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DNA damage occurs throughout tumorigenesis and development. The immunogenicity of
DNA makes it an immune stimulatory molecule that initiates strong inflammatory
responses. The cGAS/STING pathway has been investigated as a critical receptor in
both exogenous and endogenous DNA sensing to activate the innate immune response.
Growing lines of evidence have indicated that activation of the cGAS/STING pathway is
critical in antitumor immunity. Recent studies have demonstrated the outstanding
advancement of this pathway in tumor-combined immunotherapy; accordingly,
increased studies focus on exploration of STING pathway agonists and analogues.
However, current studies propose the potential use of the cGAS/STING pathway in
tumor initiation and metastasis. Here, we review the molecular mechanisms and activation
of the cGAS/STING pathway, and the relationship between DNA damage and this
pathway, particularly highlighting the remodeling of immune contexture in tumor
environment (TME) triggered by cascade inflammatory signals. A detailed
understanding of TME reprogramming initiated by this pathway may pave the way for
the development of new therapeutic strategies and rational clinical application.
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1 INTRODUCTION

The tumor environment (TME) is known as a highly dynamic and constantly evolving system that is
hard to predict. Interactions between various types of cells or cells with non-cells affect tumor growth
and progression. In the process of tumor progression and oncotherapy, the DNA damage of tumor
cells occurs frequently induced by various stresses; meanwhile, the immune system is activated
continuously. DNA damage has been concluded as a critical factor in immune activation. Currently,
inflammation response has become an important characteristic of tumor, and abnormal
inflammatory mediator expression has been considered to be directly related to tumor prognosis
(Qu et al., 2018; Greten and Grivennikov, 2019). The tumor could affect all systems in an organism,
including the immune system, and when combined with radiotherapy or chemotherapy, it may lead
to the collapse of the immune system. Experimental and clinical studies have suggested that a great
part of deaths occurring in cancer are related to chronic infections, which are unmanageable and
frequently in an advanced tumor stage. Indeed, interactional signals produced by tumor cells and
immune cells in TME induce the changes of TME and build a tumor “preferred” TME to support
growth and metastasis (Hinshaw and Shevde, 2019; Chen et al., 2021). Throughout the tumor
process, the TME continues to evolve and reconstruct in the context of DNA damage, and the host
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struggles against the tumor persistently. Researchers have
attempted to reveal the relationship among DNA damage,
inflammation, and tumors, but it remains unclear.

The cGAS/STING pathway, a cytosolic DNA receptor, has
been regarded as an important mechanism to regulate
inflammation-driven tumor progression (Ahn et al., 2014).
The cyclic GMP-AMP synthase (cGAS) is known due to its
specific ability of recognizing and responding to cytosolic
DNA in a DNA-sequence-independent but DNA-length-
dependent manner (Sun et al., 2013). STING is an adaptor in
innate immune which inherits the activation signal of cGAS and
triggers downstream immune inflammatory response to protect
the host. The function of the cGAS/STING pathway in eliciting
immunity against exogenous pathogenic microorganisms has
been extensively reported. Recent lines of evidence have
extended the role of this pathway to cancer, senescence, and
autophagy. In this review, we focus on the dichotomous roles of
cGAS/STING in TME remodeling and its profound influence as a
potential therapeutic strategy against cancer.

2 OVERVIEW OF THE CGAS/STING
PATHWAY

cGAS, a 522-amino-acid protein, contains an unstructured
positively charged domain (N-terminal) and a
nucleotidyltransferase domain (C-terminal), both of which are
working to bind with DNA. The N-terminal domain is reported
to be involved in cGAS nuclear translocation (Gentili et al., 2019).
The C-terminal domain contains two lobes with an active site as
the catalytic domain of cGAS. The N-terminal domain contributes
to the separation of the cGAS/DNA complex to mediate the cGAS
activation once bound with DNA (Du and Chen, 2018). After
binding with DNA, cGAS assembles into a dimer, which is formed
by two DNA fragments embedded into two cGAS molecules to
maintain a stable active state. It was reported that the longer DNA
performed more efficiently in cGAS activation and promotion of
cGAS/DNA complex formation (Zhou et al., 2018).

It has been concluded that cGAS is located in the cytoplasm
and is kept isolated from self-DNA in the nucleus and
mitochondria to prevent cGAS activation. However, recent
studies presented that cGAS could be observed in the nucleus
in case of DNA damage (Liu H et al., 2018; Zierhut et al., 2019).
What is more, it was indicated that cGAS was mainly localized in
the nucleus but strictly separated from chromatin (Volkman
et al., 2019). However, the mechanisms through which cGAS
could remain inactive in the nucleus remain unclear. It is
speculated that the predominant localization of cGAS in the
nucleus might be a preparation for rapid response to guarantee
sufficient signaling under conditions of DNA exposure (Hopfner
and Hornung, 2020).

After binding with DNA, the cGAS dimer catalyzes ATP and
GTP into 2′,3′-cyclic GMP-AMP (cGAMP), a second messenger,
to activate stimulator of interferon genes (STING) at the
endoplasmic reticulum (ER) and initiate STING re-localization
in the cytoplasm. STING is a 40-kDa protein with four
transmembrane domains in ER, which are responsible for

binding kinase TANK-binding kinase 1 (TBK1) (Zhang et al.,
2020). Upon binding to cGAMP, STING is activated through
transforming the structure from a higher-order oligomerization
to tetramers (Shang et al., 2019; Zhao et al., 2019). Then, STING is
transferred from ER to Golgi, where STING recruits and activates
TBK1, and then promotes interferon regulatory factor 3 (IRF3)
and NFκB translocation into the nucleus and conducts
transcriptional function further (Li et al., 2013; Liu et al.,
2015; Zhang et al., 2019).

3 ACTIVATION OF THE CGAS/STING
SIGNALING PATHWAY

3.1 cGAS Recognizes DNA Fragment
cGAS/STING pathway response is concluded to be activated via
DNA fragments. It is clear that the DNA source of pathogenic
microorganisms is the primary factor of the pathway activation.
Recent studies indicated that cGAS can also interact with
endogenous self-DNA fragments, including nuclear DNA,
mitochondrial DNA, micronucleus, and chromatin free in
cytoplasm.

It has been confirmed that cGAS could combine with double-
stranded DNA (dsDNA), single-stranded DNA (ssDNA), and
RNA–DNA hybrids in the cytoplasm (Herzner et al., 2015;
Luecke et al., 2017). Various exogenous DNA that could bind
with cGAS were suggested, including bacteria, viruses, and
parasites (Hahn et al., 2018; Cohen et al., 2019; Song et al.,
2020). cGAS expression is also detected in the nucleus; it is
assumed that exogenous DNA from viruses might be identified in
the nucleus by cGAS, due to the increased accessibility as the virus
replicates in the nucleus (Lahaye et al., 2018). The exogenous
DNA released into intercellular space could also activate immune
cells and neighboring cells to initiate the defense response of the
host (Nandakumar et al., 2019).

Recently, increasing lines of evidence indicate that endogenous
self-DNA plays a crucial role in activating the cGAS/STING
pathway, which is closely linked to health and disease. Self-DNA
is commonly packaged or restricted in the nucleus and
mitochondria to constrain the contact with cGAS (Boyer et al.,
2020;Michalski et al., 2020). A recent study indicated that cGAS was
not free in the cytoplasm but localized on the plasma membrane
through the N-terminal domain (Barnett et al., 2019). If these
restrictions are violated, thus triggering self-DNA or cGAS
release into cytoplasm, judged as mislocation, a rapid and intense
inflammatory reaction would be initiated via the cGAS/STING
pathway (Zhang et al., 2019). Normally, the self-DNA
mislocation could be induced by various stress factors, such as
ultraviolet light, ionizing radiation, DNA damage agents, and
replication stress; the subsequent DNA repair failure and cell
death are the other important sources of free self-DNA
(Bhattacharya et al., 2017; Mackenzie et al., 2017). In the process,
increased genomic instability leads to exposure of chromatin and
formation of abnormal micronucleus, which are also regarded as the
agonist of the cGAS/STING pathway (Figure 1).

Another potential source of self-DNA in the cytoplasm is
mitochondrial DNA (mtDNA) (Figure 1). Mitochondrial
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degeneration and membrane potential reduction is the primary
cause of mtDNA leaking into the cytoplasm. Studies have
performed that the opening of mitochondrial permeability
transition pore (mPTP) could lead to mtDNA release; voltage-
dependent anion channel 1 (VDAC1) oligomers were also
involved in the process through formation of pores in the
mitochondrial outer membrane (Kim J et al., 2019).
Consistently, a recent study showed that the
hyperinflammatory responses were induced in amyotrophic
lateral sclerosis through cGAS/STING pathway activation via
mPTP- and VDAC1-mediated mtDNA release (Yu et al., 2020).
In the process, the dimer in the mitochondrial outer membrane
was formed by bax and bak, which contribute to open the pores
on the membrane and free mtDNA from the mitochondrial
matrix (White et al., 2014; McArthur et al., 2018).
Simultaneously, the mitochondrial cytochrome c is also leaked
into the cytoplasm and activates caspases to cleave cGAS and
IRF3 to block inflammatory reactions (White et al., 2014;
McArthur et al., 2018).

3.2 Activation of the cGAS/STING Pathway
The C-terminal of cGAS contains a motif with zinc ion binding
module, which is involved in DNA binding and cGAS

dimerization. The pocket between two lobes is the pivotal
binding site of substrates (Hopfner and Hornung, 2020). Once
cGAS binds with DNA, the pocket structure of cGAS would
transform to cyclize ATP and GTP into cGAMP (Figure 1). The
cGAMP contains two phosphodiester bonds; one connects 2′-
hydroxyl of GMP to 5′-phosphate of AMP, and another connects
3′-hydroxyl of AMP to 5′-phosphate of GMP(Ablasser et al.,
2013a; Zhang et al., 2013). Therefore, this unique isomer
determines the specific activation of cGAS by dsDNA,
although the ssDNA could also bind with cGAS, but the lack
of specific phosphodiester bonds makes the activation impossible
under the circumstances (Zhang et al., 2020).

Recent studies reported that interaction of cGAS and dsDNA
induced the formation of micrometer-sized liquid-like droplets
through liquid–liquid phase separation, in which cGAS was
activated (Du and Chen, 2018). These lipid-like droplets
enhance cGAMP generation through increasing the
concentrations of reactants, and the process is reported to be
dynamic and reversible, which is proposed to initiate or terminate
inflammatory response to DNA in a timely manner (Du and
Chen, 2018).

The cGAMP binds with STING to form a polymer, in which
the pocket conformation of STING would be changed from an

FIGURE 1 | The cGAS/STING signaling pathway. cGAS consists of an N-terminal domain and a C-terminal domain that contains two lobes and a catalytic domain.
The tumor cells are damaged under various stresses (the box on the right); the free self-DNA from the nucleus, mitochondria, and dying tumor cells bind to and activate
cGAS, and catalyze the synthesis cGAMP. cGAMP binds to and changes the conformation of STING, and then STING transfers from ER to Golgi apparatus and is
phosphorylated by adjacent activated TBK1. Subsequently, IRF3 and NFκB are phosphorylated by TBK1 and translocate into the nucleus to regulate IFN-I and
inflammatory cytokine generation.
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open roof to a closed conformation (Shang et al., 2012; Zhang
et al., 2013). Subsequently, STING leaves ER and transfers to the
Golgi apparatus in the form of COP-II vesicles, where the STING
dimer would be phosphorylated by the adjacent activated TBK1
but not the one bound itself (Liu et al., 2015). The
phosphorylation of this complex provides a docking site for
recruiting IRF3 via binding with the positively charged surface
of IRF3, and then IRF3 is phosphorylated by TBK1; thus, the
dimerized IRF3 translocates into the nucleus and turns on
interferon-I (IFN-I) and inflammatory cytokines (Tao et al.,
2016). Another alternative mechanism is to activate NFκB
downstream of this pathway, but the contradictory models in
the process have been previously proposed (Konno et al., 2013;
Fang et al., 2017; de Oliveira Mann et al., 2019) (Figure 1).

4 DNA DAMAGE AND CGAS/STING

As the storage bank of genetic information, maintaining the
integrity of DNA is of importance. Emerging lines of evidence
have suggested that the cGAS/STING pathway plays a pivotal role
in regulating DNA damage response and genomic instability,
which is involved in the progression of multiple diseases
including cancer.

4.1 DNA Damage Response and Genomic
Instability
DNA damage of cells can be induced by exogenous and
endogenous stress; cells establish a complex DNA damage
response (DDR) system in the process, which involves
multiple interactive or independent signaling pathways, and
much of them remain unclear. Various cell biological
processes are in connection with DDR, such as cell cycle
regulation, DNA damage repair, cell metabolisms, senescence,
and apoptosis. Timely and appropriate DDR has a positive effect
on maintaining integrity and correctness of genome.

Genomic instability is an important indicator in disease events
particularly in cancer, which has been observed in a variety of
malignancies and precancerous lesions, and is related to
prognosis, therapy, and overcome (Liu X et al., 2017; Kim J. H
et al., 2019; Bao et al., 2021). Genomic instability elevation could
be due to the defect of DDR and increased replication stress.
Normally, the intracellular random errors produced by
replication or stress exposure would trigger cell cycle
checkpoints and DNA damage repair system to correct and
rescue to ensure genetic stability. The abnormal damage
response and repair could induce genomic instability
occurrence through breaking the limited fidelity of DNA. It is
realized that most of the human tumors are associated with
genomic instabilities, which also indicate the tumor stage,
metastasis, and recurrence (Chan-Seng-Yue et al., 2020; Bao
et al., 2021). Genomic instability is related to the resistance of
chemotherapy and radiotherapy in a clinical setting, such as taxol,
5-fluorouracil, and epirubicin used in breast cancer, colon cancer,
and osteosarcoma (Telli et al., 2016; Hoglander et al., 2018). The
increased genomic instability, abnormal chromosome copy

numbers, and chromosome deficiency have also been verified
in some metastasis of tumors (Pailler et al., 2015; Bakhoum et al.,
2018).

As another result of DNA damage, small fragments of DNA
leak out of the nucleus in mitosis and form the membrane-
packaged micronuclei (Hintzsche et al., 2017). As mentioned
previously, micronucleus is a pivotal source of self-DNA, through
which cGAS is activated and triggers downstream signaling
pathway to initiate inflammatory immune response. cGAS is
confirmed to be co-localized with γH2AX, a DNA damage
marker. Furthermore, researchers showed that the co-
localization of cGAS with γH2AX did not exist only in
micronuclei in the cytoplasm; it was also observed that cGAS
was transferred into the nucleus and localized at the sites of
damaged dsDNA (Liu H et al., 2018). The DDR to micronuclei
that connected with the cGAS/STING pathway might guide the
fate selected by cells to deal with, rescue or elimination;
consequently, the irreparable DNA damage of cells leads to
apoptosis but failed rescue induces mutation and tumor
eventually (Gulen et al., 2017).

4.2 Interaction of the cGAS/STING Pathway
and Tumor
Increased number of studies reveal the crucial role of the cGAS/
STING pathway in innate antitumor immunity; however,
evidence on the cGAS/STING pathway promoting tumor
progression is also emerging.

The DNA of tumor cells is commonly released in the process
of rapid proliferation and antitumor therapy; subsequently, cGAS
recognizes the DNA source and responds quickly to activate
STING and downstream cascade reaction to eliminate tumor cells
through innate immune response (Wang et al., 2020).
Researchers have shown that micronuclei are widespread in
tumor cells and tumor stroma. Antigen-presenting cells (APC)
are initiated and regulated by IFN-I, and then the tumor antigens
yield to CD8 T cells and natural killer (NK) cells (Woo et al., 2014;
Marcus et al., 2018). Recent studies have performed that the
cGAS/STING pathway is activated in APC via free DNA in
tumor, which renders tumor vulnerable to immunological
surveillance (Marcus et al., 2018). cGAS/STING pathway
activation in tumor cells forms an obstacle to the early-stage
tumors through upregulating IFN-I and inflammatory cytokines
for antitumor immunity, which is also closely related to induction
of tumor cell senescence (Dou et al., 2017).

On the other hand, the tumor cells need to evade this signaling
pathway detection to survive in the harsh living environment;
thus, IFN-I deletion and the cGAS/STING axis are observed to be
disrupted in tumors (Gajewski and Corrales, 2015). Previous
studies showed that the cGAS/STING pathway could be rendered
defectively by various mechanisms, such as the interrupted
translocation from ER to Golgi, abnormal methylation at
promoter regions of cGAS and STING, and improper
posttranslational modification of these proteins (Xia et al.,
2016a; Xia et al., 2016b). A recent study suggested that
hypoxia in TME could inactivate the cGAS/STING pathway
and induce immunosuppression through targeting an
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epigenetic factor NCOA3 by hypoxia-responsive miRNAs, which
was necessary for basal levels of cGAS expression (Wu et al.,
2017). As expected, restoring cGAS expression recovered the
anti-tumor immune response (Wu et al., 2017). In addition,
cGAS/STING pathway activation has also been indicated to
regulate intrinsic cellular programs, including inducing tumor
cell autophagy, apoptosis, necroptosis, and pyroptosis
(Vanpouille-Box et al., 2018; Li et al., 2019; Zhang et al., 2020).

It seems certain that the success of radiotherapy and
chemotherapy in tumor therapy is closely related to the innate
immune signaling partially mediated by the cGAS/STING
pathway. Meanwhile, evidence that the cGAS/STING pathway-
mediated immune inflammation contributed to tumorigenesis,
progression, and metastasis in some tumors was proposed; thus,
the application involved in this pathway in oncotherapy became

more complicated (see below). In general, the tumor
immunotherapeutics need to achieve a rational balance
between promoting potent antitumor response and preventing
inflammation-mediated tumor progression.

5 REMODELING OF TME INDUCED BY DNA
DAMAGE THROUGH THE CGAS/STING
PATHWAY
5.1 Alternation of Metabolites in TME
The TME is as a nutrient-rich soil affording nutrition to tumor
cell growth after reconstruction by tumor, in which the antitumor
immunity is restrained. Proteins and amino acids are crucial for
tumor proliferation and reconstruction of TME, which could

FIGURE 2 | Remodeling of TME induced by DNA damage. DNA damage of tumor cells leads to dsDNA, thus activating the cGAS/STING signaling pathway and
promotes IFN generation in several kinds of cells. The APC activation can be induced through endocytosis of tumor-derived dsDNA, cGAMP, or extracellular vesicle.
Then, APCs initiate CD8+ T cells, NK cells, andmacrophages to enhance the immune response in TME. The Treg cell activation induced by tumor cells performs immune
suppression to T-cell proliferation and functions through anti-inflammatory factors. The tumor cells also induce IDO1 expression to enhance amino acid
metabolism, thus suppressing T-cell function. STING activation promotes normalization of tumor vasculature and increases migration of T cells across endothelial barrier
and enhances antitumor immunity. In addition, cGAS/STING pathway activation in fibroblasts affects the differentiation of fibroblasts to CAFs.
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remodel tumor stroma and angiopoiesis as the tumor develops, to
construct a proper environment for its growth (Bose et al., 2020;
Hou et al., 2020; Winkler et al., 2020). The catabolism of amino
acid tryptophan (Trp) is a common feature in antitumor
immunity defeat (Garber, 2018; Mitchell et al., 2018). Trp can
be catabolized by indoleamine 2,3 dioxygenase (IDO) enzyme
produced from tumor cells; the metabolic kynurenine has been
confirmed to suppress T-cell proliferation and function (Liu Y
et al., 2018; Mitchell et al., 2018; Takenaka et al., 2019). Arginine
(Arg) is catabolized into L-ornithine by arginase (ARG1) as well
as nitric oxide synthetase (NOS), which performs
immunoregulation of M2 macrophages and myeloid-derived
suppressor cells (MDSCs); L-ornithine could mediate the
tumor cell proliferation and suppression of antitumor
immunity via converting into polyamines (Roci et al., 2019;
Fultang et al., 2020; Carriche et al., 2021; Miska et al., 2021).

The increased cell death in TME induces the DNA release and
cGAS/STING pathway activation to initiate innate immunity
subsequently. The innate immune cells could produce IFN-I
(IFN-α and IFN-β) and IFN-II (IFN-γ), which stimulate
downstream gene production including gene encoding
enzymes to catabolize Trp and Arg, inflammatory cytokines,
and transforming growth factor-β (TGF-β) (Weiner, 2009).
Both IFN-α and IFN-γ could induce IDO1 expression, but
IDO1 is restrained by the regulation factors of IFN-β (Liu Y
et al., 2017; Du et al., 2019; Shi et al., 2019; Cheng et al., 2020). In
addition, the Trp catabolism is increased in cancer patients, as a
precursor of 5-hydroxytryptamine, and its overexpression could
lead to emotion changes and depressive behaviors in patients
(Tang et al., 2020; Karmakar and Lal, 2021). IFN-γ promotes the
inducible NOS (iNOS) expression, while cytokines IL-4 and IL-13
stimulate ARG1; moreover, TGF-β enhances both IDO1 and
ARG1 response (Boutard et al., 1995; Ji et al., 2019; Baier et al.,
2020). The current studies have indicated that these pathways are
all involved in remodeling the expression of metabolites in TME
that is activated via tumor-associated inflammation, and interfere
with tumor therapy and prognosis; however, whether more
metabolites play a synergy role in this process remains to be
clarified.

5.2 Implication to Immune Cells in TME
5.2.1 Antigen-Presenting Cell (APC)
APCs play a critical role in the uptake and processing of antigens
and then present to T cells for immune response. Generally, the
damaged and dying non-tumorigenic cells could avoid activation
of APCs to prevent the autoinflammatory disease because of
chronic cytokine production. It has been confirmed that antigen
presentation on the surface of tumor cells could be enhanced in
radiotherapy and chemotherapy, and then T cells recognize
antigen presented on major histocompatibility complex I
(MHC-I) and respond rapidly.

Recent studies suggested that multiple oncotherapies were
related to activation of the cGAS/STING pathway, as the
tumor-derived DNA was detected in the cytoplasm of the
tumor-infiltrating dendritic cells (DCs); meanwhile, tumor-
specific antigen presentation and cytotoxic T-cell activation
were increased (Chen et al., 2016b; Deng et al., 2014; Wang

et al., 2017) (Figure 2). In chemotherapy of ovarian cancer,
cisplatin exposure boosted tumor immunogenicity via
elevating calreticulin, MHC-I, antigen presentation, and T-cell
infiltration through activating the cGAS/STING pathway
(Grabosch et al., 2019). In the process of photodynamic
therapy (PDT), PDT enhanced MHC-II and CD80 expression
and induced maturation of DCs in an IFN-I-dependent manner
in melanoma (Lamberti et al., 2019). In TME, mtDNA of tumor
cells were ingested by DCs and activate cGAS to increase IFN-I
production in DC cytoplasm; inhibition of CD47 could suppress
mtDNA degradation by phagosomes, which contributes to
enhance antitumor adaptive immunity (Xu et al., 2017).

The IFN-I plays an important role in activating innate and
adaptive immune through promoting maturation and activation
of DCs and macrophages, thus enhancing the antigen
presentation and T-cell infiltration (Figure 2). Manganese
(Mn2+) is a potent activator of cGAS, which could be released
from mitochondria and Golgi and bind with cGAS in the
cytoplasm to enhance enzymatic activity of cGAS (Wang
et al., 2018). Mn2+ treatment stimulates IFN-I and cytokine
production via the cGAS/STING pathway and improves
response to clinical immunotherapy in patients (Lv et al.,
2020). In a recent study, Bacillus Calmette-Guérin (BCG)
instillations in urothelial carcinoma elevated STING and IFN
as well as pro-inflammatory molecules, thus promoting M1
macrophages and T-cell infiltration in tumor (Lombardo et al.,
2021). In addition, in non-muscle invasive bladder cancer,
expression of STING was higher in patients who responded to
BCG therapy, and elevated further after BCG treatment
(Lombardo et al., 2021).

Studies have performed that the STING agonist (2′3′-
cGAMP) could facilitate malignant B-cell apoptosis by
phosphorylation and activation of STING on mice fibroblasts;
subsequently, the tumor cell antigens are released to stimulate
immune response in this manner (Tang et al., 2016). A recent
study proposed that treatment with STING agonist decreased
tumor burden in high-grade serous carcinoma, and mice were
able to survive via the combination treatment of carboplatin,
STING agonist, and anti-PD-1. In the process, STING agonist
treatment enhanced IFN response, antigen presentation, and
MHC II expression (Ghaffari et al., 2018).

5.2.2 T Cell
In solid tumor therapy, T-cell-based immunotherapy made a
breakthrough but encountered multiple challenges; the specific
targetable tumor antigen presentation is of importance to T-cell
therapy (Lim and June, 2017; Sadelain et al., 2017). Current
studies indicate that spontaneous initiation of tumor antigen-
specific T cells is likely to be relevant to DC antigen presentation
and IFN-I production in host cells (Diamond et al., 2011).

A recent research indicated that the cGAS/STING cascade was
remarkably suppressed in peripheral blood CD8+ T cells from
tumor patients, STING agonist treatment promoted CD8+ T cell
stemness from patients with cancer; in addition, elevated STING
activation enhanced oncotherapy of CAR-T cells in a xenograft
model (LiW et al., 2020). In triple-negative breast cancer therapy,
the PARP inhibitor olaparib induced T-cell infiltration via the
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cGAS/STING pathway in tumor and paracrine activation of DCs
was enhanced in the process; furthermore, activation of the
pathway was more obvious in homologous recombination-
deficient tumor cells (Pantelidou et al., 2019). Consistently,
pro-inflammatory response and T-cell recruitment were
abolished after knockout of STING in tumor cells (Pantelidou
et al., 2019). In another study, CD8+ T-cell infiltration in
engrafted melanoma was lower than that in wild-type mice,
but intratumoral injection of cGAMP facilitated immune
response. Mechanistically, the cGAS/STING pathway was
activated by STING agonist in endothelial cells instead of DCs
and other immune cells, thus promoting the trafficking and
infiltration of CD8+ T cells into tumor (Demaria et al., 2015).

Based on the reported assay of immunogenic cell death and
T-cell activation, a DNA topoisomerase II inhibitor was proposed
to induce the protein HMGB1 release and IFN-I expression in
tumor; subsequently, DCs were activated through both NFκB
activation and the STING-dependent IFN-I pathway, and then
T cells were recruited into the tumor to increase therapeutic
efficacy (Wang et al., 2019). Ataxia telangiectasia mutated (ATM)
is known as a critical factor in nucleus DNA damage repair;
surprisingly, blockade of ATM is indicated to facilitate immune
checkpoint blockade therapy. Mechanistically, inhibition of ATM
promotes mtDNA leakage into the cytoplasm and activates the
cGAS/STING pathway via suppressing mitochondrial
transcription factor A (TFAM), thus enhancing T-cell
infiltration into TME subsequently (Hu et al., 2021). Another
critical kinase in DDR is ATR; the ATR inhibitor performs
radiosensitization to tumor alongside remarkable infiltration of
CD3+ and NK cells in TME through activation of STING and
inducing IFN response (Dillon et al., 2019). Furthermore,
inhibition of RAD51, a critical component in DNA double-
strand break repair, activated the cGAS sensing pathway and
improved CD8+ T-cell infiltration via increasing cytosolic
dsDNA in small cell lung cancer (Jin et al., 2021). Majority of
studies display the positive function of the cGAS/STING pathway
in facilitating T-cell activation and recruitment in TME;
undoubtedly, the negative regulation of this pathway to T cells
is also presented (Figure 2) (see below).

5.2.3 Regulatory T Cell (Treg Cell)
Treg cells suppress immune reaction; generally, the ratio of Treg
and T cells keeps a dynamic change to maintain immune
response stability in the body. A previous study indicated that
Treg cells can activate and facilitate proliferation by tumor-
associated antigens in TME, which leads to immune tolerance
and treatment resistance of tumors (Ahmadzadeh et al., 2019)
(Figure 2). Combination therapy including STING agonist, anti-
PD-1, and anti-CTLA-4 led to significant tumor regression in
mice; the Treg cell ratio was suppressed obviously with increased
CD8+ T cells in oropharyngeal cancers (Dorta-Estremera et al.,
2019). In a glioma study, using the tdTomato mice, it was
indicated that the IFN-I signal triggered by STING blocked
Treg cells and promoted CD8+ T-cell response; furthermore,
the efficacy of OVA-targeted peptide vaccine was enhanced by
STING agonist (Ohkuri et al., 2014). A different opinion
presented that IFN-β transcript sustained in resistant tumors

induced PD-L1 and NOS2 expression in tumors and DCs that
affected Treg cell accumulation in TME, thus enhancing the ratio
of CD8+T/Treg cells in the context of long-term anti-PD-1
treatment (Jacquelot et al., 2019).

5.3 Angiogenesis
In TME, tumor growth is dependent on angiogenesis and
competitive nutrition, and the chronic immune response
induces growth factors and results in angiogenesis and
suppression of antitumor. Multiple proangiogenic factors in
TME are involved in tumor angiogenesis to drive new blood
vessel formation (Jiang et al., 2020; Ronca et al., 2017). Tumor
blood vessels appear disorganized and immature, which reduces
chemotaxis of immune cells into TME but increases the distant
metastasis of tumor cells. A recent study proposed that T-cell
transendothelial migration was regulated by endothelial STING
in an IFN-I-dependent manner (Anastasiou et al., 2021). IFN-β
was proposed to downregulate VEGF expression and suppress
tumor angiogenesis (Takano et al., 2014), but it was also shown
that IFN-α and IFN-β promoted vasculogenic mimicry formation
and facilitated tumor growth (Jablonska et al., 2010; Yeh et al.,
2018). Interestingly, STING activation plays a positive role,
including promoting normalization of tumor vasculature and
improving immune response in TME (Figure 2). Restoration of
vascular structure results in increased migration of T cells across
the endothelial barrier and enhances antitumor immunity (Yang
et al., 2019). A genome-wide phenotype screen showed that
TBK1, IRF3, and downstream signals were suggested to be the
necessary proangiogenic factors (Korherr et al., 2006). However,
another study showed that the activation of the cGAS/STING/
IRF3 pathway induced by palmitic acid treatment suppressed
angiogenesis mechanistically and activated IRF3 bound to the
promoter of mammalian Ste20-like kinases 1 (MST1) gene, thus
inhibiting endothelial cell proliferation (Yuan et al., 2017).

5.4 Reprogramming of Fibroblast in TME
Fibroblasts are of importance to maintain integrity in normal
tissues, whereas, in inflammatory response, fibrotic disease and
tumors are reprogrammed for different functions (Driskell and
Watt, 2015; Sahai et al., 2020). The metabolites and proteins
derived from tumor cells are indicated to alter the biological
characteristics of fibroblasts by remodeling their metabolism and
phenotype; in addition, studies have provided more evidence of
the key metabolic connection between tumor cells and cancer-
associated fibroblasts (CAFs) (Bertero et al., 2019; Li F et al., 2020;
Zhang et al., 2021). TBK1, downstream of the cGAS/STING
pathway, was recently reported as a potential regulator of
fibroblast activation; inhibition of TBK1 activity reduced α-
SMA stress fiber level and mitigated deposition of collagen
and fibronectin in fibroblasts (Aravamudhan et al., 2020). A
recent study that combined mass cytometry and single-cell
mRNA sequencing analysis proposed that expression of
CD105 was the distinctive indication in two diverse functional
fibroblasts in both healthy tissues and tumors (Hutton et al.,
2021). Interestingly, results showed that TGF-β signaling was
enriched in CD105 positive cancer-associated fibroblasts (CAFs),
which were permissive for tumor growth (Figure 2). However, in
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CD105-negative CAFs, the STING1, NFκB, IL-6, TNF-α, JAK2,
and LTBR signals observed high expression and remarkably
performed tumor suppression (Hutton et al., 2021). In another
important research, IFN-β1 was specifically upregulated in CAFs
that contacted tumor cells through STING/IRF3 pathway
activation due to the transcytosis of tumor cell cytoplasm into
CAFs. Intriguingly, this reprogramming did not occur in CAFs
that have no contact with tumor cells, which resulted in two
different CAFs phenotypes and functions that coexisted in TME
(Arwert et al., 2020).

6 EMERGING PRO-TUMOR ROLE OF THE
CGAS/STING PATHWAY

The emerging lines of evidence show that the cGAS/STING
pathway performs positive facilitation on immune response in
tumors; nevertheless, current studies propose a potential
promotion of this pathway in tumor initiation, progression,
and metastasis (Chen et al., 2016a; Lemos et al., 2016).

Chronic and aberrant inflammation is closely related to
tumorigenesis and development. In inflammatory colitis
associated tumor model, deficiency of STING increased the
susceptibility to tumorigenesis (Ahn et al., 2015), but in a
non-inflammatory Lewis lung carcinoma (LLC), STING
activation induced tumor growth (Lemos et al., 2016). It has
been indicated that activated the cGAS/STING pathway
accelerates initiation and activation of DCs and T cells, and
recent studies showed that STING activation suppressed
proliferation of T cells, which was independent with the
TBK1/IRF3/IFN-I axis downstream, but in a manner of NFκB
activation by the distinct C-terminal domain of STING in T cells
(Cerboni et al., 2017). The STING agonist treatment induced
initiation of IFN-I and T-cell-specific response involved in ER
stress and cell death pathways, but only STING activation without
cell antigen receptor would induce T-cell death in the process
(Larkin et al., 2017). Researchers evaluated the relationship of
STING expression and immune cell infiltration in malignant
tumor, and suggested that pan-cancer expression of STING was
positively correlated with immune cell infiltration including all
types of immune cells (An et al., 2019). Inhibition of cGAS or
STING expression in tumor cells could prevent metastasis in
animal models (Chen et al., 2016a; Bakhoum et al., 2018).

The tumor metabolite in TME, such as the amino acids
tryptophan and arginine, the common TME hallmarks in
clinical oncotherapy, are proposed to respond to IFN and
transforming growth factor-β (TGF-β) cytokines to suppress
antitumor immunity and promote tumorigenesis (Rodriguez
et al., 2007; Weiner, 2009; Opitz et al., 2011). An oral cancer
study displayed that the oxidized mtDNA in cytosol induced IFN
signaling through the cGAS/STING pathway and thus elevated
PD-L1 and IDO-1 expression, which inhibited T-cell function
through inducing IFN and IL-6 production from macrophages
(Cheng et al., 2020). Another study indicated that STING
activation did not impact cell viability in tongue squamous cell
carcinoma, but facilitated IL-10, IDO, and CCL22 production, the
immunosuppressive cytokines, thus inducing Treg cell

infiltration and suppressing T-cell proliferation and activation
(Liang et al., 2015). As previously mentioned, IDO plays a
negative regulatory role in inflammatory response and T-cell
activation. In mouse (LCC) models with STING knockout,
suppressed IDO expression and MDSCs were observed,
because IFN contributed to IDO induction. Furthermore,
inhibition of IDO expression restrained tumor growth
effectively, indicating the crucial role of IDO in TING-
mediated tumor growth (Lemos et al., 2016). Therefore, IDO-
and metabolite-induced immunosuppression in TME is an
essential condition in the cGAS/STING pathway-involved
tumorigenesis (Lemos et al., 2016).

A previous study indicated that tumormetastasis in mice brain
was connected with the cGAMP transfer from tumor cells to
astrocytes in an adjacent paracrine and endocytosis manner; in
the process, the cGAS/STING pathway in astrocytes was activated
as well as IFN-α and TNF-α, which contributed to establish a
tumor growth advantage (Chen et al., 2016a). In addition, the
activation of the STING/IFN-I pathway was also indicated to
elevate CCR2 expression, and suppressive inflammation in colon
tumors through recruiting MDSCs, CCR2 blockage-mitigated
MDSC infiltration, and immunosuppression initiated by
STING activation enhanced oncotherapy (Liang et al., 2017).
Collectively, the potential immunosuppression of STING is
emerging and is drawing more attention; in addition, the
tumor cells surviving in antitumor therapy might change their
tolerance and benefit from TME, which could facilitate tumor
recurrence and metastasis. In this regard, sustaining dominance
of the immunogenic process while minimizing the pro-tumor
inflammation is of importance to oncotherapy.

7 THE CGAS/STING PATHWAY IN
ONCOTHERAPY

In the process of growth, progression, and therapy, the tumor
cells would undergo various stresses and induce immune
response to be removed in host. Recent studies propose that
the cGAS/STING pathway plays crucial roles in antitumor
immune response and immune surveillance. In TME, the
tumor-derived DNA have been observed in APCs’ cytoplasm,
and immune response is amplified though antigen presentation-
induced recruitment of T cells and NK cells (Woo et al., 2014;
Corrales et al., 2016). In addition, cGAMP was reported to be
transmitted from cell to cell or to the extracellular area by some
transport-associated and gap junction proteins, such as SLC19A1,
CX43/CX45, LRRC8, and MerTK (Ablasser et al., 2013b; Chen
et al., 2016a; Luteijn et al., 2019; Zhou C et al., 2020; Zhou Y et al.,
2020).

The intensity of inflammation and the extent of cGAS/STING
activation should be the critical factors in determining whether
this pathway is antitumor or pro-tumor. Moreover, the genomic
instability of tumor cells is another considerable element in
cGAS/STING pathway-related pro-tumor and metastasis. In
tumor progression, some tumor cells evolve to escape the host
immune surveillance gradually; for example, the cGAS or STING
expression is silenced or neglected so that the signal transduction
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cascade is interrupted and failed to trigger immune response (Xia
et al., 2016a). Furthermore, DNA methylation has been proposed
as a crucial factor to regulate the silencing of genes in tumor cells
(Lai et al., 2021). As the crucial cytosolic DNA sensor of tumors,
the ability to activate innate and adaptive immune responses of
the cGAS/STING pathway attracts much attention for
pharmacological target development. Currently, studies have
mainly focused on the agonists of the cGAS/STING pathway
and their usage as vaccine adjuvants for antitumor combined
immunotherapy. The effect of tumor immunotherapy depends
on expression of tumor-associated antigens and partially on
antigen presentation; the cGAS/STING pathway has been used
in combination immunotherapy in some tumors due to its
enhancement of APC function.

Co-delivery of c-di-GMP and chimeric antigen receptor T
(CAR-T) cells led to remarkably pancreatic tumor regression in
mice (Smith et al., 2017). Combination of anti-PD-L1 and
intramuscular injection of exogenous 2′3′-cGAMP suppressed
melanoma growth and increased survival of mice harboring
tumors (Wang et al., 2017). In pre-clinical models of ovarian
tumor and aggressive lung cancer, combination therapy including
anti-IL-10, 2′3′-cGAMP, and anti-PD-L1 targeting innate and
adaptive immunity dramatically decreasedMDSCs and improved
DC activation and T-cell infiltration (Hartl et al., 2019). Breast
tumor patients with high expression of CD47 showed poor
survival and prognosis; cGAMP and anti-CD47 combination
therapy effectively suppressed tumor growth, whereas
monotherapy with anti-CD47 did not inhibit tumors (Kosaka
et al., 2021). The flavone-8-acetic acid derivative 5,6-
dimethylxanthenone-4-acetic acid (DMXAA), a selective
STING agonist of mice, has outstanding antitumor
characteristics in multiple tumor models (Curran et al., 2016;
Weiss et al., 2017; Liu et al., 2020; Xu et al., 2021). In addition,
ADU-S100, one of promising agonists of STING, exhibits
significant inhibition on colon tumor and ascites in the case of
synergistically cooperating with anti-PD-1 and anti-COX2 (Lee
et al., 2021), which is investigated in clinical phase I trials of solid

tumors and lymphomas (Sivick et al., 2018;Meric-Bernstam et al.,
2021).

Over the past decade, more efforts are focused on the
development of STING agonists that perform improved
stability and binding capacity on human STING, some of
which have been used in clinical trials of oncotherapy
(Table 1). Correctively, antitumor immune therapy requires
activating APCs by the cGAS/STING pathway as well as
enhancing tumor-associated antigen presentation to T cells to
improve efficiency.

8 CONCLUSION AND FUTURE
PERSPECTIVE

The DNA damage repair responses of cells have profound
influence on inflammatory response and tumorigenesis.
Defective DDR allows genomic instability and micronuclei
formation, the pivotal source of self-DNA, through which the
DNA sensor cGAS is activated and triggering downstream signal
cascade reaction; what is more, the variability of TME exacerbates
DNA damage and genomic instability. Accumulating studies
have elucidated the crucial role of the cGAS/STING pathway
in surveillance of free self-DNA. Emerging lines of evidence have
indicated that activation of the cGAS/STING pathway facilitates
antitumor immune responses effectively, except for the
established role in innate immunity under condition of
exogenous pathogens. Rapid progress has been acquired for
understanding the molecular basis and mechanisms in
antitumor immune responses, which provide novel insight and
references to guide oncotherapy.

Notably, the chronic activation of inflammatory via the cGAS/
STING pathway is closely related to tumorigenesis and
metastasis. Moreover, the intensity of inflammatory reaction
and cGAS/STING pathway activation in different cells lead to
the exact opposite results, whereby the TME is remodeled in the
process. The challenges promoting immunostimulatory effects of

TABLE 1 | Clinical trials testing STING agonists in oncotherapy.

Agonists Co-therapy Tumor types Phase NCT Number

DMXAA +Docetaxel Advanced solid tumors I NCT01285453
+Carboplatin + paclitaxel or docetaxel Advanced solid tumors I NCT01240642
+Carboplatin and paclitaxel HNSCC I NCT00674102
+Carboplatin and paclitaxel HNSCC I/II NCT00832494
+Carboplatin and paclitaxel HNSCC III NCT00662597
+Docetaxel Prostate cancer II NCT00111618
+Carboplatin and paclitaxel SCLC II NCT01057342

ADU-S100 +Ipilimumab Advanced solid tumors I NCT02675439
+Spartalizumab Advanced solid tumors or lymphoma Ib NCT03172936
+Pembrolizumab HNSCC II NCT03937141

MK-1454 +Pembrolizumab Advanced solid tumors or lymphoma I NCT03010176
+Pembrolizumab HNSCC II NCT04220866

MK-2118 +Pembrolizumab Advanced solid tumors or lymphoma I NCT03249792
SB11285 +Atezolizumab Advanced solid tumors Ia/Ib NCT04096638
GSK3745417 +Pembrolizumab Advanced solid tumors I NCT03843359
BMS-986301 +Nivolumab/ipilimumab Advanced solid tumors I NCT03956680
E7766 Single agent Advanced solid tumors, lymphomas, bladder cancer I/Ib NCT04144140

Abbreviations: HNSCC, head and neck squamous cell carcinoma, SCLC, small cell lung carcinoma.
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oncotherapy while blocking negative immunosuppression
remain insurmountable. Hence, how to grasp the internal
relationship among various objects in TME and balance the
activation status of the pathway in cells with antithetical
functions still needs in-depth investigation.

The discovery and investigation of the cGAS/STING pathway
in tumor therapy and TME provide a novel framework for future
therapeutic strategies. The inspiring potential of this pathway
activation promotes intense investigation for the development of
pharmacological compounds in this pathway. The agonists and
analogues have been used as immune adjuvants in combined
therapy such as chemotherapy, radiotherapy, and immune
checkpoint blockade in preclinical trials to enhance efficacy.
At present, the cGAS/STING pathway is considered to be a
promising therapeutic target that might turn the
immunologically “cold” tumor to a “hot” one. Although
effective drugs have been used in trials, potential problems
might hinder their application in the future. For example, the
chemical property restrains the penetrating capacity, delivery
mode, and bioavailability of drugs, including charged property,
hydrophilicity, and metabolism. In addition, the cytotoxicity and
narrow therapeutic windows restrict the application scope of
drugs. Therefore, strategies to develop and screen potential
agonists and to improve drug delivery carriers are urgently
needed. On the other hand, emerging preclinical and clinical
lines of evidence reveal that various antitumor drugs could

activate this pathway through DNA damage; neglect of this
potential may underestimate its contribution to therapeutic
efficacy. Therefore, the combinatorial treatment for therapeutic
benefit is considerable and promising.
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