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Abstract: Based on irreversible thermodynamic theory, a new constitutive model incorporating two
internal variables was proposed to investigate the phase transformation and plasticity behavior
in nickel-titanium (NiTi) shape memory alloys (SMAs), by taking into account four deformation
stages, namely austenite elastic phase, phase transition, martensitic elastic phase, and plastic phase.
The model using the material point method (MPM) was implemented by the FORTRAN code to
investigate the stress wave and its propagation in a NiTi rod. The results showed that its wave
propagation exhibited martensitic and austenitic elastic wave, phase transition wave, and plastic
wave. However, a double-wave structure including the martensitic and austenitic elastic wave and
plastic wave occurred when the martensitic elastic wave reached the phase transformation wave.
Thus, the reflection wave at a fixed boundary exhibited a different behavior compared with the elastic
one, which was attributed to the phase transition during the process of reflection. It was found that
the stress increment was proportional to the velocity of phase transition wave after the stress wave
reflection. In addition, the influences of loading direction and strain rate on the wave propagation
were examined as well. It was found that the phase transition wave velocity increased as the strain
rate increased. The elastic wave velocity of martensite under compressive conditions was larger than
that under tensile loading. In contrast, the plastic wave velocity under compression was less than
that subjected to the tensile load.

Keywords: constitutive model; NiTi alloys; stress wave propagation; material point method

1. Introduction

Due to an escalating growth of advanced technologies, shape memory alloys (SMAs) have been
used in a wide variety of fields involving medical, aeronautical, and automotive because of two
remarkable properties: superelasticity and shape memory effect [1]. The origin of these properties is
characterized by the martensitic transition (MT) and its reverse (austenitic transition (AT)) occurring in
such materials. Indeed, martensite (M) stabilizes at low temperature and high stress, and conversely
austenite (A) stabilizes at high temperature and low stress [2]. Due to functional properties as well
as high strength and ductility, a nickel-titanium (NiTi) alloy has been considered as one of the most
promising alloys.

In recent decades, much work has been done on the development of a constitutive model
of SMAs to describe unique mechanical behaviors, as reviewed by Cisse et al. [3]. These models
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are mainly divided into two groups: one is the micromechanical model, and the other is the
macro-phenomenological model. Manchiraju et al. [4] developed a model based on the finite element
method to study the interaction between martensitic transformation and plasticity in NiTi SMAs
from the point of view of microstructure. Yu et al. [5,6] also performed some investigations on the
thermo-mechanical and anisotropic deformation behavior of superelastic NiTi alloys. It is justified
from these studies that molecular dynamics simulations could be deemed as an effective approach
for investigation the MT and AT by providing more structural details at the atomic scale. However,
the choice of interatomic potential has a significant influence on simulations. Ackland et al. [7]
used the embedded-atom method potential to simulate the MT in NiTi. They found that the phase
transition was accompanied by the instability of precursor long wave length and rotation of the matrix.
Kastner et al. [8] simulated the microstructure transformation behavior during cyclic loading using
the Lennard-Jones potential. The results showed that the accumulation of permanent damage in the
martensite led to functional fatigue.

The advantage of the micromechanics-based constitutive model is that it could predict the
structural response from the view of physical nature. However, it cannot meet the need of engineering
application due to computational complexities. Thus, the phenomenological constitutive model is
more suitable for engineering. Indeed, the work of developing the phenomenological constitutive
equations for SMA was divided into the two following groups:

1.1. Thermodynamic

Tanaka et al. [9] first developed the one-dimensional model using internal variables under
the framework of thermomechanics. Boyd and Lagoudas [10,11] also proposed some models that
accounted for martensite reorientation by using a free energy function and a dissipation potential,
respectively. Based on the above-mentioned models, Lagoudas et al. [12] established a new model that
characterized three response stages of SMAs, which had not been solved with a unified manner by
previous studies.

1.2. Generalized Plasticity

Auricchio et al. [13] proposed a model for investigating the superelastic behavior of SMAs under
the framework of the generalized plasticity work. Considering the loading path of Durcker-Prgaer,
the transformation from austenite to martensite and its reverse process were studied comprehensively.
Interestingly, the martensite content and its variation during the phase transition were taken as two
independent internal variables. Auricchio [14] gave the exponential and linear form for describing
martensite evolution, respectively. The results demonstrated that the proposed model was effective
for the isothermal loading/unloading description of the superelastic SMAs. Furthermore, Kan and
Kang [15] proposed a model that accounted for the evolutions of residual induced-martensite and
transformation-induced plastic strain under the stress-controlled cyclic loading. In our recent work,
a phenomenological constitutive model was proposed by using irreversible thermodynamics with
a semi-implicit stress integration algorithm [16]. Two internal variables were taken to describe the
irreversible processes of phase transformation and dislocation evolution of NiTi alloys, where one
variable represented the phase transition behavior, and the other denoted the plastic behavior.

An investigation on the wave propagation is one of the most important tasks in the field of
material and computational mechanics. Sadeghi et al. [17] conducted the experiments and performed
finite element calculations for energy dissipation during the phase transformation in NiTi alloys.
However, the proposed constitutive model was verified to be inconsistent with the experiment
results. Wang et al. [18,19] studied the dynamic deformation in NiTi SMAs at high strain rates
of 106~107/s by laser. They found that there had a critical peak pressure for the NiTi alloy to induce
martensitic transformation at higher strain rate. Bekker et al. [20] employed a thermodynamic-based
constitutive model to investigate the propagation of phase transformation wave in SMAs. Furthermore,
Fǎciu et al. [21] investigated the Goursat and Riemann problems of phase material dynamics by
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considering a piecewise linear-elastic function. Unfortunately, little work has been done in terms of
studying the phase transformation and plastic wave propagation of SMAs.

Since there are some problems in the traditional finite element method (FEM), such as mesh
distortion and element entanglement, the material point method (MPM) has been widely used to
simulate material extreme deformation and failure. For example, Dong et al. [22] took an investigation
on the effect of the impact forces on pipeline during the submarine landslide. Liu et al. [23] investigated
the micron particles impact with high-velocity by using MPM, and the simulation results agreed well
with the experimental ones. Also, MPM was extended to simulate the explosively driven response
of metals by Lian et al. [24] and found that the MPM results were in reasonable agreement with the
Gurney solutions. It is worth mentioning that there is a remarkable difference between FEM and
MPM. In other words, FEM is a pure Lagrangian method, while MPM takes a material as considerable
Lagrangian particles that move through a background in Eulerian mesh [25].

Due to advantages of MPM, this work attempts to develop an irreversible thermodynamic
constitutive model based on MPM to simulate the wave propagations that represent phase
transformation and plastic behavior. The wave structures are investigated with the help of MPM.
The influences of loading direction and strain rate on the wave propagation are examined as well.
It is worth mentioning that FORTRAN is employed as the programming language to perform the
numerical calculation in this study.

2. Theoretical Framework

2.1. Thermodynamics

According to irreversible thermodynamics, it is assumed that the Helmholtz free energy function
of a material point has a following expression

ψ = ψ(εe
ij, T, η, ξ), (1)

where εe
ij is the elastic strain tensor, and T is the temperature. η, ξ is two internal variables that

characterize the plastic behavior and phase transition, respectively.
In the thermodynamics, the dissipation (D) of a unit is required to be positive (D ≥ 0) to ensure

that the rate of stored energy is always larger than the stress power. Thus, the inequality of dissipation
is obtained according to the Clausius-Duhem form

D = σij :
.
εij − ρ

.
ψ ≥ 0, (2)

where εij denotes the total strain that is decomposed into the elastic strain and the inelastic strain.
ρ denotes the material density. Besides, the total inelastic strain consists of two parts: one is the phase
transition strain εtr

ij , and the other is the plastic strain ε
p
ij

εij = εe
ij + εin

ij = εe
ij + εtr

ij + ε
p
ij, (3)

Under isothermal conditions, if taking the time derivative of ψ in Equation (1), the following
equation is obtained

.
ψ =

∂ψ

∂εe
ij

.
ε

e
ij +

∂ψ

∂η

.
η +

∂ψ

∂ξ

.
ξ, (4)

Substituting Equations (3) and (4) into Equation (2), the dissipation inequality states

(σij − ρ
∂ψ

∂εe
ij
)

.
ε

e
ij + (σij

.
ε

tr
ij − ρ

∂ψ

∂ξ

.
ξ) + (σij

.
ε

p
ij − ρ

∂ψ

∂η

.
η) ≥ 0, (5)
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Due to an assumption that the elastic strain, phase transition strain and plastic strain are
independent, internal variables result in the dissipation of free energy. The dissipation inequality,
shown as Equation (5), requires that internal variables should satisfy the following equations

σij = ρ
∂ψ

∂εe
ij

, (6a)

σij
.
ε

tr
ij − ρ

∂ψ

∂ξ

.
ξ ≥ 0, (6b)

σij
.
ε

p
ij − ρ

∂ψ

∂η

.
η ≥ 0, (6c)

Indeed, these represent the elastic, phase transition and plastic evolution, respectively.

2.2. Governing Equations

Similar to εij, ψ is decomposed into the elastic free energy ψe, the phase transition free energy ψtr,
and the plastic free energy ψp

ψ = ψe + ψtr + ψp, (7)

where ψe at a material point needs to satisfy the following equation

ρψe =
1
2
(2µεe

ijε
e
ij + λεe

kkεe
kk), (8)

where λ and µ are Lamé parameters.
The substitution of Equations (7) and (8) into Equation (6a) produces

σij = 2µεe
ij + λεe

kkδij, (9a)

Equation (9a) that represents Hook’s law is expressed as another form

σij = Eijklε
e
kl = Eijkl(εkl − εtr

kl − ε
p
kl), (9b)

While SMAs contain martensite and austenite phases, an equivalent elastic stiffness matrix Eijkl is
a function of the martensitic volume fraction n, which can be determined by the simple Voigt form [12]

Eijkl(n) = (1− n)EA
ijkl + nEM

ijkl , (10)

2.3. Phase Transition Evolution

Under the framework of the thermodynamics, the evolution of phase transition needs to satisfy
Equation (6b).

Assuming that

A = −ρ
∂ψ

∂ξ
, (11)

where A is a generalized force that is dependent on the internal variable ξ, and then Equation (6b) is
updated as

σij
.
ε

tr
ij + A

.
ξ ≥ 0, (12)

A potential function is introduced

Θ = Θ(σij, A), (13)
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Then, the evolution equations are expressed as

.
ε

tr
ij =

.
λ1

∂Θ
∂σij

, (14a)

.
ξ =

.
λ1

∂Θ
∂A

, (14b)

Substituting Equation (14) into Equation (12), the inequality also states

.
λ1(σij

∂Θ
∂σij

+ A
∂Θ
∂A

) ≥ 0, (15)

Two conditions are required to satisfy Equation (14b), i.e., one is that the potential function
Θ = Θ

(
σij, A

)
, with respect to σij and A, is convex outward. The other is that

.
λ1 cannot be negative.

If the Helmholtz energy of phase transition has the form of

ρψtr =
1
2

k1ξijξij, (16)

A potential function Θ = Θ
(
σij, A

)
that is analogous to the classical Chaboche plastic constitutive

model [26] is proposed as follows

Θ = Θ(σij, A) = [
3
2
(sij − A′ij)(sij − A′ij)]

1
2
+

1
2

aAij Aij, (17)

where sij is the stress partial tensor, and A′ is the deviator of the generalized force Aij. a is an arbitrary
value when constructing the function.

.
λ1 is taken as the form of

.
λ1 = (

Ftr
y

Z1
)

n1

, (18)

where Z1 is a material parameter. Ftr
y represents the phase transition yield surface, as follows

Ftr
y = σeq − σtr

s (n) =

√
3
2
(sij − A′ij) : (sij − A′ij)− σtr

s (n), (19)

where n is Martensitic volume fraction, which is defined as

n =
εtr

eq

εm
, (20)

where εtr
eq =

√
2
3 εtr

ij : εtr
ij is the equivalent strain of phase transition, and εm is the maximum strain of

phase transition under uniaxial loading. The relationship of initial phase transition stress σtr
s and the

final one σtr
f is expressed as follows

σtr
s (n) = (1− n)σtr

s + nσtr
f , (21)

where σtr
s and σtr

f are related to the temperature and the strain rate, respectively.
Hence, the following equation could be used to describe the behavior that is dependent on the

temperature and the strain rate

σtr
s = σtr

s0[1 + C1 ln(
.
ε
.
ε0
)][1 + m1(T − T0)], (22a)



Materials 2018, 11, 1215 6 of 23

σtr
f = σtr

f 0[1 + C2

.
ε
.
ε0
][1 + m2(T − T0)], (22b)

Substituting Equations (11)–(20) into Equations (14) and (15), the evolution of phase transition of
NiTi SMAs is provided as the following form

.
ε

tr
ij =

.
λ1

∂Θ
∂σij

=
3
2
(

Ftr
y

Z1
)

n1 sij − A′ij
σtr

eq
, (23a)

.
Aij = k1

.
ε

tr
ij − k2

.
ε

tr
eq Aij, (23b)

2.4. Evolution of Plasticity

Similarly, the evolution of phase transitions should satisfy Equation (6c).
Assuming that

B = −ρ
∂ψ

∂η
, (24)

where B is a generalized force that is related to the internal variable η. Then, Equation (6c) is updated
as follows

σij
.
ε

p
ij + B

.
η ≥ 0, (25)

Assuming a potential function
Ω = Ω(σij, B), (26)

Consequently, the evolution equations are expressed as follows

.
ε

p
ij =

.
λ2

∂Ω
∂σij

, (27a)

.
η =

.
λ2

∂Ω
∂B

, (27b)

The substitution of Equation (27a,b) into Equation (25) produces the following inequality

.
λ2(σij

∂Ω
∂σij

+ B
∂Ω
∂B

) ≥ 0, (28)

Two conditions are needed to satisfy Equation (25), i.e., one is the potential function Ω = Ω
(
σij, B

)
with respect to variables, which is convex outward. The other is that

.
λ2 are not be negative.

Assuming the Helmholtz energy of phase transition has the form of

ρψp =
1
2

k2ηijηij, (29)

A potential function Ω = Ω
(
σij, B

)
that is analogous to the classical Chaboche plastic constitutive

model [26] is provided as follows

Ω = Ω(σij, B) = [
3
2
(sij − B′ij)(sij − B′ij)]

1
2
+

1
2

bBijBij, (30)

where Sij is the stress partial tensor, and B′ij is the deviator of the generalized force Bij. b is an arbitrary
value when constructing the function.

If
.
λ2 has the form of

.
λ2 = (

Fp
y

Z2
)

n2

, (31)
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The plastic yield surface Fp
y is written as

Fp
y = σ

p
eq − σ

p
y − R =

√
3
2
(sij − B′ij) : (sij − B′ij)− σ

p
y − R, (32)

where σ
p
y represents the initial plastic yield stress. The isotropic hardening phenomenon is described

by R that is defined as
.
R = m(R1 − R)

.
ε

p
eq, (33)

where
.
ε

p
eq =

√
2
3

.
ε

p :
.
ε

p is the equivalent plastic strain increment, and m and R1 are the material
parameters for characterizing the plastic hardening behavior.

Therefore, the evolution of plastic of NiTi SMAs has the following form

.
ε

p
ij =

.
λ2

∂Ω
∂σij

=
3
2
(

Fp
y

Z2
)

n2 sij − B′ij
σ

p
eq

, (34a)

.
Bij = k3

.
ε

p
ij − k4

.
ε

p
eqBij, (34b)

2.5. Iteration Algorithm

Figure 1 shows a flow chart of the iteration solution procedure. In this algorithm, the semi-implicit
stress integration method is employed to solve the constitutive model equivalent inelastic in the
constitutive model. The procedure is outlined as follows: first, the initial values (such as stress, time
step) are defined and all strains are assumed to be elastic. Second, the stress is calculated to determine
the deformation stage.
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In addition, the flow chart for solving the phase transition stage and plastic stage are provided in
Figures 2 and 3, respectively.
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The solution of the stress–strain response during the phase transition stage and plastic stage is
outlined below.

Step 1. An inelastic strain increment is assumed to be

∆εin(0)

ij = δ0, (35)

Step 2. The generalized force is calculated, and then the equivalent inelastic strain and its increment
is derived from:

Phase transition stage:

εtr(k)
eq =

√
2
3

εtr(k)
ij εtr(k)

ij , (36a)

∆εtr(k)
eq =

√
2
3

∆εtr(k)
ij ∆εtr(k)

ij , (36b)
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∆A(k)
ij = k1∆εtr(k)

ij − k2∆εtr(k)
eq A(k)

ij , (36c)

Plastic stage:

ε
p(k)
eq =

√
2
3

ε
p(k)
ij ε

p(k)
ij , (37a)

∆ε
p(k)
eq =

√
2
3

∆ε
p(k)
ij ∆ε

p(k)
ij , (37b)

∆B(k)
ij = k3∆ε

p(k)

ij − k4∆ε
p(k)
eq B(k)

ij , (37c)

Step 3. Accordingly, the state variables are determined:
Phase transition stage:

n(k) =
ε

tr(k)
eq

εm
, (38a)

σ
tr(k)
s (n) = (1− n(k))σtr

s + n(k)σtr
f , (38b)

Transition stage:
∆R(k) = m(R1 − R(k))∆ε

p(k)
eq , (39)

Step 4. The corresponding stress increment is calculated

E(k)
ijkl(n) = (1− n(k))EA

ijkl + n(k)EM
ijkl , (40a)

∆σ
(k)
ij = E(k)

ijkl(∆εij − ∆ε
in(k)
ij ), (40b)

Step 5. Generalized force and stress are updated as

A(k+1)
ij = A(k)

ij + ∆A(k)
ij , (41a)

B(k+1)
ij = B(k)

ij + ∆B(k)
ij , (41b)

σ
(k+1)
ij = σ

(k)
ij + ∆σ

(k)
ij , (41c)

Step 6. In turn, the equivalent stress and the yield surface are solved.
Phase transition stage:

σ
tr(k)
eq =

√
3
2
(s(k)ij − A

′(k)
ij ) : (s(k)ij − A

′(k)
ij ), (42a)

Ftr(k)
y = σ

tr(k)
eq − σ

tr(k)
y , (42b)

Plastic stage:

σ
p(k)
eq =

√
3
2
(s(k)ij − B

′(k)
ij ) : (s(k)ij − B

′(k)
ij ), (43a)

Fp(k)
y = σ

p(k)
eq − σ

p(k)
y , (43b)

Step 7. The new equivalent inelastic strain increment is as follows.
Phase transition stage:

∆ε
tr(k+1)
ij =

3
2
(

Ftr(k)
y

Z1
)

n1 s(k)ij − A(k)
ij

σ
tr(k)
eq

∆t, (44a)

∆ε
tr(k+1)
eq =

√
2
3

∆ε
tr(k)
ij ∆ε

tr(k)
ij , (44b)
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Plastic stage:

∆ε
p(k+1)
ij =

3
2
(

Fp(k)
y

Z2
)

n2 s(k)ij − B(k)
ij

σ
p(k)
eq

∆t, (45a)

∆ε
p(k+1)
eq =

√
2
3

∆ε
p(k)
ij ∆ε

p(k)
ij , (45b)

Step 8. The convergence of iteration is checked:

abs(∆εin(k+1)
eq − ∆εin(k)

eq )

∆εin(k)
eq

< err, (46)

A dynamic compression experiment was carried out, and the alloy was made into a cylinder of
φ 8 × 4 mm. Material chemical compositions are provided in Table 1. Tables 2 and 3 provide material
parameters under compressive and tensile loading, respectively.

Table 1. Chemical compositions of NiTi alloys.

Ni Co Cu Cr Fe Nb C H O N Ti

55.72% 0.005% 0.005% 0.005% 0.012% 0.005% 0.045% 0.001% 0.03% 0.001% 44.17%

Table 2. Material parameters of NiTi alloys under tensile loading.

Parameter Value Unit Parameter Value Unit

EA0 53,453 MPa EM0 9280 MPa
νA 0.3 - νM 0.3 -
σtr

s0 380 MPa σtr
f 0 552 MPa

σ
p
y0 730 MPa εm 0.044 -

CA 3.7 MPa/K CM 5.4 MPa/K
C1 0.038 - C2 0.075 -
C3 0.012 -
k1 400 - k2 600 -
k3 400 - k4 800 -
z1 10 MPa z2 170 MPa
n1 3.0 - n2 3.0 -
m 50 - R1 260 MPa

Table 3. Material parameters of NiTi alloys under compressive loading.

Parameter Value Unit Parameter Value Unit

EA0 37,130 MPa EM0 19,280 MPa
νA 0.3 - νM 0.3 -
σtr

s0 409 MPa σtr
f 0 552 MPa

σ
p
y0 1550 MPa εm 0.034 -

CA - MPa/K CM 5.4 MPa/K
C1 0.0337 - C2 0.0002 -
C3 4 × 10−5 -
k1 400 - k2 800 -
k3 400 - k4 800 -
z1 10 MPa z2 170 MPa
n1 3.0 - n2 3.0 -
m 250 - R1 50 MPa
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Figure 4 provides a comparison between the calculated values and experimental results, which
shows that the predicted results are in reasonable agreement with experimental data, highlighting the
practicability of the proposed model for describing such a behavior.
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2.6. MPM

Similar to the concept of FEM, background grids and material points with physical meaning (such
as mass, stress, strain) are meshed firstly in MPM. As mentioned in the introduction, these background
grids are the Eulerian meshes, and it remains fixed during the process of calculation. A material point
could be connected with a background grid by using a shape function, shown in Figure 5.
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In each time t, the variables of Lagrangian material points are mapped into the Eulerian grid
nodes by the shape function

Gt
i =

Np

∑
p=1

Gt
pNi(xt

p), (47)

where Ni

(
xt

p

)
is the shape function of a material point p in each time step. The subscript i denotes

the node number of background grid. Gt
i and Gt

p represent the grid nodes and the material point at t,



Materials 2018, 11, 1215 13 of 23

respectively. In a similar way, the meaning is extended to the mass
(

mt
i , mt

p

)
, the coordinate

(
xt

i , xt
p

)
,

the displacement
(

ut
i , ut

p

)
, the velocity

(
vt

i , vt
p

)
, and the acceleration

(
at

i , at
p

)
.

The external force at each material point includes an external load and a volume force, which is
expressed as

ct
i =

Np

∑
p=1

mt
pcs,t

p h−1Ni(xt
p), (48)

where cs,t
p is the external load of p at t. h is the number of cell layers applied to the material point.

The material point volume force is used to map the volume force of the background node

bt
i =

Np

∑
p=1

mt
pbs,t

p Ni(xt
p), (49)

where bs,t
p is the volume force of p at t.

The external force of a node is determined by a combination of Equations (48) and (49)

( f t
i )

ext
= ct

i + bt
i , (50)

Afterwards, the internal force on the material point is mapped to the background grid nodes

( f t
i )

int
= −

Np

∑
p=1

mt
pSs,t

p ∇Ni(xt
p), (51)

where Ss,t
p is the Cauchy stress of p at t.

Then, the background node mass, node speed, internal force and external force of node are
achieved through the mapping calculation of the results.

Indeed, the model of impact behavior is mainly governed by equations of mass conservation and
momentum conservation.

Mass conservation:
dρ(x, t)

dt
+ ρ(x, t)∇v = 0, (52)

Momentum conservation:
ρ(x, t)a = ∇s + ρ(x, t)b, (53)

where ρ(x, t) is the density. v is the velocity. a is the acceleration. s is the Cauchy stress. The density is
expressed as follows

ρt
p =

Np

∑
p=1

mt
pδ(x− xt

p), (54)

Taking the test function as w, the weak form of momentum equation is obtained as follows∫
Ω

ρw · adΩ =−
∫

Ω
ρss : ∇wdΩ +

∫
SC

ρcs · wds +
∫

Ω
ρw · bdΩ, (55)

where Ss represents the stress tensor of unit mass. Sc is the boundary region of stress. Due to the
discrete character of MPM, Equation (55) is rewritten as

Np

∑
p=1

mt
p[−ss(xt

p, t) : ∇w
∣∣∣xt

p
+ w( xt

p, t) · cs(xt
p, t)/h + w(xt

p, t) · b(xt
p, t)], (56)
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The velocity increment of the node is mapped to the material point, and then its update is obtained.

dvt
p =

Nn

∑
i=1

Ni(xt
p) f t

i dt/mt
i , (57)

The velocity of the material point at t + dt is calculated as

vt+dt
p = vt

p + dvt
p, (58)

The global coordinate of the material point at this time is

xt+dt
p = xt

p + vt+dt
p dt, (59)

The strain and Cauchy stress of material point are updated by the strain rate formula, which is
defined by

.
ε = [∇v + (∇v)T ]/2, (60)

Strain increment:
dεt

p = [∇v + (∇v)T ]dt/2, (61)

Strain of material point:
εt+dt

p = εt
p + dεt

p, (62)

Then, the Cauchy stress is derived from the constitutive model. The flow chart of material point
method is shown in Figure 6.
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Figure 6. Flow chart of the analysis of MPM.

Figure 7 shows a one-dimensional rod model, the length of which is 1 m. The left boundary
is fixed.
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3. Results and Discussion

3.1. Stress Wave Analysis

The conservation equations for wave propagation mainly include mass and momentum equations.
Mass conservation:

∂v
∂X

=
∂ε

∂t
, (63)

Momentum conservation:
ρ0

∂v
∂t

=
∂σ

∂X
, (64)

According to the combination of Equations (63) and (64), the velocity of stress wave C is
derived from

C2 =
∂X
∂t

∂X
∂t

∣∣∣∣
w
=

1
ρ0

dσ

dε
, (65)

The substitution of Equation (65) into Equation (64), the following equation is obtained

∂v
∂t

= C2 ∂ε

∂X
, (66)

Since ε and v is the first derivative of displacement u versus X and t, Equation (66) is rewritten as

∂2u
∂t2 − C2 ∂2u

∂X2 = 0, (67)

In addition, the compatible relation at the wave front satisfies

dX = ±C dt, (68a)

dv = ±C dε, (68b)

dσ = ±ρ0C dv, (68c)

where C is determined as C =
√

1
ρ0

dσ
dε .

During the wave propagation in NiTi alloy rods, C is not a constant but a function of the strain ε.
Such a phenomenon is different from the elastic wave. For a slightness rod with no initial stress, it is
seen from Equation (68) that the strain increases by increasing the impact velocity. When ε reaches
the plastic yield point, there is a three-wave structure in the rod, namely an elastic wave, a phase
transition wave, and a plastic wave. Figure 8 exhibits the stress–strain response and the evolution of
stress wave velocity.

Indeed, four stages are always in an order of priority. The austenitic elastic wave appears at first.
Subsequently, the phase transition wave occurs, and it is followed by the martensite elastic wave and
the plastic wave. Because the martensite elastic wave speed is larger than the one of phase transition
wave, the phase transition wave disappears when the martensite elastic wave exceeds the phase
transition wave. Figure 9 indicates the stress profiles under some instantaneous stages. While it is just
a schematic diagram with no physical meaning, the change in the slope of the stress profile is mainly
used to differentiate the waves. From the figure, only the elastic wave propagating in the rod is found
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at t = τ1 and t = τ2, with a velocity of C1. When t = τ3, t = τ4, and t = τ5, the phase transition occurs
on the boundary, and it propagates with a velocity of C2. Because the velocity of phase transition wave
is less than that of the elastic wave, the distance between these two waves increases gradually. It is also
discovered that the rod segment that is located at the critical point of phase transition becomes longer
with the wave propagation. After the phase transition, the boundary enters the martensitic elastic
stage at t = τ6, and its wave propagates with a velocity of C3. Similarly, the wave velocity during the
phase transition is less than that of the martensitic elastic wave. Thus, the phenomenon of martensitic
elastic wave pursuing the phase transition wave is observed by numerical simulations. When t = τ7,
t = τ8, and t = τ9, the boundary reaches the plastic deformation stage. It is noteworthy that the elastic
wave follows the phase transition wave until the latter disappears. Afterwards, such a three-wave
structure degenerates into a double-wave structure, namely, two elastic waves and a plastic wave.
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When the stress loading boundary is set as 500 MPa at first 0.075 ms and then it changes to
1000 MPa, the degeneration behavior of wave structure is observed from MPM simulation, shown
in Figure 10. An obvious three-wave structure can be seen at 0.15 ms, and then the martensitic
elastic wave pursues the phase transition wave. Finally, the phase transition wave disappears at
0.3 ms. Consequently, the three-wave structure degenerates into a double-wave structure. In addition,
the propagation velocities of the stress wave in each phase are obtained. The austenite elastic wave
velocity is about 3200 m/s and the phase transition wave velocity is about 640 m/s. The velocity of
martensitic elastic wave and plastic wave is 1300 m/s and 800 m/s, respectively. The accuracy of these
calculated data is quantified and compared to the predictions by Bekker et al. [20]. They reported
that the austenite elastic wave velocity was 3300 m/s. The phase transition wave velocity was about
650 m/s, and the plastic wave was 810 m/s. The difference errors exhibit a reasonable agreement,
suggesting the efficiency of our model.Materials 2018, 11, x 19 of 25 
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3.2. Reflection Analysis

Figure 11 shows the wave reflection and transmission. σI and νI are the stress and particle
velocity of incident wave, respectively. σR and νR are the stress and particle velocity of reflection wave,
respectively. σT and νT are the stress and particle velocity of transmission wave, respectively. Indeed,
these variables could be solved by mass and momentum conservation equations.
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The balance of force on the surface AB is given by

A1(σI + σR) = AxσT , (69)
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The conservations of mass and momentum on the surface AB imply:

vI − vR = vT , (70a)

σAdt = ρAdxv, (70b)

The substitution of Equation (70b) into Equation (70a) produces

(σI − σR)/(ρ1c1) = σT/(ρxcx), (71)

σT and σR are achieved through Equations (69) and (71).

σT =
2A1ρxcx

Axρxcx + A1ρ1c1
σI , (72a)

σR =
Axρxcx − A1ρ1c1

Axρxcx + A1ρ1c1
σI , (72b)

σR → σI is obtained when Ax → ∞ and, σT → 0 . This suggests that the stress of reflection wave
is identical to the one of incident wave when the boundary is fixed. Therefore, the total stress is
increased to two times compared to the original one.

To verify the accuracy of the present theory and demonstrate its capability of prediction, Figure 12
shows the propagation and reflection of elastic wave in austenite phase. For comparison, t = 0.5L/C1

and t = 1.5L/C1 are chosen to exhibit the stress profile in the rod. As shown in the figure, the wave
propagation and reflection of austenite elastic stage is identical to that of the general elastic wave,
exhibiting no phase transformation. The stress wave velocity with C1 is increased by two times after it
reflects from the fixed boundary. The difference errors indicate that the proposed model seems to be
reasonable for the description of stress wave propagation and reflection.
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When the load exceeds the plastic yield point, the three-wave structure appears in the bar, which
is different from the elastic wave. Figure 13 illustrates the stress profile in high stress conditions.
It is found that the velocity of austenite elastic wave propagation is the fastest one among those
three waves. Accordingly, the rod segment that stays at the critical point of phase transition becomes
longer during the wave propagation. This phenomenon is consistent with the conclusion of the above
theoretical results.

However, when the austenite elastic wave is reflected at the fixed boundary, the stress increases
by a different way compared with the elastic one. The phase transition seems to occur in the reflection
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process, which could be explained that the reflected wave produces an increment of the stress over the
critical point. Thus, Equation (71) is rewritten as the following form

σI
ρ1C1

− σR
ρ1C2

=
σT

ρxCx
, (73)

where C1 is the velocity of incident wave. C2 is the velocity of reflected wave, and it is also the velocity
of phase transformation wave.

σR is obtained by solving Equations (69) and (73),

σR =
C2

C1

AxρxCx − A1ρ1C1

A1ρ1C2 + AxρxCx
σI (74)

σR → C2
C1

σI is found when Ax → ∞ . Therefore, the stress increment is not σI , but C2
C1

σI .
Furthermore, Figure 13 shows that the reflection wave propagate goes back with the velocity of
phase transition wave, which is only twenty percent of the elastic wave velocity with about 3200 m/s.
Besides, it is found that the plastic wave velocity is similar to that of the phase transformation wave, by
comparing the distance of the wave propagation in the same period, which is proved by the fact that
the two waves propagate about 120 mm at the time step with 0.5L/C1. While the velocity of martensitic
elastic wave is larger than that of phase transformation, the phase transition wave disappears in the
initial stage of wave propagation. With the propagations of martensitic elastic wave and the plastic
one, the rod segment that stays at the plastic yield point is expanded.Materials 2018, 11, x 21 of 25 
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3.3. Effect of the Loading Direction

To investigate the influence of loading direction on wave propagation, Figures 14 and 15 show
the stress–strain curve and the stress profile of wave propagation at 0.15 ms with various loading
directions, respectively. There are two differences between the compression and tension loading.
For the martensitic elastic stage, the strain range from 0.05 to 0.1 for the compression phase is longer
than the one between 0.055 and 0.07 for the tension phase. In addition, the martensitic elasticity
compression modulus is larger than that under tension. However, Figure 15 shows that the austenite
elastic and plastic wave propagate faster under tension loading, compared to the compression loading.
This is attributed to the fact that the austenite elastic and plastic compression stiffness is less than
the tension one. The plastic wave velocity during the tension loading process is predicted as about
800 m/s, which is two times than that of the compression plastic wave. Due to the difference in the
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austenite elastic wave velocity with different loading directions, the rod segment that stays at the start
point of phase transition is longer under tension loading. Similarly, the rod segment that stays at the
start point of plastic is also longer during compression loading, which is derived from the difference in
martensitic elastic waves.
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3.4. Effect of the Strain Rate

Equation (21) is used to describe the phase transition stress. Figure 16 shows the stress–strain
curve with various strain rates, and in turn the stress profiles of wave propagation at 0.25 ms are
provided in Figure 17. With increasing the strain rate, the initial phase transition strain increases by
a slight manner. In contrast, the increase of final phase transition strain is significant, and the strain
increases approximately from 0.05 at 500/s to 0.055 at 3000/s. It is evident that the stiffness of phase
transition stage increases with the increasing strain rate. The wave velocity during the phase transition
increase from 800 to 1200 m/s, indicating that the rod segment that stays at the initial point of phase
transition becomes shorter with increasing the strain rate.
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4. Conclusions

In this study, a dynamic analysis is presented under the framework of MPM, with a special focus
on the propagation of stress waves in a NiTi rod under one-dimensional uniaxial loading.

(1) It is found that the stress wave obtained exhibits an obvious three-wave structure. During
the process of wave propagation, the wave velocity in the phase transition is less than the one
of austenite elastic wave, and the martensitic elastic wave follows the phase transition wave
till the phase transition wave disappear. Herein, the three-wave structure degenerates into a
double-wave structure.

(2) Due to the occurrence of the phase transition wave during the wave reflection at the fixed
boundary, the stress does not increase to two times as much as that of the original one. The stress
increment is proportional to C2, which is proved by MPM solution.

(3) The influences of loading direction and stain rate are investigated comprehensively. It is found
that the velocity of phase transition wave increases with increasing strain rate. In addition,
the loading direction has a distinct effect on the martensitic elastic wave and plastic wave
propagation. The martensite elastic wave velocity under tensile condition is less than that
with compressive loading, but the plastic wave velocity under compression is less than that by
tensile loading.
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