loops per genome, depending on

the 3C-based analysis method and the cutoff values employed (Sanborn et al., 2015;

Handoko et al., 2011; Fullwood et al., 2009; Jin et al., 2013). The presence of nested loop struc-

tures may be a general feature of topological nuclear organization, and the ability to detect such

structures is dependent on the method, resolution, and computational approach (Handoko et al.,

2011; Fullwood et al., 2009; Jin et al., 2013; Hnisz et al., 2016; Weinreb and Raphael, 2016).

While sub topologies within TADs have been observed, it is unknown whether those interactions

represent enhancer-promoter loops or other looped structures, and whether they are mediated by

cohesin, mediator, or other architectural proteins (Zuin et al., 2014; Sofueva et al., 2013). Short,

<200 kb CTCF-anchored loops, termed chromatin contact domains or super-enhancer domains,

have been identified in mouse embryonic stem cells (mESCs) by ChIA-PET experiments that select

for CTCF and cohesin binding sites (via immunoprecipitation of Smc1) (Handoko et al., 2011;

Tang et al., 2015), and are enriched for tissue-specific genes and enhancers (Dowen et al., 2014;

Handoko et al., 2011). However, these genomic regions represent a minority of CTCF-anchored

DNA loops, and likely do not fully represent all of the nuclear topological domains evident in high

resolution Hi-C maps (Rao et al., 2014; Rao et al., 2017; Rowley et al., 2017). Given the inability

to identify CAC-anchored intra-TAD loops from standard, low resolution Hi-C data, we sought to

build on the above advances and develop a computational method to predict such subTAD-scale

loops by using only 2D (CTCF and cohesin ChIP-seq binding activity) and 1D (CTCF motif orienta-

tion) information. Here we define intra-TAD loops anchored by cohesin and CTCF, and that contain

at least one gene, which represent a superset encompassing super-enhancer and polycomb domains

(Dowen et al., 2014). These CAC-mediated intra-TAD loops are mechanistically distinct from short

range enhancer-promoter loops, and from longer range genomic compartmentalization (Rao et al.,

2017; Schwarzer et al., 2017; Stevens et al., 2017), whose impact on gene expression in mouse

liver is also discussed.

Here we present, and then validate in three mouse tissues and two human cell lines, a computa-

tional method to identify intra-TAD loops genome-wide. We elucidate the structural and functional

features of the intra-TAD loops identified, and those of the better-established TADs, including their

impact on gene expression in a mouse liver model. We show that, mechanistically, intra-TAD loops

are anchored by loop extrusion CAC complexes that are shared across tissues and show strong con-

servation. Further, we demonstrate that, at a functional level, intra-TAD loops insulate repressive

chromatin mark spread and thereby enable selective expression of genes at a high level compared

to their immediate genomic neighbors, notably genes targeted by super-enhancers, and genes that

are otherwise found in repressive nuclear compartments. These findings reveal how intra-TAD loops

harness many of the same mechanisms as TAD-scale loops but in ways that allow for greater local

control of gene expression.
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Results

Features of TADs and their functional impact on gene expression
Features associated with TAD boundaries
We characterized TADs identified in mouse liver (Vietri Rudan et al., 2015) using matched ChIP-seq

datasets for CTCF and the cohesin subunit Rad21, which we obtained for a group of individual adult

male mouse livers. Genomic regions co-bound by cohesin and CTCF (CAC sites) were strongly

enriched at TAD boundaries (Figure 1A), consistent with (Vietri Rudan et al., 2015). In contrast,

cohesin-non-CTCF sites (CNC sites) were weakly depleted at TAD boundaries. We also observed

strong enrichment for motif-oriented CTCF binding at TAD boundaries (Figure 1—figure supple-

ment 1A), consistent with recent reports and the loop extrusion model of domain formation

(Vietri Rudan et al., 2015; Sanborn et al., 2015; Rao et al., 2014). Next, we explored the impact

of cohesin depletion on CAC sites associated with TAD boundaries, following up on the finding that

many cohesin binding sites are maintained upon knockout or knockdown of components of the

cohesin complex (Faure et al., 2012). Figure 1B shows the distribution of cohesin-bound regions

that are either resistant or sensitive to haploinsufficiency of the cohesin subunit Rad21 in hepato-

cytes, or to knockout of the cohesin subunit Stag1 in mouse embryonic fibroblasts (MEFs). In both

cell types, sites resistant to cohesin loss are enriched at TAD boundaries, while those sensitive to

cohesin loss are more equally distributed along the TAD length. This may explain the unexpected

finding that domains and compartments are largely maintained after depletion of cohesin

(Zuin et al., 2014; Sofueva et al., 2013; Seitan et al., 2013).

Given the frequent conservation of TAD boundaries between tissues in both mouse and human

(Dixon et al., 2012; Nora et al., 2012; Dixon et al., 2015), we compared regions bound by CTCF

in mouse liver to 15 other mouse tissues from the ENCODE Project (Shen et al., 2012). CTCF sites

that are shared across 12 or more tissues showed 3–4 fold enrichment at TAD boundaries relative to

the center of the TAD, whereas CTCF binding sites unique to liver, or shared with only one other tis-

sue, showed no such enrichment (Figure 1C). TAD boundaries were also enriched for CpG hypome-

thylation, which was most pronounced at TAD anchor CTCF motifs (Figure 1D, Figure 1—figure

supplement 2A). CpG methylation is greater at CAC sites not involved in TAD or intra-TAD loop

anchors (Figure 1—figure supplement 2A; see below), and could represent an additional layer of

epigenetic regulation of CAC-based loop formation. By comparison, the TAD boundary enrichment

seen for CTCF and cohesin was absent for >50 other liver-expressed TFs whose binding site distribu-

tion within TADs we examined (Figure 1E, and data not shown). Tbp and E2f4, which are character-

ized by promoter-centric binding (Blanchette et al., 2006; Kim et al., 2005), are two notable

exceptions (Figure 1—figure supplement 1B). Consistent with this, TAD boundaries were enriched

for promoters of protein-coding genes, including promoters that do not overlap CAC sites, and for

histone marks associated with promoters but not enhancers Figure 1—figure supplement 1C–E).

TADs segregate the genome into compartmentalized units
TADs have the ability to insulate the spread of repressive histone marks and also enhancer-promoter

interactions, referred to as enhancer blocking (Dixon et al., 2012; Dowen et al., 2014;

Sofueva et al., 2013). By these dual mechanisms, TADs can exert control over tissue-specific gene

expression, despite the TADs themselves being largely structurally invariant across tissues. As TADs

are defined based on their insulation of chromatin contacts, we investigated their impact on chroma-

tin mark spread. We examined four broad histone marks associated with either transcriptional

repression (H3K9me3, H3K27me3) or activation (H2AK5ac, H3K36me3). We also examined Global

Run-on Sequencing data to identify actively transcribed regions of the genome, as well as Lamina

Associated Domain (LAD) coordinates to visualize areas of the genome associated with the nuclear

periphery. Figure 1F shows a heat map representation of a 1 Mb window around each TAD bound-

ary in mouse liver, clustered using k-means clustering (k = 4) based on H3K9me3 and H2AK5ac

ChIP-seq data and on the Eigen value of the Hi-C principal component analysis (PCA), which pro-

vides an estimate of active versus inactive genomic compartments (Lieberman-Aiden et al., 2009).

A subset comprised of 1439 liver TAD boundaries (40.9% of all boundaries) represents transitions

from inactive to active chromatin compartments, or vice versa (Figure 1F; 2nd and 3rd clusters). Also

shown is an example of a transitional TAD boundary on chromosome 13, where there is a shift from
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Figure 1. Features of TAD boundaries and TAD insulator function. Profiles in A-E represent a normalized aggregate count of peaks or features along

the length of all TADs, sub-divided into 100 equally-sized bins per TAD, where bin #1 is the 5’ start of the TAD and bin #100 is at the TAD 3’ end.

Normalization was performed to allow comparison of multiple groups with variable peak numbers in a single figure. The y-axis displays the enrichment

within a given bin versus the average of the five center bins (bins #48–52). In A-C, the number of binding sites in each group is shown in parenthesis. (A)

Figure 1 continued on next page
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active to inactive chromatin marks separated by inversely-oriented CTCF binding sites (Figure 1G).

Using the clusters shown in Figure 1F, each TAD was designated as active, weakly active, inactive,

or weakly inactive, based on the signal distribution around the boundary and the eigenvalue from

Hi-C PCA analysis along the length of the TAD (see Materials and methods and listing of TADs in

Supplementary file 1A). Striking differences in gene expression were seen between active and inac-

tive compartment TADs (median liver expression 1.095 FPKM for 12,258 genes in active TADs vs.

0.003 FPKM for 4643 genes in inactive TADs; Figure 1H).

We sought to determine the tissue-specificity of the genes in active vs. inactive TADs. We used

the expression level of each gene across ENCODE tissues to calculate Tau scores, a robust metric

for tissue specificity (Yanai et al., 2005; Kryuchkova-Mostacci and Robinson-Rechavi, 2017). Tau

values close to one are highly tissue specific, while lower values (<0.3) are widely expressed and con-

sidered housekeeping genes (see Materials and methods). A greater fraction of genes located in

inactive TADs are tissue-specific compared to genes in active TADs (Figure 1I). Overall, only 939

(20.2%) of all 4643 genes in inactive TADs are expressed in liver (FPKM >1) vs. 6,290 (51.3%) of the

12,258 genes in active TADs. Furthermore, genes whose TSS is close to a TAD boundary (i.e., TSS

within 2% of the total TAD length in either direction from the boundary) tend to be less tissue spe-

cific than the genomic average (Figure 1—figure supplement 2B). Active transcription may be a key

driver of dynamic cohesin movement in the nucleus (Busslinger et al., 2017), and RNA polymerase

II, in vitro, is capable of translocating cohesin rings along DNA (Davidson et al., 2016). Thus, the

ubiquitous expression of genes at TAD boundaries could be either a driver or an initiator of loop

extrusion, although the exact mechanism remains unknown.

Figure 1 continued

Cohesin-and-CTCF (CAC) sites are enriched at TAD boundaries, while cohesin-non-CTCF (CNC) sites are weakly depleted. As the cohesin (Coh)

complex is a multi-protein complex, the darker color within each group represents a stricter overlap between cohesin subunits (Rad21, Stag1 and

Stag2). (B) In both mouse liver and MEFs, cohesin binding sites that are resistant to knockdown (KD) or knockout (KO) of cohesin component subunits

(~40% of cohesin binding sites for liver) are strongly enriched for TAD boundaries. Cohesin sites that are sensitive to loss following KD or KO (~60% of

sites for liver) are not enriched at TAD boundaries. (C) CTCF binding sites in liver that are deeply-shared across other ENCODE tissues (�12 out of 15

other tissues examined) are strongly enriched at liver TAD boundaries, while those that are either unique to liver or shared in only one other tissue are

not enriched at TAD boundaries. (D) TAD boundaries show greater hypomethylation than the TAD interior. The most hypomethylated CpGs are

enriched at TAD boundaries, which likely represents a combination of hypomethylation at gene promoters and hypomethylation at CTCF binding sites.

CpG methylation states, determined by liver whole genome bisulfite sequence analysis were subdivided into 10 bins based on the degree of

methylation (0–10% methylated, 10–20%, etc.) prior to TAD distribution analysis. (E) 10 liver-expressed TFs are not enriched at TAD boundaries. These

profiles are representative of the vast majority of the >50 publically available ChIP peak lists for liver-expressed TFs. Notable exceptions, related to

promoter-associated features, marks, and transcription factors, are shown in Figure 1—figure supplement 1B,D. (F) Shown is a heat map of the

distribution of the indicated activating and repressive marks and other features determined for male mouse liver across a 1 Mb window around each

TAD boundary. TAD clusters, numbered at the left, were defined using k means clustering (k = 4). The boundaries between TADs transition from active

to inactive chromatin compartments (or vice versa) for TAD clusters 2 and 3. In downstream analyses based on these results, a TAD was considered

active if the boundary at the start of a TAD fell into clusters 1 or 2 and the boundary at the end of the same TAD fell into clusters 1 or 3; inactive TADs

are those whose boundaries begin in clusters 3 or 4 and end in clusters 2 or 4 (see Materials and methods). See Supplementary file 1A for a full listing

of the 3538 autosomal TADs analyzed and their active/inactive status. (G) UCSC browser screenshot for a transitional TAD boundary on chromosome 13

from TAD cluster 3 in Figure 1F. Arrows at bottom indicate CTCF motif orientation. (H) Box plots showing liver gene expression (RNA-seq) for 12,258

genes in 1930 active TADs and 4643 genes in 1000 inactive TADs (Supplementary file 1A). 939 genes in 473 of the inactive TADs are expressed at >1

FPKM (Supplementary file 1E). Genes found in active compartment TADs are more highly expressed, with the majority of genes showing >1 FPKM,

than genes found in inactive TAD compartments. Genes in weakly active and weakly inactive TADs were excluded from these analyses. (I) Genes whose

TSS are located in inactive TADs (‘B compartments’) are more tissue specific in their expression pattern than genes found in active TADs (‘A

compartments’). The top GO category for expressed genes in the A compartment is RNA binding, while the top category for expressed genes in the B

compartment is monooxygenase activity (not shown).

DOI: https://doi.org/10.7554/eLife.34077.003

The following figure supplements are available for figure 1:

Figure supplement 1. Additional Features of TAD boundaries.

DOI: https://doi.org/10.7554/eLife.34077.004

Figure supplement 2. Additional Features of TAD boundaries, continued.

DOI: https://doi.org/10.7554/eLife.34077.005
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Identification of intra-TAD loops
Predicting intra-TAD loops from TAD-internal CTCF and cohesin binding
sites
While CAC sites that are tissue ubiquitous, cohesin knockdown-resistant, or species-conserved show

a clear 2 to 5-fold enrichment at TAD boundaries (Figure 1), a large majority of such sites are TAD-

internal and presumably do not contribute to TAD formation. Overall, only 14.7% of liver CTCF bind-

ing sites are associated with TAD boundaries (Figure 2—figure supplement 1A), consistent with

other reports (Dixon et al., 2012), and only 23% of the CTCF-bound regions that retain all four of

the above features are within 25 kb of a TAD boundary (Figure 2—figure supplement 1A). We con-

sidered two possibilities: (1) TAD-internal CAC sites form intra-TAD loops that are too short to be

detected in standard Hi-C datasets; and (2) additional factors associated with TAD boundary CTCF

sites differentiate them from other such binding sites in the genome (see Discussion). To examine

the first possibility, we modified an algorithm for analysis of CTCF loops (Oti et al., 2016) and

adapted it to predict subTAD-scale loops in silico, using CTCF and cohesin peak strength and CTCF

orientation as inputs (Figure 2A). Our approach builds on the finding that >90% of CTCF-based

loops are formed between inwardly-oriented CTCF sites (Rao et al., 2014). Each mouse liver CAC

site was given a score that represents its CTCF peak strength and CTCF motif score, and an orienta-

tion was assigned based on whether the non-palindromic CTCF motif was present on the (+) strand

or the (-) strand, considering the highest scoring CTCF motif at each CAC site. Scanning the

genome, each (+) strand CAC peak was connected to putative downstream (-) strand CAC sites.

Low scoring CAC peaks were removed and the process was iteratively repeated until the top 20,000

candidate loops remained. The set of loops was then filtered, as detailed in Materials and methods,

to take into account cohesin scoring, and to ensure TSS overlap and <80% TAD overlap, to restrict

our definition of intra-TAD loops to TAD-internal CAC-mediated loops that contain at least one TSS.

Applying this algorithm to each of 4 matched pairs of liver ChIP datasets for CTCF and cohesin, we

identified a set of 9543 intra-TAD loops present in all four liver samples, with a median length of 151

kb. The set of intra-TAD loops identified includes many nested loops, and differs substantially from

the generally shorter and much larger number of CTCF loops predicted by the original algorithm

(Oti et al., 2016) (Figure 2—figure supplement 1B; see Materials and methods). Functionally,

anchors of the shorter loops predicted using the method of (Oti et al., 2016) show less insulation

and weaker directional interactions than the intra-TAD loop anchors identified in our study (Fig-

ure 2—figure supplement 1C,D; also see below). Moreover, 91% of our predicted intra-TAD loops

were wholly contained within a single TAD, versus only 67% for a random shuffled control (Figure 2—

figure supplement 1E). Figure 2B illustrates intra-TAD loop structures within TADs along a segment

of chromosome two and highlights their substantial overlap with ‘CTCF-CTCF’ DNA loops identified

by ChIA-PET analysis of cohesin-mediated interactions in mouse embryonic stem cells (mESCs) using

antibodies to the cohesin subunit Smc1 (Dowen et al., 2014). The final set of 9543 liver intra-TAD

loops includes 1632 intra-TAD loops (17.1%) that share one CTCF loop anchor with a TAD boundary

(i.e., an intra-TAD loop nested in a TAD with a potential shared anchor). Consistent with these find-

ings, high resolution Hi-C data in mouse CH12 cells reveals the presence of single, multiple, and

more complex nested intra-TAD loops that were predicted in mouse liver (Figure 2—figure supple-

ment 2A–C).

Intra-TAD loop anchors share many properties of TAD anchors
We examined the set of predicted intra-TAD loops and their CAC site anchors to investigate their

impact on genome structure and gene regulation. For these analyses, we excluded from the intra-

TAD anchor group the 1632 intra-TAD anchors that are shared with TAD anchors to ensure that the

groups compared are mutually exclusive (Figure 2—figure supplement 3A). We first sought to

determine if the intra-TAD loop anchors show conserved CTCF binding across multiple ENCODE tis-

sues, as seen for TADs in Figure 1C. Figure 2C shows the tissue distribution of CTCF binding at

CTCF binding sites found at intra-TAD loop anchors in liver, where an x-axis value of 1 indicates the

liver CTCF binding site is occupied by CTCF in only one other tissue, and a value of 15 indicates

binding occurs in all 15 mouse tissues where CTCF ChIP-seq data is available. Results show that a

large majority of intra-TAD loop anchors are bound by CTCF in at least 10 of the 15 mouse tissues

examined. Indeed, CTCF binding at the TAD-internal intra-TAD loop anchors is more deeply
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Figure 2. Predicted intra-TAD loop anchors share many properties of TAD anchors. (A) Diagram illustrating intra-TAD loop prediction based on CTCF

motif orientation and CTCF and cohesin (Rad21) ChIP-seq binding strength data. Iteration was conducted until 20,000 loops were predicted per

sample, prior to filtering and intersection across samples, as detailed in Materials and methods. (B) Shown is a 2 Mb segment of mouse chromosome 2

indicating TAD loops (blue) and intra-TAD loops (pink) in relation to genes. Also shown are cohesin interaction loops identified experimentally in mouse

Figure 2 continued on next page
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conserved across mouse tissues than that at TAD boundaries. In contrast, CTCF sites not associated

with cohesin binding (lone CTCF sites), and to a lesser extent CAC sites not at intra-TAD or TAD

loop anchors (other CAC sites), showed much greater tissue specificity for CTCF binding

(Figure 2C).

The enrichment of knockdown-resistant cohesin binding sites at TAD boundaries, seen in

Figure 1B, may explain the persistence of domain structures following CTCF or cohesin depletion

(Zuin et al., 2014; Seitan et al., 2013). Further, we found that 80% of TAD anchors and 90% of

intra-TAD loop anchors are resistant to the loss of cohesin binding in Rad21+/- mice vs. only 52.8%

for all CAC sites (Figure 2D). Moreover, a large fraction of TAD and intra-TAD loop anchors, 70.6%

and 77.6%, respectively, are comprised of ‘triple sites’, where cohesin and CTCF are co-bound with

Top2b, a potential component of the loop extrusion complex (Uusküla-Reimand et al., 2016), vs.

only 46.6% for the set of all CTCF sites (Figure 2D). Top2b binding appears to be associated with

cohesin binding rather than with CTCF binding, as it is present at enhancer-like CNC sites much

more frequently than at CTCF sites in the absence of cohesin (Figure 2—figure supplement 3B).

TAD and intra-TAD loop anchors show greater sequence conservation within the core 18 bp

CTCF motif than other CTCF sites (Figure 2E). Analysis of sequences surrounding the CTCF core

motif did not provide evidence for loop anchor-specific motif usage or cofactor binding (Figure 2—

figure supplement 3C,D). Downstream from the core CTCF motif (within the loop interior) we

observed a shoulder of high sequence conservation, as well as additional complex motif usage, likely

due to the multivalency of CTCF-DNA interaction, as described in (Nakahashi et al., 2013). TAD

and intra-TAD loop anchors showed broader and more complex CTCF motif usage outside of the

core (Figure 2—figure supplement 3C,D); however, only a small minority of sites contained any

specific motif in this flanking region. It is less clear to what extent this broader motif usage is a gen-

eral property of strongly-bound CTCF regions or of the loop anchors themselves. In fact, we

observed a consistent positioning of the cohesin peak just downstream of the CTCF peak,

Figure 2 continued

ESC by Smc1 ChIA-PET (Dowen et al., 2014). (C) TAD and predicted intra-TAD loop anchors are more tissue ubiquitous than other categories of

CTCF/CAC sites. Each of the four CTCF site subgroups was defined in mouse liver as detailed in Supplementary file 1C. The x-axis indicates the

number of ENCODE tissues out of 15 tissues examined that also have CTCF bound, where a higher value indicates more tissue-ubiquitous CTCF

binding. These data are shown for ‘lone’ CTCF binding sites (10,553), non-anchor cohesin-and-CTCF sites (‘Other CAC’; 26,970), TAD anchors (5,861),

and intra-TAD loop anchors (9,052, which excludes those at a TAD loop anchor). While ‘Other CAC’ sites tend to be weaker (Figure 2F, below), 93%

are bound by CTCF in at least one other mouse tissue, and 66% were verified in at least six other tissues. Similarly, for ‘Lone CTCF’, 81% of sites were

bound by CTCF in at least one other mouse tissue, and 39% were verified in at least six other tissues (not shown). (D) TAD and intra-TAD loop anchors

are more resistant to the knockdown effects of Rad21 ±haploinsufficency than other CAC sites or cohesin-bound regions. A larger fraction is also bound

by the novel extrusion complex factor Top2b (Supplementary file 1C). (E) Loop anchors show greater intra-motif conservation than other CTCF-bound

regions. Shown are the aggregate PhastCons score for oriented core motifs within either TAD (dark blue) or intra-TAD (light blue) anchors as compared

to other CTCF peaks with motifs (yellow). (F) Cohesin interacts with the COOH terminus of CTCF (Xiao et al., 2011), which resulting in a shift of ~20 nt

in cohesin ChIP signal relative to the CTCF summit (c.f. shift to the right of vertical red line) regardless of category of CTCF binding site (anchor/non-

anchor). Blue arrows indicate the CTCF motif orientation and red triangles and vertical lines indicate position of the CTCF signal summit.

DOI: https://doi.org/10.7554/eLife.34077.006

The following figure supplements are available for figure 2:

Figure supplement 1. Comparison of CTCF Features within TADs and Loop Prediction Improvements.

DOI: https://doi.org/10.7554/eLife.34077.007

Figure supplement 2. Example Screenshots of Predicted intra-TAD Loops with Observable Interactions in CH12-LX (Mouse B-Cells).

DOI: https://doi.org/10.7554/eLife.34077.008

Figure supplement 3. Subclasses of CTCF binding events in relation to predicted loops.

DOI: https://doi.org/10.7554/eLife.34077.009

Figure supplement 4. Intra-TAD loop prediction in two other mouse cell types: mESC and NPC.

DOI: https://doi.org/10.7554/eLife.34077.010

Figure supplement 5. Example Screenshots for intra-TAD Loops in mESC and NPC (Mouse).

DOI: https://doi.org/10.7554/eLife.34077.011

Figure supplement 6. Intra-TAD loop predictions in human cell lines GM12878 and K562.

DOI: https://doi.org/10.7554/eLife.34077.012

Figure supplement 7. Example Screenshots for intra-TAD Loops in K562 and GM12878 (Human).

DOI: https://doi.org/10.7554/eLife.34077.013
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independent of whether the CTCF site was predicted to participate in loop formation or not (i.e. at

both loop anchors and ‘Other CAC’ sites; Figure 2F), in accordance with the loop extrusion model

and other observations (Rao et al., 2014; Kagey et al., 2010; Faure et al., 2012; Xiao et al.,

2011).

Intra-TAD loops in other mouse tissues and in human cells
Given the highly tissue-conserved binding of CTCF at sites that we predicted to serve as intra-TAD

loop anchors in liver (Figure 2C), we sought direct experimental evidence for the presence of these

loops in two other mouse cell types, ESCs and NPCs, where domain and loop definitions have been

established based on high-resolution Hi-C datasets (Bonev et al., 2017). Predicted loops were simi-

lar in number and size across cell types, with substantial overlap between intra-TAD loops predicted

in liver compared to loops identified experimentally by Hi-C in mESCs or NPCs (62–63%; Figure 2—

figure supplement 4A). We also observed 57–63% overlap of our predicted intra-TAD loops across

the 3 cell types with CAC-anchored loops identified in mESC using ChIA-PET for the cohesin subunit

Smc1 (Dowen et al., 2014; Handoko et al., 2011; Hnisz et al., 2016) (Figure 2B, Figure 2—figure

supplement 4A).

A majority of the predicted liver intra-TAD loops were also found in newer cohesin HiChIP data-

sets (ChIP for Smc1a followed by Hi-C; data not shown) (Mumbach et al., 2016). The substantial

overlap between intra-TAD loops across mouse cell types is very similar to the overlap between

TADs, indicating a similar level of tissue ubiquity for intra-TAD loops as for TADs (Figure 2—figure

supplement 4B). Further, loops that were predicted in multiple cell types had stronger interactions

than tissue-specific or other loops, as determined by Smc1 ChIA-PET in mESC (Figure 2—figure

supplement 4C). A recent pre-print corroborates this result in human cells, where tissue-shared

CTCF loops were much stronger than tissue-specific CTCF loops (Kai et al., 2017).

Overall, ~75% of intra-TAD loops that we identified in mouse liver are experimentally observed in

at least one other cell type (mESCs, CH12, or mouse NPCs). Further, 48.5% (4,632) of the computa-

tionally predicted liver intra-TAD loops were also present in both mESCs and NPCs

(Supplementary file 1B). By comparison, 26.2% and 21.5% of CTCF loops in HeLa and K562 cells,

respectively, were tissue-specific, suggesting that the ~25% of loops without support in at least one

other tissue likely represent bona fide (albeit weaker) liver-specific intra-TAD loops (Kai et al.,

2017). Examples of both shared and tissue-specific intra-TAD loops with supporting high resolution

Hi-C interactions are shown in Figure 2—figure supplement 5A–C.

We also predicted intra-TAD loops for two human cell lines, GM12878 and K562, and then com-

pared our predictions to loop domains and contact domains identified in these cells (Rao et al.,

2014). We predicted more loops in human cells (~15,000 loops that contain a TSS) than in mouse

(~10,000 loops with a TSS), owing in part to the lack of a TAD overlap filter. We observed substan-

tially more overlap of the predicted set of intra-TAD loops with loop domains (40–54%) or with K562

cell CTCF ChIA-PET interactions (60–65%) than with contact domains (26–35%; Figure 2—figure

supplement 6A). Biologically, this difference makes sense, as ChIA-PET and our intra-TAD predic-

tion method both define a CTCF/CAC mediated interactome. Intra-TAD loops are more commonly

shared between K562 and GM12878 cells (67–73% shared) as compared to loop domains (46–66%)

or contact domains (37–57%) (Figure 2—figure supplement 6B); this can be compared to the much

smaller difference in percentage overlap (only 2–6%) between TADs and intra-TAD loops seen in

mouse cells (Figure 2—figure supplement 4B). As in mouse, intra-TAD loops that were predicted in

both K562 and GM12878 cells interacted more strongly than K562-specific or other loops, as deter-

mined by CTCF ChIA-PET in K562 cells (Figure 2—figure supplement 6C). Further, we found evi-

dence for bona fide tissue-specific and shared intra-TAD loops (Figure 2—figure supplement 7A–

C), as well as an example of a tissue-specific enhancer-promoter interaction in GM12878 cells within

a larger tissue-specific intra-TAD loop (Figure 2—figure supplement 7B).

Intra-TAD loops show strong, directional interactions and insulate chromatin
marks
TADs are proposed to impact gene expression via two types of insulation: by insulation of chromatin

interactions (also called enhancer blocking) and by segregation of chromatin domains, primarily
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insulation of repressive histone mark spread. We investigated whether intra-TAD loops demonstrate

these dual insulating properties, canonically ascribed to TADs.

CTCF sites were divided into three groups, based on whether they were predicted to anchor

TAD loops or intra-TAD loops, or were not predicted to interact (non-anchor CTCF sites) based on

our algorithm. Figure 3A shows the extent to which individual CTCF sites within each group show

directional interactions towards the loop interior based on Hi-C data, as determined using a chi-

squared metric derived from the same directionality index used to predict TADs genome-wide. This

inward bias index quantifies the strength of interaction from a 25 kb bin immediately downstream

from the CTCF motif, with a positive sign indicating a downstream (inward) bias with regard to motif

orientation, that is, towards the center of a TAD/intra-TAD loops in the case of loop anchors. TAD

and intra-TAD anchors both show strong directional interactions compared to non-anchor CTCF

sites, and TAD anchors show stronger interactions than intra-TAD loop anchors. For the non-anchor

CTCF sites, only those sites containing a strong CTCF motif (FIMO score >10) were considered, and

the predicted directionality was oriented relative to this motif (as there is no left versus right anchor

distinction).

To test specific examples of insulation, we used available high resolution Hi-C for mESC to per-

form virtual 4C analysis (Bonev et al., 2017) at select loop anchors (Figure 3B, Figure 3—figure

supplement 1). This allowed us to visualize the distribution of interactions originating from an intra-

TAD loop anchor, and compare them to those originating from an adjacent upstream region (out-

side of the loop). For virtual 4C viewpoints placed downstream of a left intra-TAD loop anchor (i.e.,

within an intra-TAD loop; IN), interaction reads were shifted in favor of the downstream direction,

which comprised 58.8–79.9% of the Hi-C read pairs. This is comparable to the skew observed for

4C-seq experiments performed at TAD anchors (Guo et al., 2015; Gómez-Marı́n et al., 2015) (Fig-

ure 3—figure supplement 1A,B). In contrast, interactions were generally skewed in the upstream

direction for viewpoints placed upstream of the same set of intra-TAD loop anchors (Figure 3—fig-

ure supplement 1, OUT). These shifts in the distribution of interactions further support the insulat-

ing nature of these intra-TAD anchors, and were seen both for intra-TADs that are tissue-specific

(Albumin, Sox2) and for those that are common (Hnf4a, Scd1) across the three tissues we examined

(liver, NPC and mESC cells).

To visualize features of these anchors, aggregate liver Hi-C profiles spanning 1 Mb around each

anchor were generated for each group of CTCF sites (Figure 3C). Each group was further subdi-

vided into a left (upstream) and a right (downstream) anchor based on its CTCF motif orientation. All

non-anchor CTCF sites used for comparison in Figure 3A and C were required to contain a CTCF

motif to assign directionality, and CTCF peaks were required to be present in a minimum of 2 indi-

vidual biological replicates. By aggregating many sites, we can visualize the overall interaction prop-

erties of each group of sites at high resolution (5 kb bins), revealing features that are much harder to

discern at an individual CTCF site (Figure 3C). TAD and intra-TAD loop anchors both show strong

enrichment of interactions towards the loop interior when compared to CTCF sites that were not

predicted to participate in loop formation (non-anchor CTCF sites). Furthermore, intra-TAD anchors

show less enrichment of long-range contacts compared to TAD anchors, likely because of their

shorter length compared to TADs. This may also explain the lower inward bias scores of intra-TAD

loops seen in Figure 3A. Depletion of interactions that span across loop anchors (dark blue density

above anchor points in Figure 3C) was seen for both TAD and intra-TAD anchors, however, this local

insulation was substantially greater for TAD anchors. This may be due to the compounding impact

of adjacent TAD loops, that is, the end of one TAD is often close to the beginning of an adjacent

TAD loop anchor (median distance between TAD anchors = 33.5 kb, Figure 3—figure supplement

2A). GO term analysis of genes whose TSS fall within these inter-TAD regions revealed enrichment

for housekeeping genes (ribosomal, nucleosome, and mitosis-related gene ontologies), whereas

neighboring genes found just within the adjacent TADs were enriched for distinct sets of GO terms

(Figure 3—figure supplement 2B; Supplementary file 3B, Figure 2—figure supplement 3C). The

nearby but oppositely oriented TAD anchors flanking the inter-TAD regions likely contribute to the

more bidirectional interaction pattern for TADs seen in Figure 3C. For instance, the left TAD anchor

plot in Figure 3C shows a well-defined pattern of interaction enrichment downstream from the

anchor, but also a more diffuse enrichment upstream contributed by upstream loop anchors located

at various distances. In contrast, non-anchor CTCF sites do not show strong directional interactions

and only very weak distal contact depletion. CNC-bound regions are predominantly found at
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Figure 3. Intra-TAD loops show directional interactions and insulate chromatin marks. (A) TADs and intra-TAD loops both show a stronger orientation

of interactions downstream of the motif than other CTCF-bound regions. TAD anchors also show higher inward bias than intra-TAD loops (p<0.0001, KS

t-test for pairwise comparisons). Inward bias is a chi-square-based metric similar to directionality index but defined on a per peak basis and oriented

relative to the motif within the anchor/non-anchor peak. For this and all other anchor comparisons, anchors that are shared between TADs and intra-

Figure 3 continued on next page
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enhancers (Faure et al., 2012) and do not show any discernable patterns of insulation or focal and

directional interactions (Figure 3C, bottom). Thus, the weak contact depletion spanning each of the

CTCF-containing groups shown in Figure 3C is likely real, and not an artifact of the background

model or other noise.

To determine if intra-TAD loops share with TADs the ability to block histone mark spread and

establish broad, insulated chromatin domains of activity and repression, we analyzed the distribution

of two repressive marks in relation to CTCF binding sites: H3K27me3 and H3K9me3. An insulation

score based on Jansen Shannon Divergence (JSD) (Fuglede and Topsoe, 2004) was calculated for

ChIP signal distribution within a 20 kb window around each CTCF peak. A low JSD value indicates

less divergence from a string representing perfect insulation (i.e., high signal on one side of peak,

and low or no signal on the other). This scoring allows for a direct comparison of different classes of

CTCF sites, or other TF-bound sites, in terms of their insulation properties. In addition to TAD and

intra-TAD loop anchors, we examined three other sets of sites as controls: other CAC sites, sites

bound by CTCF alone, and CNC sites. Figure 3D shows the cumulative distribution of JSD scores

for each set of sites, where a leftward shift indicates greater insulation across the site for the chroma-

tin mark examined. For H3K27me3 signal distribution, TAD and intra-TAD loop anchors showed the

greatest insulation, but were not significantly different from each other (Kolmogorov-Smirnov (KS)

test; p=0.52). The same general trend was observed for H3K9me3 signal insulation; however, intra-

TAD loop anchors actually showed greater insulation than TAD anchors and all other groups (KS

test; p<0.001). CNC sites consistently showed the least insulation of both repressive histone marks,

as expected. Sites where CTCF is bound alone showed a small but significant increase in insulation

compared to CNC sites, as did the CAC group. As a control, the distribution of IgG signal (input sig-

nal) showed much less insulation overall and no significant differences between the various classes of

CTCF/cohesin binding sites (Figure 3—figure supplement 2C).

Figure 3 continued

TAD loops were excluded from the intra-TAD group to ensure a fair comparison. Anchors shared between TADs and intra-TAD loops were considered

as TAD anchors only. (B) Virtual 4C analysis in mESC for a genomic region nearby Ccl22 on mouse chromosome 8. The data shows a shift in Hi-C read

distribution around intra-TAD loop anchors, indicating insulation. mESC Hi-C data from (Bonev et al., 2017) was plotted across a 500 kb window

surrounding the virtual 4C viewpoint, which is marked by a verticle red line. Viewpoints were selected to be at the start of an intra-TAD loop (‘IN’) as

well as an adjacent upstream control region that does not overlap an intra-TAD loop anchor. The percentages shown indicate the distribution of

interaction reads upstream and downstream of the viewpoint, over the 500 kb region, as shown. Orange shading indicates the width of the intra-TAD

loop region interrogated. Chromosomal coordinates are for mouse genome mm10. (C) Shown are aggregate plots generated from mouse liver Hi-C

data (Vietri Rudan et al., 2015) for each set of TAD and intra-TAD loop anchors, for the set of non-anchor CTCF sites listed in Supplementary file 1C,

and for the set of CNC sites (Supplementary file 1D), which serves as a control. In aggregate, TAD and intra-TAD loop anchors show stronger and

more directionally-biased interactions (contact enrichment, red) than the non-anchor CTCF bound genomic regions. They also show a greater depletion

of distal chromatin interactions (contact depletion, blue). TAD anchors also show greater distal contact enrichment with the anchor and more local

contact depletion spanning the anchor than intra-TAD loops. Red triangles indicate locations of left and right loop anchors and blue arrows indicate

CTCF motif orientation. Shading indicates an enrichment (red) or depletion (blue) of contact frequency relative to a genome-wide background model.

(D) Shown are JSD values for four classes of mutually exclusive CTCF binding sites (TAD anchors, intra-TAD loop anchors, other CAC sites, and CTCF

sites lacking cohesin) as well as CNC sites, which are primarily found at enhancers. TAD and intra-TAD loop anchors show greater insulation of the

repressive histone marks as measured by Jensen Shannon divergence between H3K27me3 and H3K9me3 ChIP-seq signal upstream and downstream of

the anchor region. (E) Shown are the top 500 active insulated intra-TAD loops, based on high H3K27me3 ChIP-seq signal outside the intra-TAD loop

(red), and low H3K27me3 signal within the intra-TAD loop (blue). Data are expressed as a Z-score of the H3K27me3 signal per bin relative to all

H3K27me3 signals within a 20 kb widow centered on all CTCF-bound regions. (F) Shown are the top 500 inactive insulated intra-TAD loops, based on

high signal H3K27me3 signal inside the intra-TAD loops (red) and low H3K27me3 signal in neighboring regions (blue). Signal is shown as a Z-score of

H3K27me3 signal, as in E. At right is shown the IgG signal distribution as a negative control for the upstream anchors of inactive intra-TAD loops (see

Figure 3—figure supplement 2D for all IgG signal panels).

DOI: https://doi.org/10.7554/eLife.34077.014

The following figure supplements are available for figure 3:

Figure supplement 1. Direct evidence of insulation from the asymmetric read distributions for virtual 4C viewpoints anchored at intra-TAD loop

anchors or adjacent upstream regions.

DOI: https://doi.org/10.7554/eLife.34077.015

Figure supplement 2. Additional features of intra-TADs and their insulation.

DOI: https://doi.org/10.7554/eLife.34077.016
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Figure 3E and F show heat map representations of H3K27me3 ChIP-seq signal around the top

500 active and top 500 inactive intra-TAD loops, based on a ranked list of JSD insulation scores.

These represent intra-TAD loops that have significantly lower (or higher) H3K27me3 signal in the

loop interior based on the combined rank of JSD insulation scores for each anchor, respectively

(p<0.05, two-sided t-test). For example, Figure 3F shows intra-TAD loops with lower H3K27me3 sig-

nal within the loop than in neighboring regions (and thus the left anchor transitions from high to low

signal, while the right anchor transitions from low to high signal). No such pattern was seen for the

IgG (control) ChIP-seq signals for these same regions, indicating this is not an artifact of the

sequence read mappability of these regions (Figure 3F., Figure 3—figure supplement 2D).

Impact of intra-TAD loops on cis regulatory elements in mouse liver
Classifying open chromatin regions and defining super-enhancers in mouse
liver
Many TADs, and also intra-TAD loops, are structurally conserved across tissues, yet the activity of

enhancers and promoters contained within these looped structures is highly tissue-specific

(Dowen et al., 2014; Heidari et al., 2014). Accordingly, it is important to understand the ability of

TADs and intra-TAD loops to insulate active enhancer interactions, that is enhancer-blocking activity.

To address this issue, we examined the distribution of CTCF and cohesin binding sites in relationship

to promoters and enhancers across the genome, as well as the impact of TADs and intra-TAD loops

on their associated genes and enhancers.

We previously identified ~70,000 mouse liver DNase hypersensitive sites (DHS), whose chromatin

accessibility is in part determined by TF binding and their flanking histone marks (Sugathan and

Waxman, 2013; Ling et al., 2010). To assign a function for each DHS, we classified each DHS

according to the ratio of two chromatin marks, H3K4me1 and H3K4me3, which are respectively asso-

ciated with enhancers and promoters (Wang et al., 2008). The ~70,000 DHS were grouped into five

classes: promoter, weak promoter, enhancer, weak enhancer and insulator (Figure 4A, Figure 4—

figure supplement 1A; see Materials and methods). Promoter-DHS were defined as DHS with a

H3K4me3/H3K4me1 ratio �1.5, and enhancer-DHS by a H3K4me3/H3K4me1 ratio �0.67 (as first

described in [Hay et al., 2016]). DHS with similar signals for each mark (H3K4me3/H3K4me1 ratio

between 0.67 and 1.5) were designated weak promoter-DHS, based on their proximity to TSS and

comparatively lower expression of neighboring genes (Figure 4—figure supplement 1B,C). DHS

with low signal for both marks were classified as weak enhancers, or as insulators, in those cases

where they overlapped a CTCF peak with a comparatively strong ChIP-seq signal (Figure 4—figure

supplement 1A). Using this simplified five DHS class model, we observed that enhancer-DHS bind

cohesin largely in the absence of CTCF, while promoter-DHS are bound by both CTCF and cohesin

(Figure 4B). Additionally, H3K27ac is enriched at promoter-DHS and enhancer-DHS but not at weak

enhancer-DHS, which are less open (lower DNase-seq signal) (Figure 4B) and more distal (Figure 4—

figure supplement 1B). In contrast to enhancer-DHS, insulator-DHS have a well-defined bimodal dis-

tribution of tissue-specific vs. tissue-ubiquitous sites based on comparisons across 20 ENCODE tis-

sues (Figure 4—figure supplement 1D). This supports the proposal that insulators are a unique

class of intergenic regions, and not simply enhancers bound by CTCF.

A subset of intra-TAD CAC loops are well characterized as insulators of tissue-specific genes with

highly active enhancer clusters, termed super-enhancers (Dowen et al., 2014; Whyte et al., 2013).

To determine if some intra-TAD loops correspond to these ‘super-enhancer domains’, we first identi-

fied super-enhancers in mouse liver. We used 19 publicly available mouse liver H3K27ac ChIP-seq

datasets to score clusters of individual enhancer-DHS + weak enhancer-DHS identified above

(Figure 4C). Super-enhancers were identified separately in male and female liver, as well as in male

liver at various circadian time points, to take into account these three key sources of natural variation

in gene expression in mouse liver (Sugathan and Waxman, 2013; Fang et al., 2014). In total, we

identified 503 core super-enhancers, that is, super-enhancers that show strong signal regardless of

sex or time of day (Figure 4—figure supplement 2A). Core super-enhancers represent 14.1% of all

enhancer regions in the genome (6680 of 47,372 constituent enhancers + weak enhancers), and

2.8% of all enhancer clusters, defined as groups of enhancers within 12.5 kb of one another (503 of

all 17,964 enhancer clusters).
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Figure 4. Categorization of DHS-based regulatory elements in mouse liver. (A) Classification of set of ~70,000 open chromatin regions (DHS)

identified in adult male mouse liver, based on relative intensities for a combination of H3K4me1 and H3K4me3 marks, and CTCF ChIP-seq data. Based

on the combinatorial signal from these three datasets, five groups of DHS were identified: promoter-DHS, weak promoter-DHS, enhancer-DHS, weak

enhancer-DHS, and insulator-DHS, as described in Materials and methods and in Figure 4—figure supplement 1A. (B) Shown is a heatmap

Figure 4 continued on next page

Matthews and Waxman. eLife 2018;7:e34077. DOI: https://doi.org/10.7554/eLife.34077 15 of 40

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.34077


Both protein coding and lncRNA genes that neighbor super-enhancers are more highly expressed

and tissue-specific when compared to all genes, or to all genes neighboring typical enhancers (KS

test p-value<0.0001; Figure 4D). Consistent with this tissue specificity, only 6.8% of genes proximal

to liver super-enhancers are targets of super-enhancers in mESCs or pro-B cells (Figure 4E), whereas

55.2% of genes proximal to liver typical enhancers are proximal to typical enhancers in the other two

cell types. Super-enhancers showed much greater accumulation of RNA polymerase 2, despite the

lack of the promoter mark H3K4me3 (Figure 4F) and are transcribed to yield eRNAs (Figure 4—fig-

ure supplement 2B). GO terms associated with genes targeted by either typical enhancers or super-

enhancers are enriched for liver functions (such as oxidoreductase activity), however, super-enhancer

target genes also show enrichment for transcription regulator activity and steroid hormone receptor

activity (Figure 4G). These data support the model that super-enhancers drive high expression of

select liver-specific genes, including transcriptional regulator genes (Supplementary file 2C,D).

Strikingly, 72.2% of core super-enhancers (363/503) overlap either an intra-TAD loop or a TAD

that contains only a single active gene (defined as a gene expressed at FPKM �1 and with a pro-

moter-DHS within 5 kb of the TSS; Supplementary file 1B and Supplementary file 2B) (see, e.g.,

Figure 5C and D, below). By comparison, only 43.6% (17,742/40,692) of typical enhancers are insu-

lated in a similar manner (data not shown). We also observed an enrichment of single-TSS intra-TAD

loops (n = 3,142) over a random shuffled set (Figure 4—figure supplement 2C), which could repre-

sent tissue-specific genes that are regulated by super enhancers in liver or in other tissues. Genes

within these single-TSS intra-TAD loops (Supplementary file 1B) were enriched for ontologies

related to transcriptional regulation and phosphorylation (Figure 4—figure supplement 2D,

Supplementary file 3E). This is consistent with a model of intra-TAD loops as functionally inducible

units of gene expression, allowing selective transcription in a given tissue or in response to cell sig-

naling events.

To determine the impact of intra-TAD loops on the expression of genes with neighboring super-

enhancers, we considered two possible gene targets for each super-enhancer, with the requirement

that the TSS of each gene target be within 25 kb of one of the individual enhancers that constitute

the overall super-enhancer: one gene target is located within the intra-TAD loop, and the other

Figure 4 continued

representation of the simplified five-class DHS model shown in panel A, which captures features such as CNC enrichment at enhancers and K27ac

enrichment at enhancers and promoters, with additional features described in Figure 4—figure supplement 1A. Color bar at the left matches colors

used in panel A. (C) Scheme for using 19 published mouse liver H3K27ac ChIP-seq datasets to identify a core set of 503 liver super-enhancers using the

ROSE software package (Supplementary file 2B). These 503 super-enhancers were identified in all 19 samples, indicating they are active in both male

and female liver, and across multiple circadian time points. Enh, enhancer, WE, weak enhancer. (D) Genes associated with super-enhancers (SE) are

more highly expressed (log2(FPKM +1) values) than genes associated with typical enhancers (TE), for both protein coding genes and liver-expressed

multi-exonic lncRNA genes. The super-enhancer-adjacent genes are also more tissue specific (higher Tau score) than typical enhancer-adjacent genes.

****, KS t-test, p<0.0001 for pairwise comparisons of SE-adjacent genes vs. TE-adjacent genes. (E) Venn diagrams show substantial overlap between

typical enhancer gene targets across tissues (liver, ESCs, ProB cells), but limited overlap between super-enhancer adjacent genes (within 10 kb of the

super-enhancer) for the same tissues. The numbers represent the percent of genes targeted in a given tissue by the indicated class of enhancer (typical

enhancers or super-enhancers) that are not targets of the corresponding class of enhancers in the other two tissues. For example, 93.2% of genes

targeted by liver super-enhancers are not targeted by the set of super-enhancers identified in either Pro-B or mouse ESCs. Gene targets of each

enhancer class were identified by GREAT using default parameters, then filtered to keep only those �10 kb from the enhancer. (F) ChIP and DNase-seq

signal at typical enhancers and super-enhancers, scaled to their median length (1 kb and 44 kb respectively; indicated by distance between hash marks

along the x-axis) flanked by 10 kb up- and down-stream. Super-enhancers show much greater accumulation of RNA polymerase 2, despite little or no

apparent enrichment for the promoter mark H3K4me3. (G) Super-enhancers (SE) target distinct categories of genes than typical enhancers (TE) in

mouse liver. Thus, while GO terms such as oxidoreductase activity are enriched in the set of gene targets for both classes of enhancers, only super-

enhancers are enriched for transcription-regulated terms (e.g., Regulation of transcription, Steroid hormone receptor activity) (Supplementary file 2C,

D). Numbers represent the overlap of GO terms (either Molecular Function or Biological Process) in any DAVID annotation cluster (with an enrichment

score >1.3) enriched for genes regulated by either typical enhancers or super-enhancers.

DOI: https://doi.org/10.7554/eLife.34077.017

The following figure supplements are available for figure 4:

Figure supplement 1. Characteristics of five classes of DHS in mouse liver.

DOI: https://doi.org/10.7554/eLife.34077.018

Figure supplement 2. Features of super-enhancers and single-TSS intra-TAD loops.

DOI: https://doi.org/10.7554/eLife.34077.019
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Figure 5. Impact of intra-TAD loops on gene expression. (A) Two possible gene targets were assigned for each super-enhancer within an intra-TAD

loop, one target gene for which the TSS is within the intra-TAD loop and another target gene for which the TSS is outside of the intra-TAD loop but is

within 25 kb of the intra-TAD loop anchor. Box plots show that gene targets within an intra-TAD loop are significantly more highly expressed than the

alternative, linearly more proximal, gene target. (B) Shown is the standard deviation in Tau values (tissue-specificity index) of genes whose TSS’s are

Figure 5 continued on next page
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gene target crosses an intra-TAD loop anchor (Figure 5A, scheme at top; genes inside (red) and

genes outside (black) of the intra-TAD loop). We hypothesized that the true gene target of the

super-enhancer will be more highly expressed. Indeed, we found that genes neighboring super-

enhancers and found within the same intra-TAD loop are significantly more highly expressed than

the alternative potential gene targets, located outside of the intra-TAD loop (Figure 5A). Similarly,

when comparing the tissue specificity of genes within TADs and intra-TAD loops to a random shuf-

fled set of regions, we observed less variance in the Tau value (index of tissue specificity) for genes

within TAD or intra-TAD loops compared to the shuffled set (Figure 5B; KS test p-value<0.0001).

Thus, groups of genes within intra-TAD loops are more uniformly tissue specific (as in the case of

some super-enhancer-adjacent genes) or tissue ubiquitous (as in the case of groups of housekeeping

genes). Examples are shown in Figure 5C and D, which illustrate the impact of a TAD loop on the

expression of Cebpb and the impact of an intra-TAD loop on the expression of Hnf4a. The TSS of

two other nearby genes, Ptpn1 and Ttpa1, are closer in linear distance to the adjacent super-

enhancer than Cebpb and Hnf4a, respectively, however, any super-enhancer-promoter interactions

involving Ptpn1 and Ttpa1 would need to cross a TAD or intra-TAD loop boundary. In both cases,

the genes within the super-enhancer-containing TAD or intra-TAD loop are expressed at least 10-

fold higher than genes outside the loop. Therefore, based on the 3D-structure imposed by these

TADs and intra-TAD loops, one predicts that the super-enhancers are restricted from interacting

with Ptpn1 or Ttpa1, in agreement with the comparatively low expression levels of those genes.

Given the ability of intra-TAD loops to insulate repressive histone marks (Figure 3D–3F), we con-

sidered whether intra-TAD loops enable high expression of genes within otherwise repressed geno-

mic compartments. As seen in Figure 1H, a minority of genes within inactive TADs are expressed

(939 genes expressed at FPKM >1). The obesity-related gene stearoyl-CoA desaturase-1 (Scd1) is

one such gene. Figure 5E shows a transitional TAD boundary, with genes in the upstream TAD

expressed and associated with low levels of H3K27me3 repressive histone marks. Six genes are in

the downstream TAD, but only one of these genes, Scd1, is expressed (Figure 5E, bottom). The

high expression of Scd1 (FPKM >100) can be explained by its localization in an active intra-TAD loop

that is insulated from the repressive mark H3K27me3 compared to the rest of the TAD. This same

structural organization was seen for 291 of the 939 expressed genes found in inactive TADs

(Figure 1H, above), which are contained within intra-TAD loops. It is unclear what other mechanisms

allow for selective expression of the other 648 genes (Supplementary file 1E).

4C-seq analysis of super-enhancer contacts at Alb promoter
To test directly for the insulation of an intra-TAD loop containing a super-enhancer, we performed

4C-seq analysis for the promoter of albumin (Alb), the most highly expressed gene in adult mouse

liver. 4C-seq is designed to identify all chromatin contacts originating from a single genomic region

(the promoter of Alb in this case), known as the 4C viewpoint. Using 4C-seq, we captured many

highly specific, reproducible interactions with the Alb promoter, a majority of which are localized

across an upstream ~50 kb region (Figure 6A, Figure 6—figure supplement 1A,B). 40% of the

interactions are localized within DHS that are constituent enhancers of the Alb region super-

enhancer. Furthermore, >80% of chromatin contacts are within the Alb super-enhancer, and >98%

Figure 5 continued

within TADs or intra-TAD loops that contain at least three TSS. Genes within intra-TAD loops tend to be more uniformly tissue-specific or tissue-

ubiquitous when compared to all genes within TADs, or when compared to a shuffled set of random regions matched in size to intra-TADs. Thus, sets

of three or more genes within intra-TAD loops are consistently either more or less tissue specific than random clusters of genes within the same sized

genomic spans. (C–D) TAD and intra-TAD loops insulate a subset of super-enhancers (black horizontal bars) with key liver genes, allowing high

expression of genes such as the TFs Cebpb and Hnf4a, relative to their immediate neighbors. Cebpb is an example at the TAD scale, while Hnf4a

shows an intra-TAD loop. In both cases, the most linearly proximal gene is outside the TAD or intra-TAD loop and is expressed at a lower level than the

loop-internal genes (and presumptive gene target). (E) Shown is a UCSC genome browser screenshot of a transition from an active to a repressed TAD,

with the expression of genes within the region shown in a bar graph, below. Insulated intra-TAD loops allow for expression of select gene targets within

otherwise repressed genomic compartments. The obesity-related gene Scd1 is insulated in an intra-TAD loop and is the only liver expressed gene in its

TAD (FPKM >100). H3K27me3 marks are shown both as reads per million signal track (below) and as signal over an IgG input control (above), expressed

as log2[(H3K27me3 signal) / (Input signal)].

DOI: https://doi.org/10.7554/eLife.34077.020
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Figure 6. Alb 4C-seq exemplifies intra-TAD insulation and super-enhancer interaction. (A) The Alb promoter makes multiple directional contacts with

the adjacent super-enhancer region in both male and female mouse liver, as determined by 4C-seq with a viewpoint at the Alb promoter. All

reproducible interactions occur within the TAD loop containing the Alb TSS and its super-enhancer (red bar beneath H3K27ac track), and all but two

contacts in male liver occur within the predicted intra-TAD loops (pink). 4C-seq interaction scores are shown as –log10(pval) values across replicates, as

Figure 6 continued on next page
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are contained within the Alb intra-TAD loop, in both male and female liver. These interactions

become more diffuse with increasing genomic distance from the viewpoint, which may represent

dynamic interactions, or alternatively, may reflect averaging across a heterogeneous cell population.

Comparing the combined interaction profiles between male and female livers, we observed highly

reproducible results, with 92.9% of male interactions also present in female liver (Figure 6—figure

supplement 1C).

Looking beyond local interactions, we observed 4C interaction frequencies that span several

orders of magnitude, going from local (intra-TAD) to cis (intra-chromosomal) and trans (genome-

wide) interactions. Thus, for the Alb promoter, the 4C signal per TAD was >1000 RPKM for local

interactions, >100 RPKM for cis interactions within 3 TADs adjacent to the viewpoint, and ~10 RPKM

beyond that (Figure 6B). Trans interactions were almost exclusively <10 RPKM (Figure 6B). Using a

separate background model for far-cis and trans 4C signals, we categorized TADs as either high,

medium, low, or non-interacting (see Materials and methods). As Alb is the most highly expressed

gene in liver and is proximal to a strong super-enhancer, we expected that distal interacting regions

would also be active genomic regions, as proposed in the transcription factory model of nuclear

compartmentalization (Iborra et al., 1996). Indeed, we found that >80% of the distal high interact-

ing TADs (both far-cis and trans) were active TADs, and >90% were either active or weakly active

TADs. In contrast, only 16.6% of the non-interacting TADs in cis and 25.9% of those in trans were

active TADs (Figure 6B,D). Furthermore, genes in the interacting regions are more highly expressed

than genes in Alb 4C non-interacting regions, and the vast majority are found in active TADs

(Figure 1F), as determined by analysis of the Hi-C data alone (Figure 6—figure supplement 1D,E).

Discussion
We present, and then validate in multiple mouse and human cell models, a computational method

that uses 2D (ChIP-seq) and 1D (DNA sequence) information to predict 3D-looped intra-TAD struc-

tures anchored by cohesin and CTCF (CAC sites), and we provide evidence that the intra-TAD loops

predicted underpin a general mechanism to constrain the interactions between distal enhancers and

specific gene targets. While select instances of CAC-mediated loop insulation within TADs have

been described (Dowen et al., 2014; Willi et al., 2017; Hanssen et al., 2017), our work establishes

that this phenomenon is a more general feature of genomic organization and regulation than previ-

ously appreciated. The intra-TADs described here are nested, CAC-anchored loops whose formation

may be a result of extrusion complex pausing within larger domains (i.e., TADs); these loops act to

constrain the promoter contacts available to a given distal enhancer, and correspondingly, the distal

enhancer contacts available to a given promoter (Hnisz et al., 2016). We also provide evidence that

the loop-forming CTCF sites, but not other CTCF sites, are highly insular. This insulation is apparent

from the blockage of repressive histone mark spread and by the inhibition of chromatin contacts

across intra-TAD loop and TAD boundaries. The impact of this insulation is highlighted for super-

enhancer regions, such as the super-enhancer upstream of Alb, where local insulation by CAC-

Figure 6 continued

calculated by R3C-seq (see Materials and methods). Also see Figure 6—figure supplement 1. (B) The 4C-seq interaction signal within the Alb TAD is

orders of magnitude above the background signal and generally decays with distance. Far-cis and trans interactions are represented on a per TAD

basis, expressed as RPKM per TAD, to control for sequencing depth and TAD length. The overall background within mouse chromosome five is

significantly higher than all trans chromosomes; immediately adjacent TADs also show higher 4C-seq signal than the overall cis background. The 4C-

seq signal decayed to background levels within ~3 TADs of the Alb viewpoint TAD. Each data point represents a single TAD and each color represents

a 4C-seq replicate. (C) Background model used for distal cis interactions, showing a rapid decay in per TAD signal intensity. Each data point represents

a single TAD along chromosome 5. (D) Distal cis and trans TADs that highly interact with the Alb promoter tend to be active TADs, while a majority of

the TADs that interact less than the background model are predicted to be inactive. A simple inverse logarithmic decay of signal per TAD was used to

determine the background signal along the cis chromosome, while the 4Cker package was used to determine high, medium, low, and non-interacting

TADs in trans based on a hidden markov model with adaptive windows better suited for low signal regions.

DOI: https://doi.org/10.7554/eLife.34077.021

The following figure supplement is available for figure 6:

Figure supplement 1. Alb 4C-seq replicates and cis/trans 4C-seq signal distribution.

DOI: https://doi.org/10.7554/eLife.34077.022
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anchored intra-TAD loops both enables and constrains strong near-cis interactions, which facilitate

the high expression of Alb and presumably also other liver-expressed genes regulated by super-

enhancers. Weaker trans interactions with distal active regions were also observed, and are likely

driven by a distinct mechanism, such as aggregation of transcription factories or super-enhancers

(Rao et al., 2017; Osborne et al., 2004).

Genomic interactions occur at three levels: (1) compartmentalization, where inactive regions local-

ize to the nuclear periphery and active chromatin compartments aggregate toward the center of the

nucleus in cis or trans in a largely cohesin-independent manner, as proposed in the transcription fac-

tory model (Rao et al., 2014; Seitan et al., 2013; Osborne et al., 2004; Lieberman-Aiden et al.,

2009); (2) CAC-dependent looping, which generates many tissue-invariant scaffolds along the linear

chromosome (Dixon et al., 2012; Sanborn et al., 2015; Hnisz et al., 2016); and (3) enhancer-pro-

moter looping within CAC-loops, which may be directed by cohesin non-CTCF (CNC) sites, media-

tor, or tissue-specific TFs (Dowen et al., 2014; Kagey et al., 2010; Faure et al., 2012). If TADs

define the broad domain within which a cohesin-driven extrusion complex generally operates, then

we have presented a simple method to identify loops within this region that form as a result of

dynamic loop extrusion movement and pausing at additional loop anchors. We have used the term

intra-TAD loops, also referred to as sub-TADs, to highlight their subdivision of TAD-internal genomic

space, although they are functionally similar to loop domains, isolated cliques, and insulated neigh-

borhoods, which tend to overlap or be contained within TADs (Sanborn et al., 2015; Rao et al.,

2014; Hnisz et al., 2016). Our computational method cannot predict CTCF-independent loops,

such as those mediated cohesin alone (enhancer-promoter loops), although such loops are likely

constrained by CAC driven intra-TADs, as was highlighted by our Albumin 4C-seq results.

The method for CAC-mediated intra-TAD loop identification described here builds on the strong

preference for inward-facing CTCF motifs evident from high resolution Hi-C data (Sanborn et al.,

2015; Rao et al., 2014), and will be most useful for the identification of intra-TAD CAC loops for

the large number of cell lines and tissues that lack high resolution Hi-C data. In these cases, intra-

TAD loop domains cannot be identified because there is not sufficient local enrichment to calculate

a corner score with the arrowhead algorithm (Rao et al., 2014). Further, while we used TAD bound-

aries from standard resolution liver Hi-C data to filter out longer CAC loops, the frequent conserva-

tion of TADs across both tissues and species (Dixon et al., 2012; Vietri Rudan et al., 2015)

broadens the applicability of our method to cell types, and perhaps to new species, for which Hi-C

data is not available and TAD boundaries have not been determined. Thus, even in the absence of

TAD coordinates, our method identifies TAD and intra-TAD looping events, which may provide an

invaluable first approximation for understudied organisms. As we have tuned our parameters to

identify loop structures comparable in size and number to those found previously in mouse and

human models, the parameters used to filter an initial set of loop anchors may need to be adjusted

for other model organisms.

We have used both CTCF and cohesin peak strength as the primary predictor of intra-TAD loop

strength, which is a reasonably good predictor of interactions (Sanborn et al., 2015; Oti et al.,

2016). An alternative machine learning approach to predicting CTCF/cohesin-mediated interactions,

posted as an on-line preprint during review of our manuscript (Kai et al., 2017), uses data from up

to 77 genomic-derived features to predict CTCF-mediated loops in three human cell lines. A key

finding from this work was that cohesin strength was consistently the most predictive feature of

CTCF loops, followed by CTCF binding strength (Kai et al., 2017). This method also captures loops

that lack convergent CTCF motif orientation, which represent as few as 8% of the total for loop

domains (Rao et al., 2014), or as many as 20% in the case of Insulated Neighborhoods (Ji et al.,

2016). However, the identification of this subset of loops comes at the expense of requiring a mini-

mum of 16 features for a given cell type, whereas our approach only requires three features (CTCF

motif, CTCF ChIP-seq, and cohesin ChIP-seq data). Importantly, the three features used by our

method represent 3 of the top four predictive features identified in (Kai et al., 2017).

The computational method presented here, which was validated in both mouse and human cell

models, provides a practical alternative to using high resolution Hi-C libraries for the identification of

intra-TAD loops. High resolution Hi-C requires extremely deep sequencing, which is costly, both in

terms of computational and experimental laboratory resources, and has only been achieved for a

small number of cell lines (Rao et al., 2014; Jin et al., 2013; Bonev et al., 2017). Strategies to

reduce the need for extreme deep sequencing to identify interactions at high resolution have been
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proposed (Weinreb and Raphael, 2016; Martin et al., 2015; Zhang et al., 2017), and are begin-

ning to make higher resolutions possible in more systems, however, the sequencing depth and cost

will likely remain out of reach for many labs. Antibody enrichment for select genomic regions fol-

lowed by chromosome conformation capture, as implemented in ChIA-PET, is an experimental alter-

native to intra-TAD prediction. ChIA-PET and other 3C-based antibody enrichment methods select

for genomic regions that are highly bound by the protein(s) of interest (e.g., CTCF and cohesin), and

can therefore identify ‘many to many’ interactions, instead of the ‘all to all’ interactions identified by

Hi-C; these methods are therefore more practical than Hi-C, in terms of their sequencing depth

requirements (Fullwood et al., 2009). However, ChIA-PET still requires ~10 fold more extensive

deep sequencing per sample (~400 million reads) than is needed to obtain the CTCF and cohesin

ChIP-seq data utilized in our computational analysis to identify intra-TAD loops. Further, as ChIA-

PET uses antibody to select for genomic regions bound by CTCF and/or cohesin, it is difficult to dif-

ferentiate strength of antibody binding to the anchor proteins from strength of chromatin interaction

between the anchors. Of the various CTCF loops described in the literature, insulated neighbor-

hoods are most similar to the intra-TAD loops described here. Insulated neighborhoods are pro-

posed to rectify the observation of smaller and more abundant loops, evident in ChIA-PET datasets,

with the established TAD model of large loops from Hi-C experiments (Dowen et al., 2014;

Rao et al., 2014; Tang et al., 2015).

The TAD and intra-TAD loop anchors identified here together comprise 27% of all liver CTCF

binding sites, consistent with the 30% of murine ESC CTCF peaks that overlap insulated neighbor-

hood anchor regions (Hnisz et al., 2016). The precise mechanism that differentiates these CTCF

sites, which anchor intra-TAD and TAD loops, from the larger number of non-anchor CTCF binding

sites present in any given tissue is unknown. Further, it is unclear what role the typically weaker

remaining ~70% of CTCF sites play in organizing the nucleus. Some of these non-(intra-)TAD anchor

CTCF sites may serve other, unrelated functions, given the ability of CTCF to interact with other TFs,

bind RNA, and regulate splicing mechanics (Lutz et al., 2000; Ross-Innes et al., 2011; Sun et al.,

2013; Saldaña-Meyer et al., 2014; Shukla et al., 2011). Alternatively, some of these CTCF sites

may anchor loops present in only a minority of cells in the population analyzed, which would account

for their overall weaker signals. Early single cell Hi-C experiments suggested that TADs are present

in virtually all individual cells (Nagano et al., 2013), however, more recent studies indicate cell-to-

cell variability in TADs within a given cell population, although the presence of distinct active and

inactive genomic compartments is common across most individual cells (Stevens et al., 2017;

Wang et al., 2016). Truly high-resolution elucidation of single cell intra-TAD structures may not be

possible due to the intrinsic limitation of two potential ligation events per fragment in any given cell.

We found that CAC sites are found at insulators and also at promoters, which we defined as

DNase hypersensitive sites (DHS) with high a histone-H3 K4me3/K4me1 ratio, whereas CNC sites are

primarily at enhancers and weak enhancers. Others find that promoters, when defined as the set of

all TSS upstream regions (including those not at a DHS), are bound by cohesin alone (Kagey et al.,

2010; Faure et al., 2012). Further, we found that CTCF-bound open chromatin regions distal to pro-

moters (insulator-DHS) show features that distinguish them from other classes of open chromatin

(promoter-DHS and enhancer-DHS), including the absence of enhancer marks and their general con-

servation across tissues. Thus, these insulator-DHS regions are not simply enhancers with CTCF

bound. Supporting this, insulator regions consistently show less intrinsic enhancer activity than weak

enhancers in in vivo enhancer screens (Vanhille et al., 2015). It is less clear what role CTCF binding

in the absence of cohesin plays in the nucleus, as we found such sites lack insulating activity and also

lack strong directional interactions. As CTCF binding is always intrinsically directional, due to its non-

palindromic motif, the absence of directional interactions from CTCF-non-cohesin sites suggests that

the directionality of interactions with CTCF sites at TAD and intra-TAD loop anchors is conferred by

other factors associated with the extrusion complex, such as cohesin (Sanborn et al., 2015;

Fudenberg et al., 2016) or Top2b (Uusküla-Reimand et al., 2016). However, our findings suggest

that the interactions of Top2b involve binding to cohesin, and not CTCF, as indicated by the high

frequency of CNC sites bound by Top2b vs. very low frequency of Top2b binding at CTCF-non-

cohesin sites (Figure 2—figure supplement 3B). Furthermore, binding by Top2b does not distin-

guish TAD anchors from intra-TAD loop anchors. Indeed, by all metrics tested, we found no TF or

motif that differentiates TAD anchors from intra-TAD loop anchors, although the existence of some

unknown differentiating factor cannot be ruled out. Cohesin can stabilize large protein complexes
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comprised of up to 10 distinct TFs at enhancers (Faure et al., 2012), and could thus facilitate the

binding of other unknown proteins to the loop extrusion complex.

Cohesin is continuously recycled throughout the genome by loading and release factors

(Busslinger et al., 2017), and so it is unclear how insulator activity is effectively maintained at TAD

and intra-TAD loop anchors in such a dynamic environment. We found that CNC sites, which are pri-

marily found at enhancers, consistently show the least insulation of repressive histone marks, just as

they show the least insulation of chromatin contacts. This provides further evidence that TAD and

intra-TAD loop anchors are functionally unique sites, and are not a moonlighting feature of CTCF

bound to enhancer regions. Furthermore, while enhancers are strongly enriched for genetic non-cod-

ing variants, genetic variations at loop anchors are rare (Hnisz et al., 2016). Mutations that occur at

loop anchors can result in dramatic phenotypes like polydactyly or tumorigenesis (Lupiáñez et al.,

2015) and often occur in cancer (Ji et al., 2016). Disruption of specific, individual CAC-mediated

loop anchors using genomic editing tools results in aberrant chromatin contacts and misregulation

of neighboring genes in a largely predictable manner, although some redundancy may occur when

multiple nearby anchors are present (Dowen et al., 2014; Hnisz et al., 2016; Willi et al., 2017).

The computational method for intra-TAD loop discovery, described here, is a substantial improve-

ment over prior implementations of computational loop prediction (Sanborn et al., 2015; Oti et al.,

2016). The loops we identified were longer and fewer in number (~9500 vs ~60,000), showed much

stronger insulation of chromatin interactions and greater insulation of repressive histone marks, and

displayed considerably greater overlap with cohesin-mediated loops identified by ChIA-PET using

antibody to the cohesin subunit Smc1. Key features of our computational method include the consid-

eration of both CTCF and cohesin binding strength, as noted above, as well as TAD structure and

consistency across biological replicates. Our use of both CTCF and cohesin binding strength in pre-

dicting intra-TAD loops is supported by a recent study of CTCF sites nearby the mouse a-globin

gene cluster, where the presence of CTCF alone was not sufficient to predict DNA loop interactions,

and where insulation by individual CAC sites ranged widely – from none to moderate to very strong

insulation – in direct proportion to the strength of CTCF binding, as revealed by deletion of individ-

ual CTCF sites (Hanssen et al., 2017). Furthermore, we developed a simple extension of our method

that predicts TAD anchors when given a set of TAD boundaries (Supplementary file 1C), and

thereby overcome the limitation in identifying TAD anchors from low resolution, standard sequenc-

ing depth Hi-C datasets. We were thus able to identify well-defined inter-TAD regions, which we

found are enriched for unique gene ontologies, notably, housekeeping genes with ribosomal, nucle-

osome, and mitosis-related functions. A further extension of our findings would be the explicit use

of the intra-TAD and refined-TAD loop coordinates defined here to improve gene target assign-

ments for distal regulatory elements, based on the insulating capacity of these CAC-anchored

looped domains. Such an approach may be beneficial for the many model systems where distal

enhancer activity is the clear driver of tissue specificity or a given disease state (Hnisz et al., 2016).

The ability to identify intra-TAD loops based solely on CTCF motif orientation and CTCF and cohesin

ChIP-seq binding data, and then use these loops to improve gene target assignments for distal regu-

latory elements is likely to constitute a substantial improvement over ‘nearest gene’ and other, more

nuanced target assignment algorithms, such as GREAT (Raviram et al., 2016).

In conclusion, our studies reveal that while TAD structures are readily apparent in routine Hi-C

experiments, their structural organization and functional impact on the genome is not unique. Struc-

turally, the 9,543 TAD-internal sub-loops that we identified for mouse liver have strong cohesin-and-

CTCF-bound anchors and appear to be formed by the same loop extrusion mechanism responsible

for TAD formation. Functionally, we hypothesize that these intra-TAD loops contribute to nuclear

architecture as intra-TAD scaffolds that further constrain enhancer-promoter interactions. We further

show that these intra-TAD loops maintain key properties of TADs, most notably insulation of chro-

matin interactions and insulation of repressive histone mark spreading. The insulation provided by

intra-TAD loops may enable high expression of super-enhancer target genes, as illustrated for Alb in

mouse liver, as well as high expression of individual genes within otherwise inactive TADs, as exem-

plified by Scd1 and the many other single gene intra-TAD loops that we identified. Given the

increasing interest in interactions of genes with distal enhancers and other intergenic sequences, the

rapid and cost-effective method described here for identification of intra-TAD structures that con-

strain long-range chromatin interactions may prove invaluable in many areas of genomic research.
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Materials and methods

Animals and processing of liver
Adult male and female CD-1 mice (ICR strain; RRID:MGI:5659424) were purchased from Charles

River Laboratories (Wilmington, MA) and were housed in the Boston University Laboratory Animal

Care Facility. Animals were treated using protocols specifically reviewed for ethics and approved by

Boston University’s Institutional Animal Care and Use Committee (IACUC; protocol 16–003). Livers

were collected from 8-week-old mice euthanized by cervical dislocation and rinsed in cold PBS. Liv-

ers were homogenized in a Potter-Elvehjem homogenizer using high sucrose homogenization buffer

(10 mM HEPES (pH 7.5), 25 mM KCl, 1 mM EDTA, 2 M sucrose, 10% glycerol, 0.05 mM DTT, 1 mM

PMSF, 0.15 mM spermine, 0.2% (v/v) spermidine, 1 mM Na orthovanadate, 10 mM NaF, and Roche

Complete Protease Inhibitor Cocktail) to prevent aggregation of nuclei and preserve chromatin

structure. The resulting slurry was transferred on top of a 3 ml cushion of homogenization buffer fol-

lowed by ultracentrifugation at 25,000 RPM for 30 min at 4˚C in an SW41 Ti rotor to pellet the nuclei

and remove cellular debris. The supernatant was carefully decanted to remove liquid, and residual

solid debris was removed from the tube walls using a sterile spatula and a dampened Kimwipe.

Nuclei were resuspended in 1 ml of crosslinking buffer (10 mM HEPES buffer (pH 7.6), 25 mM KCl,

0.15 mM 2-mercaptoethanol, 0.34 M sucrose, 2 mM MgCl2) and transferred to a 1.5 ml Eppendorf

tube. To ensure consistent crosslinking, tubes were incubated for 3 min at 30˚C prior to the addition

of formaldehyde to a final concentration of 0.8% (v/v). Samples were incubated in a 30˚C water bath

for 9 min with periodic mixing. Crosslinking was halted by the addition of 110 ml of 1 M glycine, fol-

lowed by a 5 min incubation at room temperature. The crosslinked material was layered on top of 3

ml of high sucrose homogenization buffer and then centrifuged as above. The crosslinked nuclear

pellet was resuspended at 4˚C in 1 ml of 1X Radioimmunoprecipitation assay (RIPA) buffer (50 mM

Tris-HCl, pH 8.0, 150 mM NaCl, 1% IPEGAL, 0.5% deoxycholic acid) containing 0.5% SDS and prote-

ase inhibitors until homogenous by gentle pipetting.

Sonication
Crosslinked nuclei in RIPA buffer containing 0.5% SDS were transferred to 15 ml polystyrene tubes

(BD Falcon # 352095) for sonication using a Bioruptor Twin instrument (UCD-400) according to the

manufacturer’s instructions. Briefly, samples were sonicated at 4˚C for 30 s ON and 30 s OFF at high

intensity for a total of 75 cycles. Sonicated material was transferred to 1.5 ml Eppendorf tubes, and

large debris was cleared by centrifugation at 18,000 x g for 10 min at 4˚C. The bulk of this material

was snap frozen in liquid nitrogen and stored at �80˚C for immunoprecipitation, except that a small

aliquot (15 ml) was removed to quantify material and ensure quality by gel electrophoresis, as fol-

lows. Aliquots from each sample were adjusted to 0.2 M NaCl, final concentration, then incubated

for 6 hr at 65˚C. After a three-fold dilution in nuclease-free water, 5 mg of RNase A (Novagen:

#70856) was added and samples were incubated for 30 min at 37˚C. Samples were then incubated

for 2 hr at 56˚C with 20 mg of Proteinase K (Bioline; BIO-37084). This material was then quantified in

a dilution series using PicoGreen assay (Quanti-iT dsDNA Assay Kit, broad range, Invitrogen) and

analyzed on a 1% agarose gel to ensure the bulk of material was within 100–400 bp.

Chromatin immunoprecipitation (ChIP)
Immunoprecipitation of crosslinked, sonicated mouse liver chromatin and downstream steps were as

described previously (Sugathan and Waxman, 2013). Protein A Dynabeads (30 ml; Invitrogen:

1002D) were incubated in blocking solution (0.5% bovine serum albumin in PBS) with 5 ml of anti-

body to CTCF (Millipore #07–729; RRID:AB_441965) or to the cohesin subunit Rad21 (Abcam #992;

RRID:AB_2176601) for 3 hr at 4˚C. As a control, 1 ml of non-specific rabbit IgG was used (Santa Cruz:

sc-2027). Bead immune-complexes were washed with blocking solution, followed by overnight incu-

bation with 70 mg of liver chromatin. After washing with 1X RIPA (containing 0.1% SDS) and reverse

crosslinking as described above, DNA was purified using the QIAquick Gel Extraction Kit (Qiagen

#28706) and quantified on a Qubit instrument with high sensitivity detection (Invitrogen DNA HS#

Q32854), with ChIP yields ranging from 1 to 25 ng. Samples were validated by qPCR using primers

shown in Supplementary file 4B.
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Library preparation and sequencing
ChIP libraries were prepared for sequencing using NEBNext Ultra II DNA Library Prep Kit for Illumina

according to the manufacturer’s instructions (NEB, cat. #E7645). All samples were subjected to dou-

ble-sided SPRI size selection prior to PCR amplification (Agencourt AMPure XP; Beckman Coulter:

A63882). Samples were assigned unique barcodes for multiplexing, and subjected to 8 rounds of

PCR amplification with barcoded primers (NEB, cat. #E7335). Samples were sequenced either on an

Illumina Hi-Seq 4000 instrument at the Duke Sequencing Core or an Illumina Hi-Seq 2000 instrument

at the MIT BioMicroCenter, giving 50 bp single end reads at a depth of ~11–19 million reads per

sample. A total of four CTCF and three Rad21 (cohesin) ChIP-seq samples were analyzed, represent-

ing four male mouse livers. The fourth liver CTCF sequencing sample, sample G133_M9, did not

have a matching cohesin ChIP-seq dataset from the same liver sample, and was therefore matched

to a merged sample comprised of all three cohesin ChIP-seq replicates (merged at the fastq file

level, with processing described below). Raw and processed sequencing data are available at GEO

accession number GSE102997.

General ChIP-seq analysis pipeline
Sequence reads were demultiplexed and mapped to the mouse genome (build mm9) using Bowtie2

(version 2.2.9), allowing only uniquely mapped reads. Peaks of sequencing reads were identified

using MACS2 (version 2.1.1) as regions of high signal over background. Peaks were filtered to

remove blacklisted genomic regions (www.sites.google.com/site/anshulkundaje/projects/blacklists).

Genomic regions called as peaks that contain only PCR duplicated reads, defined as >5 identical

sequence reads that do not overlap any other reads, were also removed. All BigWig tracks for visual-

ization in a genome browser were normalized for sequencing depth, expressed as reads per million

mapped reads (RPM) using Deeptools (version 2.3.3). Unless otherwise indicated, all pairwise com-

parisons presented in the Figures were performed using a Kolmogorov–Smirnov test, where ****

indicates p�0.0001, ***p�0.001, **p�0.01, and *p�0.05.

Motif analysis
Motifs within CTCF peak regions were identified using MEME Suite (version 4.10.0; FIMO and

MEME-ChIP options). FIMO was used to assign CTCF motif orientation and motif scores for CAC

sites and to discover individual motif occurrences. De novo motif discovery was carried out using

MEME-ChIP using default parameters (Figure 2—figure supplement 3C,D). Similar results were

obtained using Homer (version 4.8). Alternative CTCF motifs were downloaded from CTCFBSDB 2.0

(http://insulatordb.uthsc.edu/download/CTCFBSDB_PWM.mat), however, these did not substantially

change any results performed using the core JASPAR motif (MA0139.1). These motifs were explicitly

used in Figure 2—figure supplement 3D, where no difference between intra-TAD loop anchor and

TAD anchor motif usage was observed.

4C-seq protocol
Four male and four female mouse livers were processed for Albumin-anchored 4C-seq analysis using

published protocols, with some changes for primary tissue (van de Werken et al., 2012). To adapt

the protocol for liver, care was taken to rapidly isolate single liver cells or nuclei suspensions prior to

crosslinking. Specifically, two approaches to crosslinking were taken and both gave similar results.

One male mouse liver and one female mouse liver sample were processed through the crosslinking

step as described for the ChIP protocol, above, prior to quantification of nuclei. The other liver sam-

ples (3 males and 3 females) were crosslinked as follows. Half of a liver (~0.5 g) was dissected from

each mouse, the gall bladder was removed, and the liver was rinsed with PBS. The liver was then

minced and rapidly processed with 10 strokes in a Dounce homogenizer in PBS containing protease

inhibitors (PBS-PI; 1X Roche Complete Protease Inhibitor Cocktail; Roche #11697498001). The result-

ing slurry was passed through a 40-micron cell strainer (Corning #431750), then pelleted and rinsed

with PBS-PI (centrifugation at 1,300 RPM for 5 min at 4˚C). Following an additional spin, the cell pel-

let was resuspended well in 9 ml of PBS-PI at room temperature. 270 ml of 37% formaldehyde was

added to give a final concentration of 1%, and crosslinking was carried out for 10 min with nutation

at room temperature. The remaining formaldehyde was quenched with 1.25 ml of 1 M glycine.

Crosslinked cells were pelleted and rinsed with PBS twice (as above) prior to lysis. The supernatant
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was removed following the second wash, and cell pellets were resuspended in 8 ml of lysis buffer

(50 mM Tris (pH 7.5), 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1% TX-100, and 1X Complete Prote-

ase Inhibitor Cocktail) and incubated on ice for 40 min with occasional mixing. Lysed cells were spun

down at 2,000 RPM for 5 min at 4˚C then washed twice with PBS-PI, as above. Nuclei were pelleted,

quantified using an Invitrogen Countess instrument, and snap frozen in 10 million nuclei aliquots. Pri-

mary digestion of 10 million nuclei with 50,000 U of DpnII (NEB: #R0543) was performed overnight

at 37˚C in 450 ml of NEBuffer 3 (NEB: #B7003S; 100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1

mM DTT, pH 7.9) with agitation at 900 RPM. After confirming digestion by agarose gel electropho-

resis, DpnII was inactivated with SDS (2%, final concentration) and the samples then diluted 5-fold in

1X ligation buffer (Enzymatics #B6030). 200 U of T4 DNA ligase was added and primary ligation was

carried out overnight at 16˚C (Enzymatics #L6030). Ligation was confirmed by analysis of a small ali-

quot on an agarose gel, and reverse crosslinking was conducted by overnight incubation with 600

mg proteinase K at 65˚C. After RNase A digestion and phenol/chloroform cleanup, samples under-

went secondary digestion with 50 U of Csp6I (Fermentas #ER0211) overnight at 37˚C in 500 ml of 1X

Buffer B (Fermentas: #BB5; 10 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 0.1 mg/ml BSA). Csp6I was then

heat inactivated for 30 min at 65˚C. Samples were diluted 10-fold and secondary ligation was carried

out as above, overnight at 16˚C. The final PCR template was purified by phenol/chloroform clean

up, followed by QiaPrep 2.0 column cleanup (Qiagen #27115). PCR reactions were performed using

inversely-oriented 4C primers specific to the Alb promoter (sequences shown in bold, below) with

dangling 5’ half adapter sequences (Reading primer: ACACTCTTTCCCTACACGACGCTCTTCCGA

TCTGGTAAGTATGGTTAATGATC; Non-reading primer: GACTGGAGTTCAGACGTGTGCTC

TTCCGATCTCTCTTTGTCTCCCATTTGAG). This design has two advantages: 1) the addition of barc-

odes in a secondary reaction allows a primer to be reused across samples; and 2) it avoids barcoding

at the start of 4C read, which would reduce the mappable read length available for downstream

analyses. 4C templates were amplified using Platinum Taq DNA polymerase (Invitrogen #10966026)

under the following conditions: 94˚C for 2 min, 25 cycles at (94˚C 30 s, 55˚C 30 s, 72˚C 3 min), then

4˚C hold. A total of eight liver samples were analyzed (four males, M1-M4; and four females, F1-F4).

For liver samples M3, M4, F3 and F4, eight identical PCR reactions for each liver, processed in paral-

lel, were prepared and then pooled to limit the impact of PCR domination in any single reaction. For

liver samples M1, M2, F1 and F2, two PCR reactions for each liver were sequenced separately then

pooled at the fastq file level for downstream analyses. We observed that the 8 PCR pool reactions

gave a more reproducible profile than the single PCR reactions. After pooling, 4C samples were

purified using AMPure XP beads (Beckman Coulter: #A63882) at a 1.5:1 ratio of beads to sample,

washed with 75% ethanol, dried, and resuspended in 0.1X TE buffer to elute the DNA. 4C-seq sam-

ples were multiplexed and PCR amplified using standard NEB barcoded primers (NEB #E7335), as

was done for ChIP-seq library preparations, but for five additional PCR cycles rather than the eight

cycles used for ChIP libraries (total of 30 cycles of PCR per sample: 25 cycles with viewpoint-specific

primers followed by five cycles with viewpoint-generic barcoded NEB primers). 4C libraries were

sequenced on an Illumina Hi-Seq 2500 instrument at the New York Genome Center giving 125 bp

long paired end reads. Samples were each sequenced to a depth of ~1–5 million reads. Raw and

processed sequencing data are available at GEO under accession number: GSE102998.

4C-seq data analysis
All Alb viewpoint 4C-seq reads were filtered to ensure a match for the bait primers used, then

trimmed using a custom script to remove the first 20 nt of each read (Source code 1). Reads were

then mapped to the mouse mm9 reference genome using the Burrows-Wheeler aligner (bwa-mem)

allowing for up to two mismatches. The package r3Cseq (Thongjuea et al., 2013) was used to ana-

lyze the distribution of signal in cis, both near the bait and along chromosome 5. Reads were

counted per restriction fragment to obtain the highest possible resolution. Data shown in the main

text figures are for the intersection of four male and four female mouse livers, merged according to

sex using the intersection option, meaning that the 4C interactions shown are those present in all

four samples for a given sex. This produces both a normalized read depth signal (reads per million

per restriction fragment) and an associated p-value for the interaction, taking into account distance

from viewpoint and reproducibility across replicates (Figure 6—figure supplement 1A,C). A com-

prehensive view of all replicates is presented in Figure 6—figure supplement 1A. For all pairwise

comparisons, a correlation between samples was calculated genome-wide using the UCSC utility
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bigWigCorrelate with default settings. To account for high signal immediately surrounding the view-

point, this analysis was only conducted for regions > 10 kb from the viewpoint fragment. To analyze

more distal cis interactions, we first calculated the normalized 4C signal observed per TAD along

chromosome 5, in units of RPKM per TAD. We observed a robust logarithmic decay of signal with

increasing distance from the viewpoint TAD (Figure 6C; R2 = 0.719). Interacting TADs were defined

according to observed over expected 4C signal relative to this background model. Interacting TADs

were designated as follows: high, defined as regions with >2 fold enrichment over this background

model (observed/expected); medium, defined as 1.5 to 2-fold enrichment; and low, between 1.5-

fold enrichment and 1.5-fold depletion. Non-interacting TADs showed >1.5 fold depletion of signal.

For the Alb viewpoint, we identified 17 high, 20 medium, 128 low, and 30 non interacting cis TADs

along chromosome 5. We required a more comprehensive background model to analyze interactions

in trans. The tool 4Cker was used for its adaptive windowing and Hidden Markov model approach

(Raviram et al., 2016). The count tables from r3C-seq were merged by sex and imported, then trans

analysis was conducted with the recommended parameters (k = 20). The default output identifies

three classes of regions: interacting, low-interacting, and non-interacting. For our analysis, the inter-

acting group was divided into two equal-number groups: high-interacting and medium-interacting,

based on 4C interaction strength in the male liver samples. Trans interacting regions tend to be

large (median size of 1.8 Mb), therefore trans interacting TADs were defined as TADs wholly con-

tained within these interacting regions. This corresponds to a total of 659 (high), 618 (medium), 969

(low), and 77 (non) interacting trans TADs genome-wide.

CAC sites and scores
Cohesin-and-CTCF (CAC) sites were defined as CTCF peaks that were present in at least 2 of 4 indi-

vidual mouse liver samples and that overlapped with a cohesin peak in any liver sample. CAC sites

were scanned for a CTCF motif (JASPAR motif MA0139.1) within the CTCF peak coordinates using

the FIMO tool in the MEME Suite (version 4.10.0). For a given CAC site, the highest scoring motif

occurrence for the canonical core CTCF motif (MA0139.1) was considered. A (+) strand orientation

indicates that the motif is found on the (+) genomic strand (Watson strand). Each CAC site was rep-

resented by two different scores: a CTCF score = p * (m/10), where p is the CTCF peak strength

(MACS2 score) and m is the CTCF motif score, as determined by FIMO; and a cohesin score = p *

(m/10), where p is the cohesin (Rad21) peak strength (MACS2 score) and m is the CTCF motif score,

as determined by FIMO.

Intra-TAD loop prediction method
We modified a published algorithm for CTCF-mediated loop prediction (Oti et al., 2016) to predict

intra-TAD loop structures. Key modifications to the algorithm include the following: incorporation of

cohesin ChIP-seq data in scoring, based on the finding that CTCF signal in the absence of cohesin is

not sufficient to predict chromatin interactions (Hanssen et al., 2017); consideration of TAD struc-

ture, TSS overlap, and consistency across biological replicates when filtering to obtain the final set of

predicted loops; and a final target set of approximately 10,000 intra-TAD loops, based on experi-

mental results from high resolution Hi-C analyses (Rao et al., 2014). First, CAC sites were identified

from mouse liver ChIP-seq data for Rad21 and CTCF, obtained as described above. Next, each chro-

mosome was scanned for putative intra-TAD loops, formed between a (+) anchor [upstream anchor,

that is, CAC site with a CTCF motif (JASPAR motif MA0139.1) on the (+) strand] at the start of a

loop and a (-) anchor [downstream anchor, that is, CAC site with a CTCF motif on the (-) strand] at

the end of a loop, as described for prediction of intra-chromosomal CTCF loops in (Oti et al., 2016).

Scanning was initiated from the beginning of each chromosome, and a list of putative (+) anchors

was generated. Next: (1) if the next CAC site encountered was a (-) anchor, the pair of (+) and (-)

anchors was recorded as a putative intra-TAD loop. The (+) anchor was paired with all subsequent,

downstream (-) anchors until another (+) anchor was encountered, at which point the list of putative

intra-TAD loops was closed, ending with the last (-) anchor. Alternatively, (2) if the next CAC sites

encountered were (+) anchors, then all such (+) anchors were retained as putative upstream anchors,

until the next (-) anchor was reached, and then all such (+) anchors were paired (i.e., assigned to

loops) with all of the subsequent, downstream (-) anchors until a new (+) anchor was encountered, as

described under (1), at which point the list of putative loops was closed, ending with the last (-)
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anchor. A new scan for putative intra-TAD loops was then initiated in a linear fashion, starting from

the next (+) anchor until all chromosomes were scanned and a set of putative intra-TAD loops was

obtained. Chromosome scanning for putative intra-TAD loops was then repeated as described

above after removing 10% of the CAC sites – those with the lowest CTCF scores (defined above).

Chromosome rescanning was repeated iteratively until the number of putative intra-TAD loops

decreased to as close to 20,000 as possible (removing the lowest scoring loops if needed so that all

replicates had exactly 20,000 loops prior to merging). A parallel series of iterative scans was carried

out, except that 10% of the CAC sites with the lowest cohesin scores (defined above) were removed

at each iteration, to generate a second set of ~20,000 putative intra-TAD loops. The intersection of

the two sets of 20,000 putative intra-TAD loops was then determined. The same iterative process of

intra-TAD loop prediction was carried out independently for each of the n = 4 individual mouse liv-

ers, based on an analysis of matched CTCF and cohesin (i.e., Rad21) ChIP-seq datasets for each liver.

Thus, for each liver sample, a single putative intra-TAD loop set was generated from the intersection

of two sets of predicted CAC-based loops, one using the CTCF score and the other using

the cohesin (Rad21) score; these scores were calculated using MACS2 scores for CTCF and cohesin

(Rad21), respectively, together with the CTCF motif score m value, as described above. The overlap

of these two putative intra-TAD loop sets was approximately 80%, and ranged from 15,999 to

16,892 loops for a given liver sample. Additional filters were then applied to remove intra-TADs that

did not contain either a protein-coding TSS or a liver-expressed multi-exonic lncRNA TSS (as defined

in [Melia et al., 2016]), as we were primarily interested in the impact of intra-TADs on gene expres-

sion and regulation. Putative intra-TAD loops that overlapped >80% of the length of a TAD, or

whose (+) and (-) anchors are both TAD anchors (defined below) were also excluded, as these loops

could not be distinguished from TAD loops. These two filters further reduced the putative intra-TAD

loop sets to approximately 63% of the original 20,000 (ranging from 12,395 to 12,962 loops across

the four liver samples). A single merged ChIP-seq dataset (merged at the fastq file level, separately

for CTCF and for Rad21 datasets) was treated as a fifth dataset. It was run through the full pipeline,

above, and then sequentially intersected with the set of putative intra-TAD loops predicted for each

individual liver to obtain a final set of 9543 intra-TAD loops identified in all four livers and also pres-

ent in the 5th dataset (merged sample). Each intra-TAD loop was assigned an intra-TAD loop score

equal to the geometric mean of the (+) anchor’s CAC site CTCF score and that of its (-) anchor. A

second intra-TAD loop score, equal to the geometric mean of the (+) anchor’s CAC site cohesin

score and that of its (-) anchor, was also assigned. The CTCF and cohesin scores reported for each

loop in the final intra-TAD loop lists (Supplementary file 1B) are those obtained from the merged

sample. Custom scripts for intra-TAD loop prediction are available in Source code 1.

Loop predictions for two other mouse cell types (mESC and NPC) and in two human cell lines

(GM12878 and K562) was carried out as described above, with the following modifications during fil-

tering. For the mouse cells, ChIP-seq data from biological replicates (n = 4 for mESC and n = 3 for

NPC) was obtained from public sources (see below) for CTCF and cohesin (ChIP for the subunit

Smc1). Further, TADs from the same cell type were used to filter based on TAD overlap (using TAD

boundaries from [Bonev et al., 2017]). TSS overlap used the same definitions as above (RefSeq and

multi-exonic lncRNA TSS defined in mouse liver [Melia et al., 2016]). For human loop predictions,

cohesin (ChIP for the subunit Rad21) and CTCF ChIP-seq data were obtained from biological repli-

cates for K562 cells and for GM12878 cells (n = 5 for both cell lines), and overlap with Refgene TSS

(hg19) was used to filter the merged loops, as TADs were not defined in (Rao et al., 2014).

Supplementary file 4A provides further details on data sources and accession numbers.

RNA-seq analysis
Gene expression values for liver-expressed protein coding genes are log2(FPKM + 1) values for adult

male mouse liver from (Melia et al., 2016). Liver-expressed non-coding genes are expressed in

FPKM based on the gene models and expression values from (Melia et al., 2016). To express the tis-

sue specificity of a gene’s expression across a panel of 21 mouse tissues (including liver), we used

Tau, which was shown to be the most robust in a recent study (Kryuchkova-Mostacci and Robin-

son-Rechavi, 2017). Testis was excluded from this analysis because a large proportion of testis-

expressed genes are highly tissue specific. For each tissue, the maximum FPKM per gene between

the two replicates was used. These FPKM values were log transformed and a Tau value, ranging

from 0 to 1, was calculated, where one represents high tissue specificity: t = [
Pn

i = 1 (1�yi) ] / (n�1),
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where yi = xi / [ max1�i�n(xi) ], n is the number of tissues, and xi is the expression of the gene in tissue

i.

General Hi-C processing
Hi-C data was processed using the HiC-Pro package (version 2.7.0) (Servant et al., 2015) for map-

ping and read filtering, followed by Homer (version 4.8) for downstream analyses such as PCA analy-

sis and aggregate contact profiles. Biological replicates were merged to increase read depth. The

default Homer background model was used for all datasets, where the expected frequency of inter-

actions takes into account read depth between interacting bins and genomic distance. PCA was con-

ducted using Homer with the command ‘runHiCpca.pl -res 10000 -cpu 4 -genome mm9’ to generate

genome wide eigenvalues at 10 kb resolution. The values changed marginally at 20, 40, or 50 kb,

but the sign of the eigenvalue was unaffected, that is, there was no impact on whether a TAD was

assigned as A compartment or B compartment.

Peak distribution within TADs
Published TAD coordinates in mouse liver (Vietri Rudan et al., 2015) were converted from mouse

genome mm10 to mm9 using liftover with default parameters. Each TAD was then divided into 100

equal-sized bins using the Bedtools command makewindows. Next, these bins were compared to

the peak positions of various publicly available ChIP-seq datasets using the Bedtools coverage com-

mand, and the number of peaks per bin was counted. This resulted in a string of 100 values for each

TAD, representing the number of ChIP-seq peaks per bin, where the first value is the start of the

TAD and the last value is the end of the TAD. Conducting this analysis across all TADs yielded a

matrix of 3617 rows (one per TAD) x 100 columns (one per bin). To generate the aggregate profiles

shown in Figure 1A–1E, and in Figure 1—figure supplement 1B–E, the sum of each column was

taken and then normalized to account for differences in total peak count for the different samples,

factors, and chromatin marks analyzed. Normalization was conducted by taking the average of the

center five bins (bins 48–52) and dividing the bin sums by this normalizing factor. This allows the y

axis to represent bin enrichment relative to the center of the TAD, as shown.

TAD activity and compartment assignment
TAD boundaries were defined at single nucleotide resolution as the end of one TAD and the start of

another (as defined in [Vietri Rudan et al., 2015]), thus excluding the start of the first TAD in each

chromosome and the end of the last TAD. In contrast, all references to ‘TAD anchors’ refers to the

CTCF sites most likely to be anchoring TAD loops based on distance from the boundary and proper

orientation (as described in TAD Anchor Identification, below). Data sources for all ChIP-seq, GRO-

seq, Hi-C, and other datasets are described in Supplementary file 4. H3K9me3, H3K27me3,

H2AK5ac, and H3K36me3 marks were processed from the raw sequencing data (fastq files) through

the standard ChIP-seq pipeline, above. H3K9me3 and H3K27me3 mark data were expressed as

log2(ChIP/IgG signal). Lamina-associated domain coordinates and GRO-seq data were downloaded

as pre-processed data. Heat maps were generated using Deeptools reference point, with a bin size

of 10 kb. TAD boundaries were grouped according to k-means clustering (k = 4) using signal within

a 1 Mb window from three datasets: H3K9me3, H2AK5ac, and the eigenvalue of the Hi-C PCA analy-

sis (above). Based on these clusters, TADs were classified as active, weak active, weak inactive, or

inactive, as follows. If both the start and end boundary of a given TAD were classified as active, then

the TAD was designated active. Specifically, a TAD was considered ‘active’ if the boundary at the

start of a TAD fell into clusters 1 or 2 (as marked in Figure 1F) and the boundary at the end of the

same TAD fell into clusters 1 or 3. The corresponding metric was applied to identify inactive TADs. If

the activity status of the start and the end of a given TAD were not in agreement, then the TAD was

designated weakly active if the median Hi-C PC1 eigenvalue within the TAD was positive, or weakly

inactive if the median Hi-C PC1 eigenvalue was negative. Gene expression and tissue specificity met-

rics represent expression or Tau values of genes whose TSS overlap active or inactive TADs.

Additional Hi-C analysis
Contact profiles around TAD, intra-TAD loop, and non-loop-anchor CTCF sites were generated

using Homer (v4.9) using the command analyzeHiC and the options ‘-size 500000 -hist 5000’ to
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generate interaction profiles for 1 Mb windows around CTCF sites with 5 kb resolution. TAD and

intra-TAD loop anchors were split into left and right anchors when found at the start and at the end

of the predicted loop, respectively. Non-anchor CTCF sites were defined as other CTCF sites, based

on the merged CTCF sample, that also contained a CTCF motif. Left and right groupings were

determined based on the orientation of the strongest CTCF motif within the non-anchor peak

regions. The inward bias index (IBI) was modified from the more genome-wide directionality index

(DI) described in (Dixon et al., 2012). Both DI and IBI use a chi-squared statistic to determine the

extent to which Hi-C reads from a given region have a strong upstream or strong downstream bias.

While DI is genome wide, IBI focuses on the directionality of cis interactions (within 2 Mb) from a 25

kb window immediately downstream of a CTCF peak relative to the motif orientation. A large posi-

tive value indicates a strong interaction bias towards the loop center, as the motif orientation would

predict. Values close to zero indicate a roughly equal distribution of interactions upstream and

downstream. By orienting the sign of the IBI value relative to the CTCF motif directionality, we were

able to group left and right loop anchors together.

Virtual 4C plots (Figure 3B and Figure 3—figure supplement 1) and Hi-C screenshots (Figure 2—

figure supplement 5A–CF, and Figure 2—figure supplement 7A–C) were generated using the 3D

Genome Browser (http://promoter.bx.psu.edu/hi-c/index.html). Virtual 4C plots used mESC Hi-C

with 10 kb resolution and a 25 kb viewpoint for ±250 kb of the selected region. Screenshots were

generated for mouse (mESC, CH12, and NPC) and human (GM12878 and K562) cells using raw sig-

nal and 10 kb resolution. All Hi-C datasets used were publicly available for mouse (Rao et al., 2014;

Bonev et al., 2017) and human cells (Rao et al., 2014) (Supplementary file 4).

TAD anchor identification
TAD anchors were predicted for mouse liver using a modified version of the intra-TAD loop predic-

tion algorithm. The merged list of CTCF peaks was filtered to only consider peaks that were found

across all four biological replicates, that contained CTCF motifs, and that were within 50 kb of a

TAD boundary, as defined previously for mouse liver (Vietri Rudan et al., 2015). This 50 kb distance

was chosen based on the ambiguity of binned Hi-C data to more accurately determine the precise

TAD boundary. Then, for each TAD boundary, all pairs of (+) and (-) CTCF peaks were considered

and scored based on their combined distance to the called TAD boundary. Pairs of ‘+/-”

CTCF peaks that were comprised of a (+) anchor upstream of a (-) anchor (i.e., CTCF peak pairs that

were not divergently oriented) were considered an invalid combination to define the end of one

TAD and the beginning of the next TAD, and were not considered. The valid pairs with the shortest

combined distance to the previously defined liver TAD boundary (Vietri Rudan et al., 2015) were

retained and all others were removed. If no valid pair for a TAD boundary was identified, the single

CTCF peak closest to the TSD boundary was retained as the TAD anchor. A complete listing of TAD

anchors is found in Supplementary file 1C, and a listing of inter-TAD regions and associated gene

ontology analysis is presented in Supplementary file 3.

Alternative loop anchor analysis
We sought to compare the relative insulation of loops identified by our computational approach to

alternative loops identified using the original core algorithm of (Oti et al., 2016). This provides an

objective measure to compare the performance of each computational method in identifying TAD-

like loops and loop anchors within TADs. To this end, we used the complete mouse liver CTCF peak

list from the merged CTCF sample as input and implemented the loop prediction algorithm exactly

as described previously (60% proportional peak cutoff, CTCF signal +motif scores as above, retain-

ing only loops < 200 kb) (Oti et al., 2016). As summarized in Figure 2—figure supplement 1B, this

analysis yielded many more loops (60,678; ’60 k loop set’) than we obtained using our method (9543

intra-TAD loops). Furthermore, the loops in the 60 k loop set were shorter (median size of 61 kb),

and they showed less overlap with cohesin-mediated loops present in the mESC ChIA-PET dataset

(25.5% versus 63.2% overlap for our set of intra-TAD loops). 59% of the intra-TAD loops character-

ized in our study are found in the 60 k loop set. To characterize loops unique to the 60 k loop set,

we had to first filter out anchors found intra-TAD or TAD loops (to insure that each list was mutually

exclusive, as above). Any 60 k loop anchor within 50 kb of a TAD boundary was excluded from

downstream analysis. We also excluded any 60 k loop with at least one anchor that coincided with
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an intra-TAD loop anchor. These mutually exclusive lists of intra-TAD loop anchors and the filtered

set of 60 k loop anchors (25,983 loop anchors in total; representing a subset of ‘Non Anchor CTCF’

in the main text, and referred to as ‘26 k loop anchors’ in Figure 2—figure supplement 1C,D) were

then compared based on insulation of repressive histone marks (see ‘Repressive histone mark insula-

tion’, below) and Hi-C interaction profiles (see ‘Additional Hi-C analysis’, above). Figure 2—figure

supplement 1B,C compares the insular features of intra-TAD loop anchors to those of the set of 26

k alternative loop anchors, which are not intra-TAD loop or TAD anchors.

Anchor/Loop overlap
CTCF ChIP-seq data for 15 non-liver tissues from the ENCODE Project were downloaded (https://

genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm9&g=wgEncodeLicrTfbs) and intersected with repli-

cates to form a single peak list for each tissue (Shen et al., 2012). These single peak lists per tissue

were then compared to liver CTCF peaks using the Bedtools multiinter command with the –cluster

option to generate a union CTCF peak list for all tissues with a score representing the number of tis-

sues in which a peak is present. ‘Lone’ CTCF (CTCF sites lacking cohesin bound), other/non-anchor

CAC sites, TAD anchors, and intra-TAD loop anchors were compared to this list to generate the his-

tograms in Figure 2C (see also, Supplementary file 1C). Knockdown-resistant cohesin binding sites

in liver were defined as Rad21 ChIP-seq peaks found in both wild-type (WT) and Rad21+/- mouse

liver, with knockdown-sensitive sites defined as Rad21 peaks found in WT liver that are absent in

Rad21+/- liver (Faure et al., 2012). Similarly, knockdown-resistant cohesin binding sites in MEFs

were defined as Smc1a ChIP-seq peaks present in both WT (Kagey et al., 2010) and Stag1-knockout

MEFs (Remeseiro et al., 2012). Knockdown-sensitive sites were defined as Smc1a peaks found in

WT MEFs that are absent in Stag1-knockout MEFs. Phastcons 30-way vertebrate conservation scores

were downloaded from the UCSC table browser and converted to BigWig tracks using ucscutils (ver-

sion 20130327; ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/phastCons30way/vertebrate).

Comparisons to mESC Smc1a ChIA-PET and Smc1a Hi-ChIP datasets (Dowen et al., 2014;

Mumbach et al., 2016) were based on merged replicates, and reciprocal overlaps with intra-TAD

loops were required (Bedtools intersect –wa –u –r –f 0.8 –a intraTADloops.bed –b mESC.bed). The

mESC Smc1 ChIA-PET dataset was filtered to define ‘CTCF-CTCF’ interactions as those with both

anchor regions overlapping CTCF peak present in a minimum of 2 replicates (total of 3). Any remain-

ing interactions were considered as CNC-mediated enhancer-promoter interactions for the analysis

shown in Figure 2—figure supplement 4C.

Repressive histone mark insulation
To determine if a TAD or intra-TAD loop anchor CAC showed more insulation, or less insulation,

than other classes of CTCF or cohesin binding sites, we used Jensen Shannon Divergence (JSD;

[Fuglede and Topsoe, 2004]) to quantify the insulation of H3K27me3 and H3K9me3 ChIP-seq sig-

nals. Specifically, regions 10 kb upstream and 10 kb downstream of each peak in a given peak list (i.

e., TAD anchors, CNC, etc.) were each divided into 50 bins of 200 bp each. The number of

H3K27me3, H3K9me3, or IgG ChIP-seq reads within each bin was tallied, resulting in a vector of

50 + 50 values for each peak region. These were then compared to two test vectors representing

complete (maximal) insulation: fifty 0’s followed by fifty 1’s, and fifty 1’s followed by fifty 0’s. These

are theoretical representations of low signal upstream of the peak followed by high signal down-

stream, and vice versa. Using a custom python script (Source code 1), the similarity between the

experimentally derived vector and each of the test vectors was calculated, where a lower value rep-

resents less divergence from the test vector. The cumulative frequency distribution per group

(anchors, CAC, CNC, etc.) is presented for the most similar test vector per peak in Figure 3D and E

(K27me3 and K9me3) and Figure 3—figure supplement 2D (IgG). Heat maps show ChIP signal

Z-transformed data across all CTCF-bound regions.

Five class DHS model
The ~70,000 open chromatin regions (DHS) previously identified in mouse liver (Ling et al., 2010)

were classified based on ChIp-seq signals for H3K4me1, H3K4me3, and CTCF within 1 kb of each

DHS summit, obtained using the refinepeak option in MACS2. The general schematic is shown in

Figure 4—figure supplement 1A. Promoter DHS were defined as DHS with a > 1.5 fold ratio of

Matthews and Waxman. eLife 2018;7:e34077. DOI: https://doi.org/10.7554/eLife.34077 31 of 40

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm9&g=wgEncodeLicrTfbs
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm9&g=wgEncodeLicrTfbs
ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/phastCons30way/vertebrate
https://doi.org/10.7554/eLife.34077


H3K4me3 relative to H3K4me1 ChIP-seq signal; enhancer DHS were defined as DHS with a < 0.67

fold ratio of H3K4me3 relative to H3K4me1 ChIP-seq signal, calculated as reads per million for each

factor. Both DHS sets were filtered to remove DHS with <4 reads per million for both marks after

subtracting IgG signal (Figure 4A). These cutoff values leave two remaining DHS groups, one with a

roughly equal ratio between the two histone-H3 marks, and one with low signal (<4 reads per mil-

lion) for both marks. The former DHS were classified as weak promoter DHS, based on their close

proximity to RefSeq TSS and the low expression of neighboring genes (Figure 4—figure supple-

ment 1B,C). The remaining DHS group, characterized by low ChIP-seq signals, was largely intergenic

but showed weak to undetectable levels of canonical histone marks. Low signal regions that over-

lapped a CTCF site with higher CTCF ChIP-seq signals than H3K4me1 signals were classified as insu-

lators (Figure 4—figure supplement 1A). The remaining regions were designated weak enhancer-

DHS based on their distance from TSS and their low levels of H3K27ac ChIP-seq signal compared to

the enhancer-DHS group (Figure 4—figure supplement 1B). The majority of promoter-DHS and

weak promoter-DHS were <1 kb from a TSS (Figure 4—figure supplement 1B). To compare the

level of expression for genes with promoter-DHS or weak promoter-DHS (Figure 4—figure supple-

ment 1C), the TSS was required to be within 10 kb of the DHS summit. Any gene with both a weak

promoter-DHS and a promoter-DHS within 10 kb was categorized as being regulated by a pro-

moter-DHS; thus, there was no overlap between weak promoter-DHS-regulated genes and pro-

moter-DHS-regulated genes.

Comparison of DHS classes across tissues
All available mouse tissue DNase-seq peak regions were downloaded from the ENCODE Project

website (https://www.encodeproject.org/) (Shen et al., 2012). ENCODE mm9 blacklist regions

(https://sites.google.com/site/anshulkundaje/projects/blacklists) were removed, and the lists were

merged to form a single reproducible peak list for each tissue, as follows. Due to variable replicate

numbers across tissues, the following cutoffs were used to form merged DHS lists for each tissue. If

a tissue had only two replicates (as was the case for 12 of the 20 non-liver tissues), we required that

the DHS be present in both replicates. If a tissue had 3 or 4 replicates, then the DHS were required

to be present in all or all but one replicate (this was the case for 7 of the 20 non-liver tissues). For

whole brain tissue, the merged peak list required that a DHS was present in at least 5 of the 7 repli-

cates. These regions were compared to each other using the Bedtools multiinter command with the

–cluster option to generate a union DHS peak list for all tissues, where the score column represents

the number of non-liver tissues in which a given region was found. For all liver DHS assigned to one

of the above five DHS classes (Supplementary file 2A), each liver DHS summit was mapped to this

all tissue union peak list, allowing only one match per summit up to 150 nt away. If a given liver DHS

summit was >150 nt from the nearest DHS in any other tissue, it was given a score of ‘0’ for liver-

specificity. Otherwise the score represents the number of mouse tissues that the closest DHS was

found in.

Super-enhancer identification
Super-enhancers were identified using the ROSE (Ranked Order of Super Enhancers) software pack-

age (http://younglab.wi.mit.edu/super_enhancer_code.html). ROSE takes a list of enhancer regions

and mapped read positions as input to identify highly active clusters of enhancers. Default options

were used, including 12.5 kb as the maximum distance for grouping (stitching) enhancers into puta-

tive super-enhancers, as well as reads per million normalization for all H3K27ac ChIP signal used for

ranking enhancer clusters. The set of all enhancer-DHS and weak enhancer-DHS regions from the

five class DHS model described above (Supplementary file 2A) was used as the region input list. A

set of 19 publicly available H3K27ac ChIP-seq datasets from mouse liver was used as signal input

(see Supplementary file 4 for sample information). This set includes datasets for male, female

(Sugathan and Waxman, 2013), and circadian time course (male only; [Koike et al., 2012]) mouse

liver datasets. A strict intersection of super-enhancers identified across all 19 samples was used to

define a set of 503 ‘core’ super-enhancers in mouse liver using the Bedtools multiintersect com-

mand, as shown in Figure 4—figure supplement 2A. Any enhancer cluster (i.e., constituent

enhancers within 12.5 kb, as above) not identified as a super-enhancer in any sample was termed a

typical enhancer and considered as individual constituents only.
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Gene targets for enhancers were assigned as the nearest gene (based on TSS position up to a

maximum distance cutoff of 10 or 25 kb, as specified. Gene expression values and tissue specificity

were defined as described above. Aggregate plots were generated using Deeptools (version 2.3.3).

In Figure 4F, the scale-regions option of Deeptools was used to scale super-enhancers and typical

enhancers to their median sizes of 44 kb and 1 kb, respectively. Figure 4—figure supplement 2B

used the reference-point mode of Deeptools and shows GRO-seq signal that overlaps eRNA loci as

defined previously (Fang et al., 2014). Super-enhancer and typical enhancer coordinates for mESC

and ProB cells are from (Whyte et al., 2013).

Data availability
Data generated and used in this study has been deposited in the Gene Expression Omnibus (GEO)

under accession number GSE102999 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE102999). ChIP-seq data are available under the subseries GSE102997 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE102997). 4C-seq data are available under the subseries GSE102998

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102998). Published datasets used in this

study are listed in Supplementary file 4.
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