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Abstract
Artificial intelligence (AI) is playing an increasingly important role in medicine, 
especially in the field of medical imaging. It can be used to diagnose diseases and 
predict certain statuses and possible events that may happen. Recently, more and 
more studies have confirmed the value of AI based on ultrasound in the evalua-
tion of diffuse liver diseases and focal liver lesions. It can assess the severity of 
liver fibrosis and nonalcoholic fatty liver, differentially diagnose benign and 
malignant liver lesions, distinguish primary from secondary liver cancers, predict 
the curative effect of liver cancer treatment and recurrence after treatment, and 
predict microvascular invasion in hepatocellular carcinoma. The findings from 
these studies have great clinical application potential in the near future. The 
purpose of this review is to comprehensively introduce the current status and 
future perspectives of AI in liver ultrasound.

Key Words: Machine learning; Deep learning; Radiomics; Diffuse liver diseases; Focal 
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Core Tip: Artificial intelligence (AI) is playing an increasingly important role in medicine, especially in the 
field of medical imaging. Currently, there is a need of a comprehensive review to introduce the application 
of AI based on ultrasound in diffuse and focal liver lesions. In this article, we introduce the application of 
AI in the assessment of liver fibrosis and nonalcoholic fatty liver and the differentiation of focal liver 
lesions. In addition, we discuss the performance of AI based on ultrasound in predicting curative effect, 
prognosis and microvascular invasion in hepatocellular carcinoma. Lastly, we illustrate the future prospect 
of AI in liver ultrasound.
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INTRODUCTION
In the past several years, liver diseases have affected millions of lives and became one of the main 
causes of illness and death in the world[1]. It is reported that more than one-fifth of the Chinese 
population are affected by liver diseases, such as liver fibrosis, liver cancer and nonalcoholic fatty liver 
disease (NAFLD), contributing unambiguously to health loss. Therefore, paying more attention to liver 
diseases is of great significance.

Artificial intelligence (AI) is defined as the research of algorithms that enable machines to have the 
ability of reasoning and performing functions such as solving problems, recognizing object and word, 
inferring world states, and making decisions[2]. AI is a precise prediction technique that automates 
learning and recognizes patterns in data. Apart from this, AI has been extensively applied to medical 
diagnosis, especially in medical image analysis. This application mainly relies on deep learning, a 
subfield of machine learning. Deep learning is on the frontier of AI, which is based on deep neural 
networks (DNNs) with more than one hidden layer. Convolutional neural networks (CNNs) are a 
branch of DNNs that are particularly useful for recognizing images and have stimulated a large amount 
of interest from industry, academia and clinicians[3].

Compared to other medical imaging techniques, ultrasound is noninvasive, portable and can provide 
real-time imaging. In recent years, AI-powered ultrasound has become more developed and been 
implemented in clinical applications in order to reduce the subjectivity and improve the efficiency of 
ultrasound diagnosis[4]. Many studies have confirmed the value of AI in the evaluation of thyroid 
nodule, breast lesion and liver lesion classification by ultrasound. In addition to these applications, 
other AI applications in ultrasound have also been explored and achieved great progress.

In liver medical imaging, AI can make a quantitative assessment by recognizing imaging information 
automatically to aid physicians in making more precise and comprehensive imaging diagnoses[5]. This 
technique has been extensively applied to computed tomography (CT), positron emission tomography-
CT, magnetic resonance imaging and ultrasound to diagnose liver lesions. For instance, deep learning 
based on CT and positron emission tomography-CT can be used to detect new liver tumors and 
metastatic liver malignancy, and to predict the primary origin of liver metastasis[6-8].

There are also many studies that have illustrated the application of AI in liver ultrasound, while a 
comprehensive review of AI in this field is lacking. In this review, we will introduce the application of 
AI based on ultrasound in diffuse liver diseases, including liver fibrosis and steatosis, and focal liver 
lesions (FLLs), including their differential diagnosis, prediction of a curative effect and prognosis and 
microvascular invasion (MVI) of hepatocellular carcinoma (HCC). The main structure of this review was 
illustrated in Figure 1.

APPLICATION OF AI IN DIFFUSE LIVER DISEASE 
There are a variety of diffuse liver diseases that can be asymptomatic or cause severe liver dysfunction, 
and many of them may lead to cirrhosis, hepatic carcinoma, and death. We will introduce the applic-
ations of AI based on ultrasound in two common diffuse liver diseases, i.e. liver fibrosis and steatosis.

Liver fibrosis
Liver fibrosis is the early step of cirrhosis and an important pathological basis of HCC[9]. Therefore, the 
early detection and prevention of liver fibrosis is essential in the clinical setting. However, although 
liver biopsy is the gold standard for classifying liver fibrosis using the Metavir score[10] or New 
Inuyama classification[11] to distribute the score ranging from F0 (no fibrosis) to F4 (cirrhosis). The use 

https://www.wjgnet.com/1007-9327/full/v28/i27/3398.htm
https://dx.doi.org/10.3748/wjg.v28.i27.3398


Cao LL et al. AI in liver ultrasound

WJG https://www.wjgnet.com 3400 July 21, 2022 Volume 28 Issue 27

Figure 1 Main structure of this review. AI: Artificial intelligence; FLLs: Focal liver lesions; HCC: Hepatocellular carcinoma.

of tissue examination for the assessment of liver fibrosis is controversial because liver biopsy is invasive 
and liver fibrosis is not equably distributed throughout the liver. There are an increasing number of 
credible, noninvasive and available approaches being widely applied in clinical practice. Recently, a 
large number of noninvasive techniques have been used to prevent adverse outcomes through the 
application of AI based on ultrasound.

AI based on B-mode ultrasound: As early as 20 years ago, AI was used to assist the diagnosis of liver 
fibrosis. Badawi et al[12] creatively proposed an approach that employed fuzzy reasoning techniques to 
identify diffuse liver diseases automatically by using digital quantitative features measured from the 
ultrasound images. They extracted parameters only from B-mode images, and the results revealed that 
this approach had higher specificity and sensitivity for the diagnosis of liver fibrosis than the statistical 
classification techniques, which had a certain effect but could not help much.

Apart from this, a novel deep multi-scale texture network based entirely on B-mode ultrasound 
images that was proposed recently seems to be more convenient[13]. The area under the receiver 
operating characteristic curve of this approach was 0.92 for significant fibrosis (≥ F2) and 0.89 for 
cirrhosis (F4) in the validation group, which outperformed the ultrasonographers and three serum 
biomarkers during diagnosis. Although it cannot be used for liver fibrosis staging now, it has excellent 
potential in the future workflow.

AI based on Doppler ultrasound: On the basis of grey-scale parameters from B-mode images, Doppler 
parameters of intrahepatic blood vasculature were added as essential parameters. Eventually, five 
ultrasonographic variables, including the liver parenchyma, thickness of the spleen, the hepatic vein 
waveform, hepatic artery pulsatile index and damping index, were selected as the input neurons. A data 
optimization procedure was used in an artificial neural network for the diagnosis of liver fibrosis, which 
achieved an area under the curve of 0.92[14]. Although this model proved to predict liver cirrhosis 
accurately, it still could not provide a specific grading.

AI based on elastography: In recent years, with the development of ultrasound, studies have proposed 
computer-aided techniques based on elastography that is of great importance in ultrasound images to 
identify and stage liver fibrosis. Real-time tissue elastography (RTE) is one of the recently developed 
elastography techniques. In a study, 11 image features were extracted directly from the RTE software 
that was installed in the ultrasound system to quantify the patterns of the RTE images[15]. Then, the 
data were processed and divided among four classical classifiers. The results showed that the 
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performance of the adopted classifiers was much better than the previous liver fibrosis index method, 
which predicted the stage of fibrosis using RTE images and multiple regression analyses. The good 
performance in this study demonstrated that machine learning had the potential to perform as powerful 
tools for staging liver fibrosis.

Nowadays, most applications of AI in evaluating the stage of liver fibrosis are based on shear wave 
elastography. An automated approach including the image quality check, region of interest (ROI) 
selection and CNN classification based on shear wave elastography showed a more accurate detection 
of ≥ F2 fibrosis levels than a previously published baseline approach, with an area under curve of 0.89 vs 
0.74[16]. The deep learning radiomics also presented the potential diagnostic performance in chronic 
hepatitis B patients compared with two-dimensional shear wave elastography[17]. AI could help stage 
liver fibrosis more accurately with the assistance of elastography.

Liver steatosis
Hepatic steatosis, characterized by the accumulation of fat droplets in hepatocytes, can develop into 
nonalcoholic fibrosis, steatohepatitis, cirrhosis, and even HCC[18,19]. Early detection and treatment may 
halt or reverse NAFLD progression[19]. As a consequence, there is a critical need to develop 
noninvasive imaging methods to assess hepatic steatosis. Noninvasive liver imaging methods including 
CT, magnetic resonance imaging and ultrasound have been extensively investigated[20].

Ultrasound is the first-line examination for identifying liver steatosis. It shows an enlarged liver with 
a greater number of echoes caused by fat droplets, and the liver is brighter and more hyperechoic 
compared with the right kidney. The image is qualitative and relies on the subjective judgement of the 
operator, which definitely leads to variable results and low reproducibility[21]. To overcome the 
observer bias, a series of quantitative and semi-quantitative parameters, including attenuation and 
backscatter coefficients, the hepato-renal index (HRI) and ultrasound envelope statistic parametric 
imaging (known as speckle statistics), have been implemented, some of which represent excellent 
reproducibility and reliability[21-24]. At present, almost all the studies published have concentrated on 
NAFLD.

It was reported that the detection of moderate and severe steatosis based on ultrasound has an 84.8% 
sensitivity and a 93.6% specificity, while mild steatosis has an even lower sensitivity[25]. Recently, some 
researchers applied AI to improve the ultrasound detection rate of NAFLD, and the results were 
promising. Table 1 shows the studies using AI based on ultrasound to identify steatosis. The studies 
showed that AI had tremendous potential in helping diagnose liver steatosis. Some studies attempted to 
optimize CNN models. In the future, classifying the degree of liver steatosis with the assistance of the 
AI could be a trend.

Qualitative evaluation: Deep learning has been applied to qualitatively evaluate NAFLD. An approach 
of assessing fatty liver disease by utilizing deep learning based on CNNs with B-mode images was 
proposed[26]. The study recruited 135 participants with known or suspected NAFLD to investigate the 
function of four liver views (three views in the transverse plane, including hepatic veins at the 
confluence with the inferior vena cava, right portal vein and right posterior portal vein, and one view in 
the sagittal plane, i.e. the liver and kidney view) in the assessment[27]. The study assessed attention 
maps for liver assessment based on CNNs, which illustrated that the available image features provided 
by each view could assess liver fat. Unlike the previous study, magnetic resonance imaging proton 
density fat fraction was used as a reference standard, which was not precise enough compared with 
liver biopsy.

A novel framework combining transfer learning with fine-tuning was proposed[28]. Although this 
study revealed that the new framework outperformed CNN, this conclusion was not entirely convincing 
because the radiologists’ qualitative scores were the reference standard. This framework was also 
utilized in other studies and achieved a good performance.

With the development of deep learning, Chou et al[29] established two-class, three-class and four-
class prediction models to classify the severity of steatosis by using B-mode ultrasound images from 
2070 patients. Although liver biopsy is the gold standard, the deep learning model could select eligible 
patients for a liver biopsy by evaluating the severity of fatty liver preliminarily, which would reduce 
unnecessary tests.

Different deep learning algorithms tend to have different performances. The combined deep learning 
algorithm based on B-mode images had an area under the receiver operating characteristic curve of 
0.9999 and accuracy of 0.9864 compared with other algorithms[30]. Therefore, in future studies selecting 
an optimal algorithm is important.

Quantitative evaluation: AI has also been applied to quantitatively evaluate NAFLD. Radiofrequency 
signals may negate the loss or change of data during translation to B-mode ultrasound images. A study 
acquired the diagnosis and fat fraction of NAFLD by inputting the original data based on one-
dimensional algorithms[31]. The investigators obtained a 97% sensitivity and 94% specificity, and the 
positive predictive value was up to 97%, which demonstrated that the utilization of original ultrasound 
radiofrequency could be applied in diagnosing NAFLD and to quantifying liver fat fraction. Similarly, 
in an animal experiment, a CNN model based on radiofrequency signals was shown to have a better 
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Table 1 Studies using artificial intelligence based on ultrasound for fatty liver disease diagnosis

Task Reference 
standard Sample size Method Results Ref.

Fatty liver 
disease 
diagnosis

Liver biopsy 55 patients with severe 
obesity, 38 of whom had 
fatty liver disease

Deep learning with B-mode 
image ultrasound

Sensitivity: 100%; specificity: 88%; accuracy: 96%; AUC: 
0.98

[26]

Fatty liver 
disease 
diagnosis

Radiologist 
qualitative 
score

157 ultrasound liver 
images from unknown 
number of participants

Deep learning with B-mode 
image ultrasound 

Sensitivity: 95%; specificity: 85%; accuracy: 90.6%; AUC: 
0.96

[28]

NAFLD 
assessment

MRI proton 
density fat 
fraction

204 participants, 140 of 
whom had NAFLD, 64 
control participants 

One-dimensional CNNs Sensitivity: 97%; specificity: 94%; accuracy: 96%; AUC: 
0.98

[31]

NAFLD 
assessment

MRI proton 
density fat 
fraction

135 adult participants 
with known or suspected 
NAFLD 

Transfer learning with a 
pretrained CNN by four 
ultrasound views of liver 
routinely obtained

SCC: 0.81; AUC: 0.91 (PDFF ≥ 5%) [27]

NAFLD 
assessment

Liver biopsy 295 subjects, 198 mild 
fatty liver, one moderate 
degree of fatty liver

DCNN-based organ 
segmentation with 
Gaussian mixture modeling 
for automated quanti-
fication of the HRI

ICC of two radiologists and DCNN were 0.919, 0.916, 
0.734

[33]

The severity 
of fatty liver

Abdominal 
ultrasound

21855 B-mode ultrasound 
images, 2070 patients 
with different severities 
from none to severe fatty 
liver

Pretrained CNN models 
with B-mode ultrasound 
images

The areas under the receiver operating characteristic 
curves were 0.974 (mild steatosis vs others), 0.971 
(moderate steatosis vs others), 0.981 (severe steatosis vs 
others), 0.985 (any severity vs normal) and 0.996 
(moderate-to-severe steatosis clinically abnormal vs 
normal-to-mild steatosis clinically normal)

[29]

AUC: Area under curve; CNN: Convolutional neural network; DCNN: Deep convolutional neural network; HRI: Hepato-renal index; ICC: Intraclass 
correlation; MRI: Magnetic resonance image; NAFLD: Nonalcoholic fatty liver disease; PDFF: Proton density fat fraction; SCC: Spearman correlation 
coefficient.

performance than the traditional quantitative ultrasound when classifying steatosis[32].
An HRI model based on CNNs was also tested for NAFLD evaluation. Cha et al[33] reported that an 

automated approach had no significant difference in hepatic measurements and HRI calculations 
compared with experienced radiologists, which indicated that the aid of deep learning could reduce a 
radiologist’s workload and improve the residents’ diagnostic accuracy. In this study, an automated HRI 
calculation algorithm was used, including liver and kidney segmentation, kidney ROI extraction, liver 
ROI extraction, and calculation of the HRI.

APPLICATION OF AI IN FLLS
HCC is the most conventional original malignant FLL, which is the sixth most common cancer in human 
beings as well as the fourth cause of cancer-related deaths in the world[1]. Hence, early accurate differ-
ential diagnosis of malignant and benign FLL is important for the management and prognosis of 
patients[34].

Ultrasound is the first-line imaging modality to identify FLLs in the clinical workflow. The 
development of AI provides a new method to improve the accuracy of ultrasound in diagnosing FLLs. 
Compared with radiologists viewing anatomical images, AI can better reflect monolithic tumor 
morphology as well as capture both granular and radiological patterns in a specific task, which is 
difficult by normal human vision[35]. Figure 2 illustrates the flowchart of the application of deep 
learning and radiomics in FLLs. Studies have confirmed that the application of AI can improve the 
diagnostic performance of ultrasound for FLLs (Table 2).

Differential diagnosis of FLLs
AI based on B-mode ultrasound: AI has been widely used in differentiating malignant and benign FLLs 
based on B-mode ultrasound. Gray level co-occurrence matrix could be used in extracting features from 
B-mode images, which has been used in differentiating malignant and benign FLLs combined with a 
fuzzy support vector machine[36]. This study achieved an area under the curve of 0.984 and 0.971 in 
database 1 and database 2, respectively, which confirmed the feasibility of AI in this field.
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Table 2 Studies using artificial intelligence based on ultrasound for focal liver lesion diagnosis

Modality and task Approach Target disease: number of the case Performance Ref.

Classifying different 
FLLs based on B-mode

ANN Cyst: 29; hemangioma: 37; malignant tumor: 33 Cyst vs hemangioma accuracy: 99.7%; cyst vs 
malignant tumor accuracy: 98.7%; 
hemangioma vs malignant tumor accuracy: 
96.1%

[40] 

Differentiating benign 
and malignant lesions 
based on B-mode

CNN Benign lesions: 300; malignant lesions: 296 All lesion accuracy: 84%; uncertain set of 
lesion accuracy: 79%

[37]

Classifying different 
FLLs based on B-mode

ANN (sparse 
autoencoder)

Normal liver: 16; cyst: 44; hemangioma: 18; HCC: 
30

overall accuracy: 97.2%; overall sensitivity: 
98%; overall specificity: 95.7%

[41]

Differentiating benign 
and malignant lesions 
based on B-mode

FSVM training set; DS1: benign lesions: 132, malignant 
lesions: 68; DS2: malignant liver cancer: 50, 
hepatocellular adenoma: 150, hemangioma: 35, 
focal nodular hyperplasia: 145, lipoma: 70

DS1: accuracy: 97%, sensitivity: 100%, 
specificity: 95.5%, AUC: 0.984; DS2: accuracy: 
95.1%, sensitivity: 92.0%, specificity: 95.5%, 
AUC: 0.971

[36]

Classifying different 
FLLs based on B-mode

CNN Non-tumorous liver: 258, hemangioma: 17, HCC: 
6, cyst: 30, focal nodular hyperplasia: 8

AUC for tumor detection: 0.935; AUC for 
tumor discrimination (mean): 0.916

[42]

Diagnosing HCC based 
on B-mode 

CNN Malignant tumor: 1786; benign tumor: 427 AUC for EV: 0.924 [38]

Differentiating benign 
and malignant lesions 
based on B-mode

CNN HCC: 6; cyst: 6600; hemangioma: 5374; focal fatty 
sparing: 5110; focal fatty infiltration: 934

IV: overall sensitivity: 83.9%; overall 
specificity: 97.1%; HCC detection rate: 85.3%; 
EV: overall sensitivity: 84.9%; overall 
specificity: 97.1%; HCC detection rate: 78.3%

[39]

Classifying different 
FLLs based on CEUS

ANN hemangioma: 16; focal fatty liver: 23; HCC: 41; 
metastatic tumor: 32 (hypervascular: 20 
hypovascular: 12)

Accuracy: 94.5%; sensitivity: 93.2%; 
specificity: 89.7%

[47]

Differentiating benign 
and malignant lesions 
based on CEUS

Deep belief networks HCC: 6; hemangioma: 10; liver abscess: 4; 
metastases: 3; focal fatty sparing: 3

Accuracy: 83.4%; sensitivity: 83.3%; 
specificity: 87.5%

[59]

Differentiating benign 
and malignant lesions 
based on CEUS

SVM Benign tumor: 30; malignant tumor: 22 Accuracy: 90.3%; sensitivity: 93.1%; 
specificity: 86.9%

[45]

Differentiating benign 
and malignant lesions 
based on CEUS

SVM Benign tumor, HCC or metastatic tumor: 98 Benign vs malignant accuracy: 91.8%, 
sensitivity: 93.1%, specificity: 86.9%; benign 
vs HCC vs metastatic carcinoma: accuracy: 
85.7%; sensitivity: 84.4%; specificity: 87.7%

[46]

Differentiating benign 
and malignant lesions 
based on CEUS

Deep canonical 
correlation analysis + 
multiple kernel 
learning

Benign tumor: 46; malignant tumor: 47 Accuracy: 90.4%; sensitivity: 93.6%; 
specificity: 86.9%

[43]

Differentiating benign 
and malignant lesions 
based on CEUS

3D-CNN HCC: 2110; focal nodular hyperplasia: 2310 Accuracy: 93.1%; sensitivity: 94.5%; 
specificity: 93.6%

[44]

Differentiating benign 
and malignant lesions 
based on CEUS

Deep neural network Focal nodular hyperplasia: 16; HCC: 30; 
hemangioma: 23; hypervascular metastasis: 11; 
hypovascular metastasis: 11

Top accuracy: 88% [48]

Differentiating benign 
and malignant lesions 
based on CEUS

CNN Development set: malignant tumor: 281, benign 
tumor: 82; testing set: malignant tumor: 164, 
benign tumor: 47

Accuracy: 91.0%; sensitivity: 92.7%; 
specificity: 85.1%; AUC: 0.934

[49]

ANN: Artificial neural network; AUC: Area under curve; CEUS: Contrast-enhanced ultrasound; CNN: Convolutional neural network; DS1: Database 1; 
DS2: Database 2; EV: External validation; FLL: Focal liver lesion; FSVM: Fuzzy support vector machine; HCC: Hepatocellular carcinoma; IV: Internal 
validation; SVM: Support vector machine; 3D: Three-dimensional.

With the development of AI, deep learning plays a more vital role in the differential diagnosis of 
FLLs. A CNN with ResNet50 was utilized to recognize benign from malignant solid liver lesions 
through ultrasonography. The performance was comparable to that of expert radiologists[37]. However, 
this study did not involve other information such as clinical factors. In another (multicenter) study, after 
adding seven clinical factors, a higher accuracy, sensitivity and specificity was obtained, compared with 
those from radiologists with 15 years of experience. The area under the curve for recognizing malignant 
from benign lesions reached up to 0.924 in the external validation cohort[38].
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Figure 2 Illustration of the flowchart of the application of deep learning and radiomics in focal liver lesions. These two methods were based on 
big data, which contained image preprocessing, feature extraction and model construction.

However, the aforementioned studies only included common FLLs. Increasing the types of FLLs may 
confuse the diagnosis and reduce the accuracy. Similar to the previous study, a multicenter study 
estimating internal validation and external validation cohorts had a larger volume of training data and 
involved more varieties of FLLs, including cysts, HCC, hemangiomas, focal fatty infiltration and focal 
fatty sparing[39]. Although they obtained a lower sensitivity due to more types of diseases, the 
performance in the external validation cohorts was still satisfactory. In addition, they utilized videos as 
training materials to achieve real-time analysis in the future workflow. This novel approach would offer 
great convenience to radiologists in helping differentiate FLLs.

AI could also be used in the classification of FLLs. In order to optimize feature sets, a hybrid textural 
feature extraction system was proposed by Hwang et al[40]. In their preliminary study, a high accuracy 
was observed in classifying cysts vs hemangiomas and cysts vs malignant lesions. However, when 
classifying hemangiomas vs malignant lesions by extracting multiple ROI, the accuracy was only 80%. 
The proposed approach exhibited a better accuracy in all classification groups by quantifying the key 
features in ultrasound images, especially in classifying hemangioma vs malignant, with an accuracy of 
96.13%.

Later, a sparse autoencoder system based on deep learning was proposed in diagnosing cysts, 
hemangiomas and malignant lesions, and it outperformed the three progressive techniques, including 
K-enarest neighbor, multi-support vector machine and naive Bayes, with an overall accuracy of 97.2%
[41].

These two studies[40,41] focused on three kinds of FLLs. An algorithm that could simultaneously 
detect and characterize FLLs based on deep learning was proposed in diagnosing HCC, focal nodular 
hyperplasia, cysts, hemangiomas and metastasis, and it achieved an average area under the curve of 
0.916[42]. That study yielded promising results by using a small amount of data. Larger databases 
would increase the accuracy of this model.

AI based on contrast-enhanced ultrasound: It is reported that contrast-enhanced ultrasound (CEUS) 
images had better sensitivity and specificity for differentiating between malignant and benign tumors 
compared with B-mode images, which indicated CEUS had a superior diagnostic performance. 
Combining AI with CEUS could differentiate benign and malignant FLLs and classify different kinds of 
malignant lesions.

AI could be used to differentiate malignant and benign FLLs based on three-phase CEUS images. A 
two-stage multiple view learning that represented the integration of deep canonical correlation analysis 
and multiple kernel learning was used to fuse the characteristics of three-phase patterns in CEUS, 
presenting an accuracy of 90.41%[43]. The proposed algorithm had both a low computational complex 
and a high predictive accuracy. For multiview CEUS images, utilizing a multimodal feature fusion 
algorithm is necessary.

Compared with deep canonical correlation analysis-multiple kernel learning, the use of a three-
dimensioned CNN, which integrated the relationship between two temporally adjacent frames to 
extract features spatially and temporally, achieved a higher accuracy of 93.1%, sensitivity of 94.5% and 
specificity of 93.6%[44]. However, this algorithm still needs to be validated.

These two studies above[43,44] exploited heterogeneous visual morphology to describe the difference 
between liver masses. Apart from this method, time-intensity curve (TIC), which represents the contrast 



Cao LL et al. AI in liver ultrasound

WJG https://www.wjgnet.com 3405 July 21, 2022 Volume 28 Issue 27

intensity constantly and generates the fitted curve of enhanced intensity during the process, was used in 
many studies.

Support vector machine[45,46] and deep learning[47,48] based on TICs have presented good 
performances in differentiating FLLs. A support vector machine-based image analysis system was used 
for FLL classification and presented an area under the curve of 0.89[45]. An artificial neural network 
diagnostic system based on TICs was shown to have a similar accuracy and specificity in classifying five 
different liver tumors 10 years ago[47]. Later, deep learning became more mature, and TICs of the 
arterial and the portal vein phases of CEUS videos were extracted on the basis of the deep belief 
networks, a kind of neural network that was composed of layers of Boltzmann machines, to analyze the 
extracted TICs[48]. The accuracy of this deep learning method for classifying benign from malignant 
lesions was 83.36%. A novel evaluation procedure named ‘leave-one-patient-out’ and custom DNNs 
were creatively presented. That study involved various types of liver lesions and compared the custom 
DNN designs with the state-of-the-art architectures and obtained a maximal accuracy of 88% by 
utilizing the proposed evaluation procedure in both pretrained and trained-from-scratch models. This 
novel approach has a magnificent prospect for development, and it is worth further investigation.

AI based on CEUS was shown to assist in clinical settings as the reference and improve the 
performance of residents in the differentiation of benign and malignant FLLs[49]. In the future, it will 
likely play a supporting role in clinical work. However, AI based on TICs tends to complicate the 
calculation because generating TICs is a time-consuming process. Therefore, developing new 
approaches to extract features from CEUS images is important.

Application of AI in predicting curative effect and prognosis of HCC
It was reported that the Edmondson-Steiner grade is a vital preoperation predictor of tumor survival 
and recurrence after undergoing surgical resection[50,51]. Because preoperative pathological differen-
tiation grade can only be obtained by an invasive biopsy[52], it is necessary to explore a noninvasive 
method to predict therapeutic effect, recurrence and metastasis to achieve personalized treatment.

Some studies[53-55] demonstrated the superiority of AI based on CEUS in predicting a curative effect 
and prognosis in HCC. Although the results revealed a better performance of AI models compared with 
a single clinical or ultrasound model, a better performance may be obtained by adding clinical factors in 
the future studies.

Predicting curative effect of HCC: Transarterial chemoembolization (TACE) is the first-line therapy in 
patients who are diagnosed with mid-stage HCC, and the response to the first TACE treatment is 
related to the subsequent curative effect and survival. Therefore, it is necessary to predict the person-
alized responses to the first TACE treatment. A deep learning radiomics-based CEUS model, machine 
learning radiomics-based B-mode image model and machine learning radiomics-based TIC of the CEUS 
model were established to achieve this function[53]. These models presented a better performance 
compared with the hepatoma arterial embolization prognostic score based on three indexes concerning 
liver function and tumor load, which will be of great benefit in selecting both first treatment and 
subsequent therapies after the first TACE treatment.

Predicting prognosis of patients with HCC: Radiofrequency ablation and surgical resection are 
recommended for early-stage HCC. Deep learning could also be used to predict the progression-free 
survival of these two therapies in HCC patients[54]. Two models based on these two kinds of therapies 
provided a satisfactory prediction accuracy and calibration of 2-year progression-free survival. In 
another study[55], a three dimensional-CNN model, which avoided missing information from CEUS 
images compared with extracting features from four-phase images, was used. It was observed that 
predicting prognosis of different treatments in advance and timely swapping of treatment would 
increase the 2-year progression-free survival, which could contribute to a better prognosis.

Application of AI in predicting MVI of HCC
MVI has shown to be the independent predictor of recurrence and poor outcomes of HCC. Therefore, 
making a noninvasive and accurate preoperative identification of MVI would be of great significance for 
HCC patients. The application of AI in predicting MVI achieved good performance based on gray-scale 
ultrasound images and CEUS.

The radiomics score based on ultrasound of HCC was established and shown to be an independent 
predictor of MVI[56]. The performance of the clinical nomogram improved significantly with the aid of 
a radiomics score, which demonstrated the important role of this technique.

Features of the peritumoral area have been shown to be more accurate recently[56]. The radiomic 
signatures from the gross and peritumoral region showed the best performance compared with the 
gross-tumoral region and the peritumoral region[57]. The area under the curves were 0.726 based on 
features of the gross and peritumoral region and 0.744 after the incorporation of essential clinical 
information.

These studies[56,57] mentioned above have confirmed the application of AI based on gray-scale 
ultrasound, and AI could be applied to CEUS in predicting MVI as well. Zhang et al[58] extracted 
radiomics features from the B-mode, artery phase, portal venous phase and delay phase images of 
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preoperative CEUS to construct four radiomics scores based on the primary dataset. Then, they used 
four radiomic scores and clinical factors for multivariate logistic regression analysis, which 
demonstrated that the portal venous phase and delay phase radiomics score, tumor size and alpha-
fetoprotein level were independent risk factors in predicting MVI. The radiomics nomogram based on 
these four predictors indicated a better discrimination and a good calibration compared with the clinical 
model (based on tumor size and alpha-fetoprotein level) in both the primary dataset (area under the 
curve: 0.849 vs 0.690) and the validation dataset (area under the curve: 0.788 vs 0.661). This study 
developed a new noninvasive predictive nomogram based on CEUS that could provide useful 
information in predicting MVI preoperatively, thus facilitating the choice of a more appropriate surgical 
option.

CONCLUSION
In conclusion, AI can provide great assistance in the evaluation of diffuse liver diseases (including liver 
fibrosis and liver steatosis) and FLLs. First, it could be applied to identify and stage liver fibrosis on the 
basis of B-mode ultrasound, Doppler ultrasound, and elastography. Second, the application of deep 
learning could be used to make qualitative evaluation based entirely on B-mode images and 
quantitative evaluation based on radiofrequency signals and HRI, which would improve the ultrasound 
detection rate of NAFLD. Third, AI has the ability to differentiate malignant FLLs from benign FLLs as 
well as classify different kinds of FLLs with a better performance compared with clinical indexes. 
Fourth, the curative effect and prognosis of HCC treatment can be predicted, and an optimal person-
alized treatment can be chosen. Last, AI based on B-mode ultrasound and CEUS could predict MVI of 
HCC preoperatively, which could be helpful for more appropriate surgical planning. These applications 
had good specificity, accuracy and a comparable or even better performance compared with experts in 
the diagnosis and differentiation of diffuse and focal liver lesions.

There are also some limitations in the applications of AI using ultrasound. First, it is difficult to 
prepare a large-scale dataset, especially for medical images. Second, although deep learning is the 
widest used algorithm and has good performance in various studies, its interpretability and general-
ization is low. Third, the input data may vary from different equipment and operators, which would 
influence the performance of AI. Last, because a large amount of data is needed to train and validate the 
established algorithms, the conclusions of many single-center studies are not convincing. Therefore, 
researchers are expected to conduct more multicenter studies and incorporate more samples, as much as 
possible. At the same time, optimizing algorithms and creating standards for medical images are also 
necessary. Despite medical images, researchers could also build the database containing important 
clinical factors to establish a more comprehensive AI model for future work.
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