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At present, cardiac diseases are a major cause of morbidity and mortality in the world. Recently, a cell-based regenerative medicine
has appeared as one of the most potential and promising therapies for improving cardiac diseases. As a new generational cell-based
regenerative therapy, tissue engineering is focused. Our laboratory has originally developed cell sheet-based scaffold-free tissue
engineering. Three-dimensional myocardial tissue fabricated by stacking cardiomyocyte sheets, which are tightly interconnected
to each other through gap junctions, beats simultaneously and macroscopically and shows the characteristic structures of native
heart tissue. Cell sheet-based therapy cures the damaged heart function of animal models and is clinically applied. Cell sheet-based
tissue engineering has a promising and enormous potential in myocardial tissue regenerative medicine and will cure many patients
suffering from severe cardiac disease. This paper summarizes cell sheet-based tissue engineering and its satisfactory therapeutic
effects on cardiac disease.

1. Introduction

Various clinical therapies including drug-based, catheter-
based, surgical-based, and medical device-based therapies
for cardiac disease are performed and found to elongate the
life-span of patients who suffer cardiac disease. However,
cardiac disease still remains a major cause of morbidity and
mortality in the world, especially in developed countries [1–
3]. Some conventional therapies have several problems, for
example, the possible risks of side effects, the requirements of
special techniques and repeating therapy, immune rejection,
donor shortage, infection, and thrombus, and so forth.
Therefore, at present, many researchers in various fields
including surgery, internal medicine, pharmacology, medical
device technology, chemistry, and cell biology, are actively
attempting to find possible solutions for the problems and
establish new therapies for curing severe cardiac diseases.

Cell-based regenerative therapy currently emerges as one
of the most promising methods for treating cardiac disease.
Regenerative therapy by the direct injection of dissociated
cells has been clinically performed, and the modest thera-
peutic efficacies are confirmed [4–10]. Previous studies in

animal models and clinical trials show that many injected
cells die after the transplantation and only few transplanted
cells are detected in the infarcted myocardium [11, 12].
The poor survival of injected cells hinders more effective
therapeutic effects. In addition, the controls of the shape,
size, and location of injected cells are difficult in the case of
dissociated cell injection. To overcome these problems, tissue
engineering is viewed as a new generational cell therapy for
cardiac disease [13]. Tissue engineering is currently based
on concepts that three-dimensional (3D) scaffolds are used
as an alternative for extracellular matrix (ECM), and cells
are seeded into the scaffolds [14]. The transplantation of
engineered myocardial tissue grafts improves damaged heart
functions in animal models, and clinical trials have already
started [15–18].

On the other hand, our laboratory originally develops
cell sheet-based scaffold-free tissue engineering by using a
unique culture surface grafted with a temperature-responsive
polymer, poly(N-isopropylacrylamide) (PIPAAm), that can
control the attachment and detachment of live cultured
cells by simple temperature changes [19, 20]. This review
discusses (1) cell sheet-based scaffold-free tissue engineering,
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(2) the characters of 3D tissue fabricated by cell sheet
engineering, and (3) the therapeutic effects of the tissue for
cardiac disease.

2. Preparation of Cell Sheets by Using a
Temperature-Responsive Surface

In our laboratory, a unique cell culture surface, which is
covalently grafted with a temperature-responsive polymer,
PIPAAm, is originally developed [19, 20]. The surfaces are
slightly hydrophobic, and cells can adhere and proliferate
at 37◦C. The hydrophobic surface becomes hydrophilic by
lowering temperature below 32◦C, and cells are unable to
adhere to the surface. The unique surface change allows
cultured cells to detach themselves spontaneously from the
culture surfaces simply by reducing temperature without
any proteolytic treatment [21, 22]. When cells are cultured
confluently on the surface, the cells can detach themselves
as a contiguous cell sheet without the disruption of cell-
cell junctions by reducing culture temperature (Figure 1)
[21, 22]. In addition to cell-cell junctions, fibronectin matrix,
which is a major ECM component mediating cell adhesion
onto culture dishes, on cell sheets is preserved even after
their detachment (Figure 1) [21–23]. Due to the presence
of deposited ECM produced during cultivation, cell sheets
can be easily attached to other surfaces such as culture
dishes, other cell sheets, and even host tissues. Therefore, 3D
tissues can be easily created by layering cell sheets without
scaffolds (Figure 2). Cell sheet-based tissue engineering has
been applied for the regenerative medicine of several tissues
including myocardial, corneal epithelial, esophageal, lung,
liver, pancreatic, thyroidal, and periodontal tissue [21, 22,
24–31]. In some tissues, clinical trials have been started
[25]. The application of cell sheet-based tissue engineering
to myocardial tissue reconstruction is summarized in details
in the following chapters.

3. The Fabrication of Electrically
Communicative 3D Myocardial Tissue by
Layering Cardiomyocyte Sheets In Vitro

Using a temperature-responsive culture surface, confluent
neonatal rat cardiomyocytes can also be noninvasively
harvested as a contiguous cell sheet simply by reducing the
culture temperature (Figure 1) [24]. Because cell-cell junc-
tions including gap junctions (GJs) between cardiomyocytes
are conserved completely, the cardiomyocyte sheet can beat
synchronously even just after detachment (electrograms in
Figure 1) [32]. The establishment of electrical and functional
couplings between layered cardiomyocyte sheets is a crucial
point for the synchronous beatings of 3D myocardial tissue.
Therefore, the electrical and functional interactions between
layered cardiomyocyte sheets are analyzed precisely [32].
In vitro two cardiomyocyte sheets couple electrically at
approximately 40 min after layering [32]. In addition, rapid
GJ formation between layered cardiomyocyte sheets is also
shown by a dye transfer assay and immunohistological
analyses [32]. Furthermore, immunohistological analyses

suggest the presence of cell surface GJ precursors on the
cardiomyocyte sheet [32]. Because GJs are thought to be
rapidly formed by only docking two GJ precursors on distinct
two cell membranes [33], the preservation of GJ precursors
on cardiomyocyte sheets must induce rapid electrical and
functional couplings between layered cell sheets. In addition,
deposited ECM on cardiomyocyte sheets also promotes
the intimate attachment between layered cell sheets and
may accelerate the docking of GJ precursors. These results
show that in vitro complete electrically communicative 3D
myocardial tissue can be fabricated by layering cardiomy-
ocyte sheets. In fact, in vitro a multilayered cardiomyocyte
sheet is known to beat spontaneously, synchronously, and
macroscopically [24].

4. In Vivo Transplantation of Layered
Cardiomyocyte Sheets

Next in vivo experiments using layered cardiomyocyte sheets
are explained [24, 34, 35]. When layered cardiomyocyte
sheets are transplanted into the subcutaneous tissue of
nude rats, the transplanted grafts also pulsate synchronously
and macroscopically, and interestingly surface electrograms
originating from the grafts are able to be detectable inde-
pendently from the host electrocardiograms [24, 34]. The
histological analyses of implanted cardiomyocyte sheets
show the characteristic structures of heart tissue including
elongated cardiomyocytes, well-differentiated sarcomeres,
GJs, and multiple blood vessels [35]. Long-term observation
shows (1) the survival of beating grafts for more than one
year and (2) the increase of their size, conduction velocity,
and contractile force in proportion to the host growth,
indicating the highly possible in vivo permanent survival
of engineered myocardial tissues [34, 35]. The implanted
cardiomyocyte sheets are found to be quite similar to real
heart tissue.

Cell sheets can be directly transplanted onto heart surface
without suture, and the cells of sheets can be effectively
delivered without cell loss [36]. In addition, after the trans-
plantation of layered cardiomyocyte sheets onto infarcted rat
heart, electrical and functional couplings between implanted
myocardial tissues and host heart are established [36]. The
pulsatile myocardial tissue grafts are expected to contribute
the mechanical support of damaged heart via electrical and
functional couplings.

5. The Therapeutic Effects of Cardiomyocyte
Sheets Transplantation in Animal Models

Miyagawa et al. use rat damaged heart models to examine the
therapeutic effects of cardiomyocyte sheet transplantation
[37]. The transplantation of layered cardiomyocyte sheets
into infarcted myocardium induces a significant increase in
left ventricle (LV) wall thickness and a decrease in cross-
sectional LV area [37]. In addition, cell sheet transplantation
induces significant improvements in the LV ejection fraction
(EF) and fractional shortening and a significant decrease in
LV end-systolic area [37]. Furthermore, the transplantation
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Figure 1: The preparation of a cardiomyocyte sheet using a temperature-responsive culture dish without protease treatment. Typical
cell harvest using proteases results in the disruption of cell-cell junctions including gap junctions, cell surface proteins including gap
junction precursors, and extracellular matrix (ECM) (a). When temperature-responsive culture surfaces are used, the structures of cells
are preserved and cultured cardiomyocytes are released as a contiguous cell sheet (b). A microphotograph shows the cross-sectional view of
a cardiomyocyte sheet. Electrograms show the spontaneous action potentials of a cardiomyocyte sheet.

of cardiomyocyte sheets induces the loss of branch block,
which are likely to be related to fibrosis or necrosis in
the heart tissue, in scar area [37]. These results indicate
that (1) electrical connections are established between the
implanted cardiomyocyte sheet and the host heart and
(2) the cardiomyocyte sheet transplantation induces the
restoration of damaged cardiac functions.

On the other hand, the importance of endothelial cell
(EC) coculture within cardiomyocyte sheets on therapeutic
effect is also reported [38]. In vitro, the cocultivation of
ECs within cardiomyocyte sheets induces the expression
of angiogenesis-related genes, namely, vascular endothelial
growth factor (VEGF) and Cox-2 and the formation of
EC-derived capillary-like prevascular network [39]. Using
a temperature-responsive culture dish, these cell sheets
including prevascular networks are able to be recovered
and transplanted intactly [39]. Sekine et al. examine the
therapeutic effects of prevascularized cardiomyocyte sheets
and compare with those of EC-negative cardiomyocyte sheets
using rat infarction model [38]. The transplantation of
triple-layered cardiomyocyte sheet including EC networks
induces the significant increase of blood-vessel densities in
infarcted hearts in comparison to the transplantation of
EC-negative layered cell sheet [38]. The improvements of
the host heart functions are observed in proportion to the
increase of EC numbers within cardiomyocyte sheets (The
percent fractional shortening of the sham control group
was 14 ± 4% (mean ± SD, n = 10); EC negative group:
19 ± 7%; 2 × 105 EC transplantation group: 18 ± 4%;
4 × 105 EC transplantation group: 22 ± 4%; 8 × 105 EC

transplantation group: 25 ± 5%) [38]. The transplantation
of EC-positive cardiomyocyte sheets induces the significant
reduction of fibrosis in the host damaged heart in com-
parison to the EC-negative cell sheets [38]. In vitro, EC-
positive cardiomyocyte sheets produce a significantly greater
amount of angiogenesis-related cytokines (basic fibroblast
growth factor (bFGF), hepatocyte growth factor (HGF), and
VEGF) in comparison to the EC-negative cell sheets [39].
VEGF and bFGF are strong promoters for angiogenesis, and
HGF has an antiremodeling activity including antiapoptosis
and antifibrosis in infarcted heart as well as angiogenesis [40–
44]. Thus, the productions of these cytokines from implanted
cell sheets including ECs are speculated to relate to the more
effective improvements of damaged heart functions.

6. Therapeutic Effects of Autologous Myoblast
Sheets Transplantation in Animal Models

At present, clinical trials using human cardiomyocytes have
been unaccomplished, though human embryonic stem (ES)
cells [45] and induced pluripotent stem (iPS) cells [46, 47]
have attractive potentials as pulsatile cardiomyocyte sources.
On the other hand, autologous cells are used clinically for
the therapy of cardiac disease as described above [4–10].
Myoblasts are used as the first cell source for the clinical
trial of myocardial tissue repair [4]. Sawa and coworkers
accomplish many investigations related to myoblast sheets
[48–52]. Memon et al. examine the therapeutic effects of
autologous skeletal myoblast sheets in rat infarction models
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Figure 2: Scaffold-free cell sheet-based tissue engineering: the fabrication of 3D myocardial tissue, transplantation, and the therapeutic
effects.

and compare to those of myoblast injection [48]. The
transplantation of myoblast sheets induces the significant
improvement of LVEF and the shortening of the percentage
of fractional area in comparison to the injection of myoblasts
[48]. On the other hand, the myoblast injection also induces
the improvement of the cardiac functions in comparison
to the medium injection control [48]. The reduction in LV
chamber area is observed in only cell sheet transplantation
group [48]. Cell sheet transplantation induces a uniform
and significantly thicker anterior wall, while there is no
difference in the thickness between the cell injection and the
control groups [48]. In addition, cell sheet transplantation
induces the significant reduction of myocardial fibrosis
in comparison to cell injection, which reduces fibrosis as
compared to the control [48]. The RNA expression of
stromal-derived factor 1 (SDF-1) and angiogenesis-related
cytokines (HGF and VEGF) in myoblast sheet transplanted
areas is significantly higher than that in myoblast injec-
tion areas [48]. SDF-1 recruits hematopoietic stem cells
expressing CXCR4 [53, 54]. In fact, in infarcted heart, the
recruitment of significant higher numbers of hematopoietic
stem cells is observed in the myoblast sheet transplantation as
compared to the myoblast injection and the control [48]. The
production of SDF-1 as well as HGF and VEGF may also be
related to the therapeutic effects of cell sheet transplantation.
These data show that the cell sheet transplantation can
induce more significant and remarkable improvement of
cardiac functions than cell injection [48].

Memon et al. use a double-layered myoblast sheet in
these experiments. Sekiya et al. analyze the effects of mul-
tilayered myoblast sheets to elucidate whether the increase of
the number of cell sheets induces the improvement of cardiac
function [51]. The transplantation of a quintuplet-layered

myoblast sheet induces a significantly better improvement
in heart functions (the reduction of heart hypertrophy, the
inhibition of cardiac fibrosis, etc.) and a higher microvessel
formation in the infarcted heart than a single-layered or
a double-layered cell sheet [51]. The therapeutic effects of
a triple-layered cell sheet are equal or somewhat smaller
than those of a quintuplet-layered cell sheet [51]. In vitro,
myoblast sheets promote the expression of angiogenesis
factors in proportion to the number of cell sheets [51].
The transplantation of myoblast sheets also induces the
organization of elastic fibers in infarcted heart via the
expression of tropoelastin, which is expressed most strongly
in a quintuplet-layered cell sheet [51]. The recovery of the
elasticity of host heart via the reorganization of elastic fibers
must also be related to the improvement of heart function.
In conclusion, they describe that the improvement of cardiac
function may plateau at a quintuplet-layered cell sheet [51].

In addition, experiments using middle or large animal
models are performed [49, 50, 52]. The autologous trans-
plantation of myoblast sheets also induces the restoration
of heart with dilated cardiomyopathy by using a hamster
model [49]. The transplantation of myoblast sheets improves
a cardiac performance and prolongs the life-span of the
animals, associating with the reorganization of the cytoskele-
tal proteins of host cardiac tissue and the reduction of
myocardial fibrosis [49]. HGF induces not only the reduc-
tion of fibrosis but also the reorganization of cytoskeletal
proteins such as alpha- and beta-sarcoglycans, which have
a mechanical function to strengthen the plasma membrane
during heart muscle contraction and an important role in
the signal transduction of the tissue [55]. The reorganization
of cytoskeletal proteins must be one cause of the improve-
ment of cardiac function. Thus, the secretion of cytokines
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including HGF from implanted myoblast sheets may also
be important for the improvement of cardiac functions
in dilated cardiomyopathy. Hata et al. use a large animal
dilated cardiomyopathy model, namely, a pacing-induced
canine heart failure model [50]. Autologous myoblast sheet
transplantation attenuates cardiac remodeling and improved
LV systolic and diastolic function [50]. Miyagawa et al.
use a porcine ischemic myocardium model [52]. Myoblast
sheet transplantation induces the improvement of cardiac
function by attenuating the cardiac remodeling in the
porcine ischemic myocardium [52]. In rat and hamster
models, small size cell sheets (diameter: approximately
10 mm) prepared on 35 mm temperature-responsive culture
dishes are used [37, 38, 48, 49, 51]. On the other hand, in
canine and porcine models, large size cell sheets (diameter:
approximately 20–40 mm) prepared on 60 mm or 100 mm
temperature-responsive culture dishes are used [50, 52].
Many cells can be effectively transplanted by the usage of
large size cell sheets prepared on 100 mm dish. Based on
these satisfactory results in several animal models, the clinical
trial of autologous myoblast sheet transplantation is now
in progress. In the clinical trials, large size cell sheets from
100 mm dishes are used.

7. Therapeutic Effects of Adult Stem/Progenitor
Cell Sheets Transplantation in Animal Models

The transplantations of several adult stem cell sheets
(adipose-derived and menstrual blood-derived mesenchy-
mal stem cell sheets and cardiac progenitor cell sheets)
also give promising results in small animal models [56–58].
Miyahara et al. use rat adipose tissue-derived mesenchymal
stem cell sheets [56]. In vitro, the stem cell sheets also
produce the large amounts of HGF and VEGF [56]. The
autologous transplantation of a single-layer adipose-tissue-
derived stem cell sheet onto rat infarcted heart induces the
growth of implanted cell sheet (the thickness: approximately
600 µm) including many newly formed blood vessels [56].
The transplantation of the stem cell sheets induces the
improvements of cardiac performances in damage heart with
the reversal of cardiac wall thinning and the prolongation
of survival after myocardial infarction [56]. On the other
hand, in vivo cardiac differentiation from the implanted
stem cells is scarcely observed [56]. Matsuura et al. use
mouse cardiac progenitor cell sheets [57]. The autologous
transplantation of the cardiac progenitor cell sheet induces
the improvement of damaged heart function through the
cardiomyocyte differentiations from the progenitor cells
and paracrine effects mediated via the soluble vascular cell
adhesion molecule 1 (VCAM-1)/very late antigen-4 (VLA-
4) signaling pathway [57]. Hida et al. use human menstrual
blood-derived mesenchymal stem cell sheets [58]. Interest-
ingly, the human stem cells differentiate into spontaneous
beating cardiomyocytes effectively by co-cultivating with
mouse cardiomyocytes [58]. In addition, the transplantation
of human menstrual blood-derived mesenchymal stem cell
sheets also significantly restore damaged cardiac function,
decreasing the myocardial infarction area in nude rat model

[58]. Tissue including the stem-cell-derived cardiomyocytes
is found in the implanted areas [58]. Bone-marrow-derived
stem cell sheets are successfully fabricated, and their trans-
plantations into large animal models are now in progress in
several laboratories including ours.

8. Future Possibilities of
Myocardial Tissue Engineering

Generally, the therapeutic effects of transplanted tissue
engineered grafts are mainly attributed to the following key
factors:

(1) mechanical support by transplanted pulsatile car-
diomyocytes;

(2) the secretion of several cytokines, including angio-
genesis factors, from the transplanted tissues;

(3) the formation of capillary networks at the site of
myocardial infarction;

(4) the inhibition of remodeling in damaged heart.

In relation to (1), the establishment of clinically appli-
cable pulsatile cardiomyocyte source is important. In this
point, ES/iPS cells are attractive, and the future progres-
sion of research is expected. In addition, the scale-up of
pulsatile myocardial tissues is important. The fabrication
and the transplantation of a large size cell sheet prepared
on a 100 mm dish are succeeded. On the other hand, the
insufficient supplies of oxygen and nutrients and waste
accumulation limit their thickness and disturb the scale-
up of tissue constructs. Our laboratory makes one solution
for the problems by using the polysurgery method of
cardiomyocyte sheets and fabricates a strongly pulsatile
myocardial tissue having approximately 1 mm in thickness
[59]. The trial of Hata et al. is also interesting [60]. They
report the fabrication of a myocardial tissue with a thickness
of approximately 800 µm by combining cardiomyocyte sheets
with cardiomyocytes-seeded decellularised porcine small-
intestinal submucosa [60]. In relation to (2)–(4), several
efforts, such as coculture with EC and the investigation of
numbers of layered cell sheets, are performed as described
in this paper. In addition, several possibilities to enhance
the therapeutic effects of engineered tissue grafts for cardiac
disease are discussed in many laboratories including ours
[61, 62]. Although the myocardial tissue engineering includ-
ing scaffold-free cell sheet-based tissue engineering stands at
its start line, the technology is thought to have promising and
enormous possibilities.

9. Conclusions

Scaffold-free cell sheet-based tissue engineering is realized
to be very useful for fabricating electrically communicative
and pulsatile 3D myocardial tissue both in vitro and in
vivo. The transplantation of myocardial tissue fabricated by
cell sheet-based tissue engineering is a quite different cell
delivery method from cell injection, and previous studies
show promising and powerful potentials for curing damaged



6 Cardiology Research and Practice

heart in several animal models. Cell sheet-based tissue
engineering has promising and enormous potentials to cure
many patients suffering from severe cardiac disease.
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