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JNK signaling is known to play a role in regulating cell behaviors such as cell cycle

progression, cell proliferation, and apoptosis, and recent studies have suggested

important roles for JNK signaling in embryonic development. However, the precise

function of JNK signaling in hair cell development remains poorly studied. In this

study, we used the small molecule JNK inhibitor SP600125 to examine the effect of

JNK signaling abrogation on the development of hair cells in the zebrafish lateral line

neuromast. Our results showed that SP600125 reduced the numbers of both hair cells

and supporting cells in neuromasts during larval development in a dose-dependent

manner. Additionally, JNK inhibition strongly inhibited the proliferation of neuromast

cells, which likely explains the decrease in the number of differentiated hair cells in

inhibitor-treated larvae. Furthermore, western blot and in situ analysis showed that

JNK inhibition induced cell cycle arrest through induction of p21 expression. We also

showed that SP600125 induced cell death in developing neuromasts as measured by

cleaved caspase-3 immunohistochemistry, and this was accompanied with an induction

of p53 gene expression. Together these results indicate that JNK might be an important

regulator in the development of hair cells in the lateral line in zebrafish by controlling both

cell cycle progression and apoptosis.
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INTRODUCTION

The zebrafish has become an attractive model organism for studying the molecular and cellular
basis of sensory organ morphogenesis. Zebrafish embryos are transparent, and the lateral line
system comprises a series of sensory organs, called neuromasts, that are located on the surface
of the head and along the body in species-specific patterns. Lateral line neuromasts house hair
cells and supporting cells, and hair cells can be readily observed and accessed due to their external
location. Hair cells of the zebrafish lateral line exhibit a morphology and function similar to
mammalian inner ear hair cells (Raible and Kruse, 2000; Nicolson, 2005), and they have been
used as a powerful model for investigating hair cell development and identifying new candidate
molecules and pathways that are required for hair cell development (Metcalfe et al., 1985; Riley,
2003; He et al., 2013, 2014; Loh et al., 2014; Thomas et al., 2015). The mitogen activated protein
kinase (MAPK) family has been shown to play important roles in regulating many developmental
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processes, including cellular growth, proliferation,
differentiation, and apoptosis (Seger and Krebs, 1995; Pearson
et al., 2001). The MAPK family is conserved, and three MAPK
signaling pathways have been identified: extracellular-signal-
regulated kinase (ERK), p38 mitogen-activated protein kinase
(p38), and c-Jun N-terminal kinase (JNK; Hanks et al., 1988;
Gupta et al., 1996). The JNK subgroup contains three major
isoforms in vertebrates that are denoted as JNK1, JNK2, and
JNK3 (Kallunki et al., 1994; Gupta et al., 1996; Yoshida et al.,
2001; Weston and Davis, 2007). It is well known that the JNK
signaling pathway interacts with a variety of other signaling
pathways and is activated by stress stimuli or growth signals
to execute its functions in cell differentiation, proliferation,
apoptosis, inflammatory responses, and nervous system
development (Han and Ulevitch, 1999; Davis, 2000; Lin, 2003;
Weston and Davis, 2007). Depletion of both jnk1 and jnk2 in
mice is embryonic lethal due to severe dysregulation of apoptosis
in the brain, and this suggests that jnk1 and jnk2 are critical in
regulating the differentiation and survival of neuronal cells in
the nervous system (Kuan et al., 1999; Sabapathy et al., 1999).
Targeted disruption of the jnk3 gene causes the mice to be
resistant to glutamate excitotoxicity, but not disruption of the
jnk1 or jnk2 genes, indicating a specific role of this gene in stress-
induced neuronal apoptosis (Yang et al., 1997). Owing to the
importance of JNK signaling, studies involving this pathway have
been extensive. It has been reported that JNK signal pathway is
related to many physiological and pathological processes, such
as neuron sprouting (Eminel et al., 2008), tubulin dynamics in
migrating neurons (Kawauchi et al., 2003), and progression of
cancer (Moon et al., 2008) and numerous other diseases (Salh,
2007; Mehan et al., 2011; Davies and Tournier, 2012).

SP600125 is a synthetic polyaromatic chemical that is widely
used as a selective inhibitor of JNK signaling in biochemical
studies (Bennett et al., 2001; Han et al., 2001). Treatment with
SP600125 reduces the number of mouse embryonic stem cell
colonies in culture and inhibits their proliferation by arresting
the cell cycle at the G2/M phase (Zhou et al., 2013). Recent
studies have indicated the physiological roles of JNK signaling in
embryogenesis and organogenesis. For example, developmental
studies demonstrate that there are distinct expression patterns
of JNK family proteins at different embryonic developmental
stages and during organogenesis in zebrafish. Reduction of
JNK1 by RNA interference results in several defects and
malformations of zebrafish embryos. Chemical inhibition of
JNK with SP600125 results in high mortality and severe
organ abnormalities during embryonic development in zebrafish
similar to that caused by knockdown of JNK1 mRNA. In the
ovary, pharmacological inhibition of JNK with SP600125 inhibits
ovarian differentiation and development in zebrafish during early
ontogenetic stages (Xiao et al., 2013). The study by Xie and
colleagues reported that the effects of SP600125 on development
appear to be multifaceted. In mouse pre-implantation embryonic
development, administration of SP600125 decreased the rate
of development if embryos were cultured in suboptimal media
(Ham’s F10), while the rate of development increased when they
were in optimal media (Xie et al., 2006). These data also suggest
that decreased progression into S phase and increased apoptosis

account for the slow increase in cell number in suboptimal media.
Previous studies have demonstrated an important role for JNKs
in the correct development of the nervous system (Kuan et al.,
1999; Shoichet et al., 2006) and in the developing and adult brain,
and abrogation of JNK signaling alters neuronal pathfinding,
migration, and axodendritic architecture and synaptic function
(Coffey, 2014). However, the role of JNK signaling in hair cell
development is, so far, not well understood.

The purpose of the current study was to investigate the
function of JNK in hair cell development in the zebrafish lateral
line. We hypothesized that inhibiting JNK would attenuate the
differentiation of hair cells. We investigated the role of JNK
using the SP600125 inhibitor in zebrafish larvae. To assess the
development of neuromast hair cells, we took advantage of
the (Brn3c:mGFP) transgenic zebrafish embryo that expresses
green fluorescent protein (GFP) in the hair cells of the lateral
line neuromasts (Xiao et al., 2005). Our data showed that
pharmacologic inhibition of JNK effectively reduced the numbers
of hair cells and supporting cells in developing neuromasts, and
the effect of SP600125 was dose dependent. We provide evidence
that inhibition of JNK significantly inhibited proliferation of the
progenitor cell population and induced increased p53 and p21
levels during hair cell development. In addition, SP600125 at
higher concentration caused significant cell death in lateral line
neuromasts. Overall, our study demonstrates that JNK is required
for the development of hair cells and that inhibition of JNK
directly inhibits cell proliferation and induces cell cycle arrest and
apoptosis during the course of hair cell development in zebrafish
lateral line neuromasts.

MATERIALS AND METHODS

Zebrafish Embryos and Drug
Administration
All zebrafish animal experiments were performed following the
institutional guidelines approved by the Institutional Animal
Care and Use Committee of Fudan University, Shanghai. The
ages of zebrafish larvae are described as days post fertilization
(dpf). SP600125 was dissolved in dimethyl sulfoxide (DMSO,
Sigma Aldrich, St Louis, MO, USA) at a stock concentration
of 50mM and further diluted to the desired concentrations in
fresh egg water. SP600125 treatment commenced at 3 dpf, and
larvae were separated into four groups and given SP600125 at
0 (control), 5, 10, or 15µM. Treatment was conducted for 2
days with daily water changes followed by several washes in
fresh egg water. The larval zebrafish were then fixed with 4%
paraformaldehyde (PFA) in phosphate buffered saline (PBS) at
4◦C until further processing.

Cell Proliferation and Analysis
Proliferating cells in the lateral line neuromasts were labeled by
adding 10mM 5-bromo-2-deoxyuridine (BrdU; Sigma Aldrich)
to the fresh egg water for 2 days at 28.5◦C. Larvae were then
fixed with 4% PFA overnight at 4◦C, and BrdU incorporation
was detected by fluorescent immunostaining. The fixed larvae
were washed three times in PBS containing 0.5% Triton X-100
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(PBT-2) and placed in 2 N HCl for 0.5 h at 37◦C. Larvae were
blocked in 10% normal goat serum for 1 h at room temperature
and incubated with the monoclonal primary anti-BrdU antibody
(1:200 dilution; Santa Cruz, Dallas, TX, USA. Cat. no. sc-
32323) overnight at 4◦C. The next day, larvae were washed three
times for 10min each with PBT-2 and then incubated with the
secondary antibody for 1 h at 37◦C. Fluorescently labeled larvae
were imaged with a Leica confocal fluorescence microscope (TCS
SP5; Leica, Wetzlar, Germany).

Immunohistochemistry
For immunohistochemistry analysis, larvae were fixed with
4% PFA and were permeabilized with PBT-2 for 30min
followed by incubation in blocking solution for 1 h. Primary
antibodies were then added overnight at 4◦C with rocking.
The following antibodies were used as primary antibodies: anti-
GFP (1:1000 dilution; Abcam, Cambridge, UK), anti-Sox2 (1:200
dilution; Abcam), and anti-cleaved caspase-3 (1:500 dilution;
Cell Signaling Technology Inc., Danvers, MA, USA). After three
washes of 20min, Alexa Fluor 488–, 594–, and/or Alexa Fluor
647–conjugated secondary antibodies (Jackson ImmunoResearch
Laboratories, West Grove, PA, USA) were added at a dilution of
1:500 in blocking solution and incubated overnight at 4◦C with
rocking. Nuclei were labeled with 4,6-diamidino-2-phenylindole
(DAPI; 1:800 dilution; Invitrogen, Carlsbad, CA, USA) for 20min
at room temperature. For image collection, Z-sections were
taken at 1µm intervals through the depth of the neuromast.
For analyses, maximum intensity projections were generated.
Images were processed using Photoshop software (Adobe). Cell
counts were performed at the time of imaging by viewing
the images using a Nikon Eclipse Ni Fluorescence Microscope
(Nikon Instruments) using a 40X objective. Double-labeled cells
in neuromasts were counted on a confocal microscope, using a
63X objective (TCS SP5; Leica, Wetzlar, Germany). BrdU+ cells
having a shape identical to that of a hair cell or supporting cell and
corresponding to the exact location of a neuromast were counted.

FM1-43FX Labeling
The vital dye FM1-43FX (Molecular Probes, Eugene, OR, USA)—
which enters mature hair cells through mechanotransduction-
dependent activity—was applied at a concentration of 3µM to
live 5 dpf larvae for 45 s in the dark. After quickly rinsing three
times with fresh water, the larvae were anesthetized in 0.02%MS-
222 and fixed with 4% PFA in PBS for 2 h at room temperature or
overnight at 4◦C.

Western Blot Analysis
Total protein was isolated from whole larvae at 5 dpf using
AllPrep DNA/RNA/Protein Mini Kit (QIAGEN, Hilden,
Germany) according to the manufacturer’s instructions. Protein
concentrations were measured using a BCA protein kit (Thermo
Fisher Scientific, Rockford, IL), and proteins were separated
on SDS-polyacrylamide gels and transferred onto PVDF
membranes (Immobilon-P; Millipore, Bedford, MA, USA). The
membranes were blocked with 5% non-fat dried milk in TBST
[50mM Tris-HCl (pH 7.4), 150mM NaCl, and 0.1% Tween-20]
for 1 h at room temperature and then blotted overnight with

primary antibodies at 4◦C. The following antibodies were used as
primary antibodies: anti-cleaved caspase-3 (1:1000 dilution; Cell
Signaling Technology Inc.), anti-p21 (1:500 dilution; Santa Cruz
Biotechnology, Inc.), and anti-p53 (1:1000 dilution; Abcam);
anti-JNK (1:1000 dilution; Abcam); anti- p-JNK (1:500 dilution;
Santa Cruz Biotechnology, Inc.)

Whole-Mount In situ Hybridization
The probes used in in situ hybridization (jnk1, p21, and
p53) were amplified by PCR from zebrafish embryo cDNA
using the following primers and cloned into the pGEM-
T Easy Vector (Promega, cat. no. A1360): jnk1 forward:
5′-agtgtgttgtttcctggcac-3′; jnk1 reverse: 5′-actgctgtcggtgtctgag-
3′; p21 forward: 5′-acaagcggatcctacgttca-3′; p21 reverse: 5′-
ctacgagacgaatgcagctc-3′; p53 forward: 5′-tcttttgaggtgcgtgtgtg-
3′; p53 reverse: 5′-acatgtatcgcagttcccca-3′. Digoxigenin-labeled
antisense RNA probes were generated by in vitro transcription
using T7 or SP6 RNA polymerase (Promega). Regular whole-
mount in situ hybridization of zebrafish embryos was performed
as previously described (Thisse and Thisse, 2008). Briefly, the
embryos were depigmented with 1-phenyl-2-thiourea (PTU,
Sigma-Aldrich, cat. no. P7629), euthanized in MS-222, and fixed
overnight with 4% PFA at 4◦C. The fixed embryos were washed
in PBS with 0.1% Tween-20 (PBST) and placed in 100%methanol
at –20◦C for dehydration. Prior to use, they were rehydrated in a
graded methanol series and washed three times for 5min with
PBST. To permeabilize the embryos, proteinase K (10µg/mL in
PBST) was added for 50min and the embryos were refixed in
4% PFA for 20min. After washing in PBST, the embryos were
pre-hybridized at 65◦C for ≥2 h in hybridization buffer. For
hybridization, the labeled probes were added to the hybridization
buffer at 65◦C overnight. After washing for 15min with 75%,
50%, and 25% hybridization buffer and 2X SSCT (20X SSC, Life
technologies, AM9770; 0.1% Tween-20) and for 30min twice
in 0.2X SSC at 65◦C, embryos were blocked for at least 2 h
at 4◦C in blocking buffer (Roche cat. no._11096176001) and
were incubated with pre-absorbed sheep anti-digoxigenin-AP
Fab fragments (Roche cat. no. 11093274910) at a 1:4000 dilution
in blocking buffer overnight at 4◦C. The next day, the embryos
were washed 4×30min with 2mg/mL BSA in PBST and 3×5min
in staining buffer (100mM Tris (pH 9.5), 100mM NaCl, and
0.1% Tween-20). Afterwards, the embryos were stained with BM
purple AP substrate (Roche cat. no. 11 442074001) in the dark.
Finally, the color reaction was stopped by adding PBST, and the
embryos were observed under a bright field microscope (Nikon
Instruments).

Tunel Staining
For TUNEL (Terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling) assays, 5 dpf larvae were incubated in
0.1M glycine/PBS solution for 10min and then rinsed with PBT-
2 three times for 10min each. The larvae were then processed
using the In situ Cell Death Detection Kit (Roche, Nutlet, NJ,
USA; cat. no. 11684795910) following the directions supplied by
the manufacturer.
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Cell Counts and Statistical Analysis
Cells in the first four lateral line neuromasts (L1–L4) were
counted. Prior to analysis, all data were first examined for
normality and homogeneity of variances by the Shapiro–Wilk
test and Levene’s test, respectively. For statistical comparisons,
differences among groups were compared using one-way
ANOVA, and differences between groups were compared using
an unpaired t-test (two-tail; see figure legends for details). Data
were analyzed using SigmaPlot (version 12.0 for Windows; Systat
Software Inc., CA, USA). All data are presented as the mean ±

SD. A p < 0.05 was considered statistically significant.

RESULTS

SP600125 Treatment Affects the
Development of Hair Cells and Supporting
Cells in the Lateral Line
To address the question whether the JNK pathway is involved
in the hair cell development of zebrafish, we analyzed the
expression pattern of the jnk1 gene.Whole-mount in situ analysis
demonstrates that jnk1 is highly expressed in the neuromasts of
zebrafish larvae at 5 dpf (Supplemental Figure 1A). SP600125,
an anthrapyrazolone inhibitor of JNK catalytic activity, has been
used to inhibit JNK with a high specificity and is widely used
for assessing the complex roles of JNK in regulating biological
processes (Bennett et al., 2001). To investigate the effects of
SP600125 on JNK phosphorylation during hair cell development,
zebrafish larvae at 3 dpf were treated with SP600125 for 2
days followed by western blot analysis of the levels of JNK
phosphorylation. JNK activation was observed in untreated
control larvae at 5 dpf, but SP600125 significantly decreased
JNK phosphorylation when compared with 5 dpf control larvae
(Supplemental Figure 1B).

To investigate the effects of SP600125 on lateral line hair
cell development in zebrafish, we incubated zebrafish larvae in
varying concentrations of SP600125 from 3 to 5 dpf, the time
during which most of the hair cells are formed and become
functional (Raible and Kruse, 2000; Harris et al., 2003). We
first assessed the impact of SP6000125 on the development
of zebrafish with bright field microscopy. No global defects
were observed between the embryos treated with SP6000125
and the control embryos, and there were only a few apparent
differences in development between the embryos treated with
15µM SP6000125 and control embryos. Within these samples,
pericardium edema and reduced body length were the obvious
external defects in embryos treated with 15µM SP600125
(Supplemental Figure 2).

To test the functionality of the differentiated hair cells,
we stained 5 dpf larvae with the vital dye FM1-43FX, which
is a marker of functional mechanotransduction channels in
hair cells (Seiler and Nicolson, 1999). We found that the
hair cells of SP600125-treated larvae showed overall normal
morphology; however, there was a significant reduction in
the total number of FM1-43FX-positive hair cells (Figure 1).
We also used transgenic (Brn3c:mGFP) zebrafish that express
GFP in differentiated hair cells (Figures 2A2,B2) to further

quantify changes in the numbers of hair cells. Larvae in
the control groups harbored 10.08 ± 0.97 GFP-positive hair
cells per neuromast (n = 36 neuromasts), while the larvae
treated with 5µM SP600125 harbored 7.75 ± 0.97 GFP-
positive hair cells (n = 28 neuromasts; p < 0.001).
As shown in Figure 2, with an increasing concentration of
SP600125 (10 and 15µM) the numbers of GFP-positive hair
cells were reduced even further (Figure 2C; SP600125 10µM,
5.54 ± 0.93 GFP-positive cells, n = 24 neuromasts, p <

0.001 vs. control; SP600125 15µM, 3.9 ± 1.0 GFP-positive
cells, n = 28 neuromasts, p < 0.001 vs. control). The
experiment was repeated three times with consistent results
(Supplemental Figure 3). These results confirmed the reduced
FM1-43FX-positive hair cells observed in the SP600125-treated
group and showed that normal hair cell development is
severely impaired in the presence of JNK inhibitor. To test
the contribution of ongoing JNK phosphorylation to hair
cell differentiation, SP600125 was removed from some larvae
at the 5 dpf time point. There was a significant decrease
in the number of FM 1-43FX-positive hair cells in the
zebrafish larvae at 3 dpf treated for 4 days with SP600125
when comparing the controls (p < 0.001) and the inhibitor
washout experiment group (p < 0.001; Supplemental Figure 4).
These washout experiments demonstrated that changes brought
about by SP600125 were reversible, and hair cell differentiation
resumed upon removal of the inhibitor. We next identified the
effects of SP6000125 on supporting cell development by Sox2
immunohistochemistry (Figures 2A3,B3). We quantitatively
assessed the Sox2-labeled cells in the neuromasts after treatment
with different concentrations of SP600125 and observed a dose-
dependent reduction in the number of stained supporting cells
(Figure 2D; p < 0.001). These results suggest that JNK is
involved in neuromast development.

Impact of SP600125 on Neuromast Cell
Proliferation
Because there was a reduction in the number of neuromast
hair cells, and because JNK has been shown to be involved in
regulating cell proliferation and apoptosis, we hypothesized that
SP600125 treatment caused a reduction in cell proliferation,
an increase in cell death, or a combination of both. To
test the effect of SP600125 on cell proliferation in zebrafish
lateral line neuromasts, we incubated 3 dpf larvae with both
10mM BrdU and SP600125 for 2 days (Figures 2A4,B4).
The larvae were fixed at 5 dpf and processed for BrdU
immunohistochemistry. SP600125-treated larvae exhibited
significantly fewer BrdU-positive cells compared to controls
(Supplemental Figures 5A,B). The level of neuromast cell
proliferation was determined by counting the number of BrdU-
positive cells in the lateral line neuromasts. In control larvae,
there were 14.28 ± 3.5 BrdU-positive cells in neuromasts
between 3 dpf and 5 dpf. SP600125 treatment caused a
significant reduction in the number of BrdU-labeled cells
in a dose-dependent manner (Figure 2E; p < 0.001).

To distinguish the newly differentiated hair cells from
cell proliferation, we quantified the ratio of GFP and BrdU
double-labeled cells to GFP-labeled hair cells in neuromasts
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FIGURE 1 | SP600125 reduced the number of FM1−43FX+ cells. (A–C) We treated 3 dpf zebrafish with or without SP600125 for 2 days and subsequently

imaged FM1-43FX+ cells (red). Higher magnification of hair cells of the neuromast taken from z-stacks show that (A) hair cells in untreated controls and (B,C)

SP600125-treated animals had no observable morphological differences though there were fewer hair cells in the SP600125-treated animals. Nuclei are stained with

DAPI and scale bars = 10µm. (D) The average number of FM1−43FX+ cells per neuromast (NM) in larvae treated with or without SP600125 for 2 days. The first 4

neuromasts along the body, L1–L4, were recorded on one side of each fish. n = 26 neuromasts in control, n = 28 in 5µM SP600125-treated neuromasts, n = 40 in

10µM SP600125-treated neuromasts, and n = 28 in 15µM SP600125-treated neuromasts. One-way ANOVA; FM1−43FX+ cells: F3, 118 = 96.18, p < 0.001. Bars

are mean ± SD. ***p < 0.001, highly significant difference when compared to control larvae.

of 5 dpf larvae (Figure 2F). In control fish, a considerable
number of GFP-expressing cells were co-labeled with BrdU,
while in SP600125-treated neuromasts the BrdU incorporation
was mainly detected in the periphery of the neuromast
and there was very little overlap of signals. The ratios of
GFP and BrdU double-labeled cells to GFP-labeled cells in

neuromasts in SP600125-treated larvae at concentrations>5µM
were significantly lower compared with the untreated larvae
(Figure 2F; p < 0.001). Because the supporting cells serve as
the major source of newly differentiated hair cells within the
neuromast, we counted the cells that were double labeled with
anti-Sox2 and anti-BrdU antibodies and calculated the ratio of
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FIGURE 2 | Detection of neuromast hair cells and supporting cells in 5dpf larvae. (A,B) Confocal images of neuromasts from a 5dpf control larva and 5dpf

larva treated with 10µM SP600125. The neuromast hair cells in the transgenic line Brn3c:mGFP were detected by GFP visualization (green), supporting cells were

detected by Sox2 (red), and proliferating cells were detected by BrdU (white). Higher magnification of hair cells and supporting cells of the neuromast taken from

z-stacks show that hair cells and supporting cells in untreated controls and SP600125-treated animals had no observable morphological differences though there

were fewer GFP-positive and Sox2-positive cells in the neuromasts of larvae treated with SP600125. The number of BrdU-labeled cells is much larger in control than

in SP600125-treated larvae. Scale bar = 10µm. (C,D) Quantification of hair cells and supporting cells in the neuromast (NM) for each experimental condition. (E–G)

Quantification of replicating cells in the neuromasts for each experimental condition. SP600125 treatment decreased the numbers of BrdU-positive cells, the ratio of

BrdU-positive hair cells, and the ratio of BrdU-positive supporting cells in neuromasts. The first four neuromasts along the body, L1–L4, were recorded on one side of

each fish [one-way ANOVA; GFP+ cells: F(3, 112) = 237.5, p < 0.001; Sox2+ cells: F(3, 112) = 102.5, p < 0.001; BrdU+ cells: F(3, 112) = 134, p < 0.001; BrdU+ HCs:

F(3, 112) = 89.7, p < 0.001; BrdU+ SCs: F(3, 111) = 32.08, p < 0.001]. Bars are mean ± SD. n = 36 neuromasts in control, n = 28 in 5µM SP600125-treated

neuromasts, n = 24 in 10µM SP600125-treated neuromasts, and n = 28 in 15µM SP600125-treated neuromasts. *p < 0.05, significant difference when compared

to control larvae; ***p < 0.001, highly significant difference when compared to control larvae.

double-labeled cells to the Sox2-labeled cells. The percentage
of double-labeled cells was significantly reduced by SP600125
treatment for 2 days starting at 3 dpf, and the effect was dose
dependent (Figure 2G; p < 0.05, 0.001). These findings suggest
that SP600125 significantly decreased the BrdU-labeled cells
indicating that there are fewer cells progressing into S-phase of
the cell cycle in the neuromast.

SP600125 Administration Induces
Apoptosis and Cell Cycle Arrest in
Zebrafish Neuromasts
After observing the proliferation defect in treated zebrafish
larvae, we performed TUNEL analysis on 5 dpf control and
SP600125-treated larvae to investigate the roles of JNK in
apoptosis. SP600125-treated larvae had significantly greater
numbers of TUNEL-positive cells throughout the brain
and trunk regions when compared to untreated controls
(Supplemental Figures 5C,D). To assess the relative levels of
apoptosis in neuromasts, we labeled the zebrafish larvae with
anti-cleaved caspase-3 antibody. Very few cleaved caspase-3-
positive cells were observed in neuromasts of untreated groups,
while the numbers of cleaved caspase-3-positive cells at 5 dpf in
the 15µMSP600125-treated larval neuromasts were significantly

increased (Figures 3A–C; p < 0.001). Because the Brn3c:mGFP
transgenic zebrafish lateral line hair cells were labeled with GFP,
we were able to determine if the hair cells were cleaved caspase-
3-positive. As shown in Figure 3A, we occasionally detected
cleaved caspase-3-positive hair cells in control neuromasts. On
the contrary, the emergence of cleaved caspase-3-positive hair
cells became frequent in larvae at the higher concentrations of
SP600125 (15µM) at 5 dpf (Figures 3B,C; p < 0.01). This was
further confirmed by the western blot analysis of proteins from
zebrafish larvae (Figure 3D).

Previous reports have showed that JNK inhibition induces
cell cycle arrest through induction of p21 expression (Du
et al., 2004; Moon et al., 2011). In this study, western
blot and whole-mount in situ analysis were conducted to
determine if SP600125 alters the expression of cell cycle-
regulated genes in zebrafish. As shown in Figure 4, exposure
to 10µM SP600125 increased the levels of p21. We also
examined the expression of p53 by western blotting and
in situ analysis, and the expression of p53 was significantly
increased in the treated group (Figure 4). These observations
provide evidence that JNK inhibition with SP600125 in zebrafish
lateral line neuromast cells induces both cell cycle arrest and
apoptosis.
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FIGURE 3 | Effects of SP600125 on apoptosis. (A–B) Cleaved caspase-3 staining in the neuromast from a 5dpf control larva (A) and 15µM SP600125-treated

5 dpf larva (B). Scale bar = 10µm. (C) SP600125 treatment increased the numbers of cleaved caspase−3−positive cells and cleaved caspase−3−positive hair cells

[one-way ANOVA; Caspase−3+ cells: F(2, 101) = 12.53, p < 0.001; Caspase3+ hair cells: F(2, 101) = 4.549, p = 0.0128]. Bars are mean ± SD. n = 24 neuromasts in

control, n = 24 in 10µM SP600125-treated neuromasts, and n = 56 in 15µM SP600125-treated neuromasts. *p < 0.05, significant when compared to control

larvae; **p < 0.01, highly significant when compared to control larvae; ***p < 0.001, highly significant when compared to control larvae. (D) After treatment of 3 dpf

larvae with 15µM SP600125 for 2 days, protein extracts were prepared and subjected to western blot assay using an antibody against cleaved caspase-3. β-Actin

was included as the loading control.

FIGURE 4 | Effects of SP600125 on the expression of p21 and p53. (A) After treatment of larvae with 10µM SP600125 for 2 days, protein extracts were

prepared and subjected to western blot assay using antibodies against p21 and p53. β-Actin was included as the control. (p21, unpaired t-test, two-tailed, t = 4.172,

df = 4, p = 0.014; p53, unpaired t-test, two-tailed, t = 3.273, df = 4, p = 0.0307).Bars are mean ± SD for three experimental replicates. *p < 0.05. (B) Localization of

p21 and p53 genes with whole-mount in situ hybridization in SP600125-treated and untreated larvae.
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DISCUSSION

JNK signaling is essential for a wide range of physiological
processes and disease states. JNK is generally activated by stress
stimuli such as cytokines, growth factors, or cellular damage
(Davis, 2000; Johnson and Nakamura, 2007), and activated JNK
phosphorylates transcription factors of the Jun family that are
involved in the regulation of inflammation, cell proliferation,
cell differentiation, apoptosis, and tumorigenesis (Kang et al.,
2003; Huh et al., 2004). The biologic outcome of JNK activation
is multifaceted and depends on the cell type, stimulus, and the
duration of JNK activation (Liu and Lin, 2005). In immortalized
neural stem cells, JNK blockade has been shown to inhibit
proliferation and to induce increases in p53, p21Cip1/Waf1, and
BAX protein levels (Yang et al., 2005). JNK activation contributes
to IL-3–mediated cell survival through phosphorylation and
inactivation of the proapoptotic Bcl-2 family protein BAD (Yu
et al., 2004). Moreover, it was reported that JNK2 blockade
in fibroblasts inhibits cell proliferation by promoting G2/M-
phase arrest and apoptosis (Du et al., 2004). Furthermore, it was
shown that JNK signaling is involved in tissue morphogenesis
and regeneration (Oliva et al., 2006; Barnat et al., 2010; Hirai
et al., 2011). For example, previous studies have shown that
JNK activity is essential in axon formation (Oliva et al.,
2006; Hirai et al., 2011). Gene targeting studies in mice have
demonstrated that inhibition of JNK1 significantly disrupts
anterior commissure tract formation, indicating that JNK1 is
required for commissural axon guidance in the developing
nervous system (Chang et al., 2003). In addition, recent studies
showing alterations in JNK signaling in various kinds of tumors
indicate that modulation of JNK signaling might be a promising
tool for preventing cancer development (Jørgensen et al., 2006;
López-Sánchez et al., 2007; Nakamura and Takekawa, 2012;
Davies and Tournier, 2012). Remarkably, many studies have
shown that the JNK signaling pathway plays a crucial role in
hearing loss due to acoustic trauma or aminoglycoside antibiotic
(Pirvola et al., 2000; Wang et al., 2003, 2007; Zine and van
de Water, 2004; Eshraghi et al., 2007). However, the potential
role of JNK in inner ear development is less well-characterized.
Given the similarities between zebrafish lateral line hair cells
and mammalian inner ear sensory hair cells, the zebrafish model
has been used to investigate the activity of JNK in hair cells.
Because SP600125 is commonly used for assessing the complex
roles of JNK in mediating biological processes (Bennett et al.,
2001), we used SP600125 to suppress JNK activity and to
evaluate the effect of JNK inhibition on lateral line hair cell
development. Our results show that treatment of developing
zebrafish with SP600125 led to a dose-dependent decrease in hair
cells. Additionally, as assayed by BrdU immunohistochemistry,
cell proliferation in neuromasts decreased in response to
SP600125 treatment. Finally, apoptosis within the SP600125-
treated neuromasts, as measured by cleaved caspase-3 labeling,
increased. Thus, our results provide compelling evidence that
JNK signaling is involved in the development of zebrafish
neuromast hair cells.

JNK1 and JNK2 are expressed in a variety of tissues during
development, whereas JNK3 is primarily expressed in the brain,
heart, and testes (Gupta et al., 1996; Kuan et al., 1999). Studies

of JNK gene deletions have provided more insight into the
roles of different JNK isoforms in distinct cellular processes
and morphogenesis. For example, knockdown of jnk1 by RNA
interference causes axonal commissure defects and decreased
microtubule polymer length (Chang et al., 2003) as well as
disturbed dendritic architecture in the brain (Bjorkblom et al.,
2005), and this suggests that JNK1 is required for maintaining
cytoskeletal integrity in the developing nervous system. Similarly,
it was found that deletion of either jnk2 or jnk3, like jnk1, was
not embryonic lethal, but mice lacking both jnk1 and jnk2 die
duringmid-gestation owing to regional and developmental stage-
specific alterations in apoptosis in the developing brain (Kuan
et al., 1999; Sabapathy et al., 1999). JNK signaling is best known
for its essential role in cell apoptosis following stress, but recent
studies also support a role for JNK as an important mediator
of normal brain morphogenesis during development (Waetzig
et al., 2006), including neural tube closure (Kuan et al., 1999),
neurite outgrowth (Oliva et al., 2006; Dajas-Ballador et al., 2008),
neuronal migration (Hirai et al., 2002), and lens development
in the eye (Weston et al., 2003). There is growing evidence
for the molecular mechanisms of JNK action, and JNKs might
influence the microtubule cytoskeleton via phosphorylation
of the microtubule-stabilizing protein doublecortin (Gdalyahu
et al., 2004), the stathmin family of proteins (Tararuk et al., 2006),
and MAP2 and MAP1B (Chang et al., 2003).

Previous studies have shown that all three JNK isoforms are
expressed in adult dorsal root ganglia neurons and that JNKs
are rapidly activated in response to peripheral nerve injury. This
activation of JNK in turn activates the transcription factors c-
Jun and activating transcription factor-3 (ATF-3). However, JNK-
specific inhibition does not affect neuronal survival, but instead
dramatically reduces neuritogenesis, c-Jun activation, and ATF-
3 induction suggesting that JNK-mediated c-Jun activation
and subsequent ATF-3 induction are necessary for promoting
axonal outgrowth of sensory neurons in rat dorsal root ganglia
(Kenney and Kocsis, 1998; Lindwall et al., 2004; Cavalli et al.,
2005). The role of JNKs in the regulation of sensory neurons
prompted us to investigate the functions of JNK signaling during
hair cell development. Our present findings demonstrate that
SP600125 treatment reduces hair cell numbers. Because the
proper regulation of cell proliferation and cell death is required
for hair cell formation, our second goal in this study is to assay
cell proliferation and apoptosis, and our data suggest that failure
to enter S phase, as well as increased cell apoptosis, contribute to
fewer hair cells in neuromasts treated with JNK inhibitor.

Recent studies have found that JNK activity is involved in the
regulation of cell proliferation and apoptosis (Davis, 2000; Lin,
2003), and the inhibition of the JNK pathway with SP600125
is well known to result in cell cycle arrest, endoreduplication,
and apoptosis in various cancer cells (Hideshima et al., 2003;
Du et al., 2004; Mingo-Sion et al., 2004). Studies using both
SP600125 and antisense approaches have suggested a role for
JNK in cell cycle progression and tumor cell growth inhibition.
For example, targeted depletion of either JNK1 or JNK2 with
antisense oligonucleotides caused cell proliferation inhibition
associated with S-phase arrest and p53-independent induction
of the cyclin-dependent kinase (Cdk) inhibitor p21 as well as
subsequent decreases in both Cdk1 and Cdk2 kinase activity in
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cancer cells (Potapova et al., 2000). Our results agree well with
previous reports showing that JNK inhibition by SP600125 is
strongly correlated with cell proliferation as assessed by BrdU
staining in zebrafish neuromasts. Because SP600125 is known to
induce p21, it will be of interest to investigate whether SP600125-
induced cell proliferation inhibition in lateral line neuromasts
during the course of hair cell development in zebrafish is
influenced by changes in the activities of Cdks or Cdk inhibitors
such as p21. The functions of JNK in cell cycle progression will
provide important directions for future studies regarding how
JNK affects hair cell development.

Decreases in cell proliferation in the neuromasts of SP600125-
treated fish could also be due to induction of apoptosis, so we
performed a cell death analysis by cleaved caspase-3 staining.
Our present data clearly show that SP600125 treatment induces
significant increases in the number of cleaved caspase-3-positive
cells in neuromasts compared to controls, and this demonstrates
that JNK inhibition induces cell death in neuromasts mainly
through caspase-3 activation. Many cellular regulators have been
reported to be involved in the induction of apoptosis, for
instance, the tumor suppressor protein p53 plays a critical role in
the regulation of cell growth, proliferation, and apoptosis (Bates
and Vousden, 1999; Vogelstein et al., 2000; Schmitt et al., 2002).
The activation of p53 triggers a cascade of gene expression that
leads either to growth arrest at the G1/S or G2/M transitions
of the cell cycle or to apoptosis (Appella and Anderson, 2001).
Recent studies have linked JNK to apoptosis in multiple ways.
JNK’s ability to regulate the apoptotic responses might stem from
its ability to regulate p53 function. p53 protein has been shown
to be capable of inducing both cell cycle arrest and apoptosis
by activating p21, one of p53’s most important transcriptional
targets, or by inducing PUMA, Noxa, Bax, or other genes that
play crucial roles in apoptosis induction. SP600125 is known
to directly induce p53 expression, but it has been shown that
G2/M arrest by SP600125 treatment functions independently
of p53 (Mingo-Sion et al., 2004). Western blotting data clearly
show that SP600125 treatment increases the protein levels of
p21 and p53, and these results provide evidence that JNK
inhibition in lateral line neuromasts inhibits proliferation due
to S-phase arrest, which is accompanied by induction of p21,
and that it induces apoptosis—accompanied by induction of
p53—which leads to elevated levels of caspase 3. However, we
cannot rule out the possibility that these proteins might also
be affected in other tissues where JNK is expressed because the
proteins used for immunoblot analysis were isolated from the
whole larvae, not only from the neuromasts. We examined the
expression of p21 and p53 by whole-mount in situ analysis, and
the expressions were significantly increased in the treated group.
These observations provide evidence that JNK inhibition with
SP600125 in zebrafish lateral line neuromast cells induces both
cell cycle arrest and apoptosis.

In conclusion, our study supports a novel role for JNK in hair
cell development in the zebrafish lateral line, and this appears
to be through the regulation of cell proliferation and apoptosis
in the neuromasts accompanied by induction of p53 andp21.
The present study provides new insights into the mechanisms of
lateral line hair cell development.
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Supplementary Figure 1 | Pattern of JNK phosphorylation during hair cell

development. (A) Expression pattern of jnk1 in the neuromast of zebrafish at 5

dpf. (B) Extracts from control larvae and SP600125-treated larvae at 5 dpf were

run on SDS-PAGE and western blotted with the anti-phosphorylated JNK

antibodies. JNK phosphorylation was detected in the control larvae at 5 dpf, but

p-JNK was obviously down-regulated after SP600125 treatment.

Supplementary Figure 2 | Effect of JNK inhibition on the development of

zebrafish larvae. Full-body images of 5 dpf zebrafish larvae exposed to 0µM

(control) (A), 5µM (B), 10µM (C), and 15µM SP600125 (D) during the 3–5 dpf

period of hair cell development. The zebrafish larvae treated with 5µM SP600125

from 3 to 5 dpf were morphologically normal when compared to control larvae

while more defects were observed in the 15µM-treated larvae, such as

pericardium edema and reduced total length.

Supplementary Figure 3 | The number of GFP+ hair cells is decreased in

embryos treated with SP600125 for 2 days. Histograms show the quantitative

measurements of the number of hair cells in larvae treated with SP600125. The

experiment was repeated three times with consistent results [experiment 1,

experiment 2, and experiment 3; One-way ANOVA; experiment 1:

F (3, 112) = 115.6, p < 0.001; experiment 2: F (3, 108) = 73.05, p < 0.001;

experiment 3: F (3, 112) = 237.5, p < 0.001]. Bars are mean ± SD. n = 20–36

neuromasts per treatment. ∗∗∗p < 0.001, highly significant difference when

compared to control larvae.

Supplementary Figure 4 | Effects of varying duration of SP600125

exposure on hair cell number during the period of embryonic

development. (A) Control group; (B) larvae at 3 dpf were treated with 10µM

SP600125 for 4 days; (C) larvae at 3 dpf were treated with 10µM SP600125 for 2

days, after which the inhibitor was washed out and hair cells were analyzed after

another 2 days. (D) Quantification of FM1-43FX+ hair cells in the neuromast (NM)

for each experimental condition [One-way ANOVA; F (2, 117) = 234.9, p < 0.001].

Bars are mean ± SD. n = 36-44 neuromasts per treatment. ∗∗∗p < 0.001.

Supplementary Figure 5 | Effects of JNK inhibition on proliferation and

apoptosis in the entire zebrafish. Detection of cell proliferation (A,B) and

apoptosis (C,D) in the entire zebrafish (5 dpf) exposed to 0µM (control) (A,C), or

15µM SP600125 (B,D).
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