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Abstract

Background: Colorectal cancer is a leading cause of cancer-related deaths worldwide. The human gut microbiome
has become an active area of research for understanding the initiation, progression, and treatment of colorectal
cancer. Despite multiple studies having found significant alterations in the carriage of specific bacteria within the
gut microbiome of colorectal cancer patients, no single bacterium has been unequivocally connected to all cases.
Whether alterations in species carriages are the cause or outcome of cancer formation is still unclear, but what is
clear is that focus should be placed on understanding changes to the bacterial community structure within the
cancer-associated gut microbiome.

Results: By applying a novel set of analyses on 252 previously published whole-genome shotgun sequenced fecal
samples from healthy and late-stage colorectal cancer subjects, we identify taxonomic, functional, and structural
changes within the cancer-associated human gut microbiome. Bacterial association networks constructed from
these data exhibited widespread differences in the underlying bacterial community structure between healthy and
colorectal cancer associated gut microbiomes. Within the cancer-associated ecosystem, bacterial species were
found to form associations with other species that are taxonomically and functionally dissimilar to themselves, as
well as form modules functionally geared towards potential changes in the tumor-associated ecosystem. Bacterial
community profiling of these samples revealed a significant increase in species diversity within the cancer-
associated gut microbiome, and an elevated relative abundance of species classified as originating from the oral
microbiome including, but not limited to, Fusobacterium nucleatum, Peptostreptococcus stomatis, Gemella
morbillorum, and Parvimonas micra. Differential abundance analyses of community functional capabilities revealed
an elevation in functions linked to virulence factors and peptide degradation, and a reduction in functions involved
in amino-acid biosynthesis within the colorectal cancer gut microbiome.

Conclusions: We utilize whole-genome shotgun sequenced fecal samples provided from a large cohort of late-
stage colorectal cancer and healthy subjects to identify a number of potentially important taxonomic, functional,
and structural alterations occurring within the colorectal cancer associated gut microbiome. Our analyses indicate
that the cancer-associated ecosystem influences bacterial partner selection in the native microbiota, and we
highlight specific oral bacteria and their associations as potentially relevant towards aiding tumor progression.
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Background
The human gastrointestinal tract harbors a highly
diverse community of bacterial cells thought to be in
comparable abundance to those of its human host
making it the largest and most complex community of
bacteria found associating with the human body [1].
These bacteria are typically regarded as commensal, or
symbiotic, in that they generally cause no harm and
provide fundamental services for their host’s nutrition
and continued health. The most important of these
services include the creation of metabolic by-products
(short chain fatty acids, hormones, vitamins, etc.), aiding
in proper intestinal tissue and immune system development
and regulation, and protecting the gut from colonization by
pathogenic organisms [2, 3]. Many diseases have been asso-
ciated with the disruption of the gut microbiome’s bacterial
community, one of which is colorectal cancer (CRC) [4–7].
CRC is one of the leading causes of cancer-related

deaths worldwide [8] and is characterized by the uncon-
trolled growth of epithelial cells within the colon or
rectum. The transformation of epithelial cells from non-
cancerous to cancerous growth commonly begins with
the formation of a polyp, which over a 10-to-20-year
period may or may not progress to become an invasive
cancer [9]. CRC initiation is understood as being the re-
sult of a combination of both genetic and environmental
factors (diet, smoking, alcohol, etc.) [10–12], although
the majority (around 75%) of CRC cases are spontan-
eous, with genetic risk factors being attributed to less
than 10% of cases [13, 14]. Recently, there has been a
surge in evidence supporting the hypothesis that the
human gut microbiome plays a prominent role in
relation to cancer initiation, progression, and in the
efficacy of its treatment [7, 15–20]. One of the leading
hypotheses is the “driver-passenger” model [17], which
postulates that a “driver” bacterium such as Fusobacter-
ium nucleatum, Bacteroides fragilis, or Escherichia coli
promotes genomic instability (damage) to the DNA of
epithelial cells, potentially through some virulence
factor, which leads to cellular mutation and eventually
tumor formation. Following tumor formation, the
changes in micro-environmental conditions around the
tumor mass (tumor microenvironment; TME) would
optimize the growth of “passenger” microbes who are
better suited to this niche facilitating their colonization,
and eventual out-competing of the “driver” species as
well as the native microbiota leading to a depletion in
protective commensal species. These “passenger” microbes
could either be pathogens that exist normally in the healthy
gut microbiome in low abundance, or simply commensal
bacteria that have acquired pathogenic characteristics due
to the alteration in the local intestinal ecology. As of now,
there is no consistent cancer-associated community profile
that has been observed leaving researchers with limited

understanding of the full extent the microbiota plays in
CRC. Nevertheless, the modulation of the bacterial com-
munity within the cancer-associated gut microbiome is the
next logical step in possible CRC treatment and prevention
strategies.
To one day utilize the bacterial community toward

these purposes, it is important to know more than which
species are present or absent in the community during
disease. We also need to understand how the associa-
tions between bacterial species have been affected. These
associations are shaped by both direct and indirect inter-
actions taking place in the community (e.g., cooperation
or competition), and are important as they are the
bedrock upon which the community services, as well as
the structure and function, are founded on [21, 22]. In
this study, we represent these associations using a
weighted graph (network) in which a node denotes a
bacterial species and a weighted edge between two nodes
represents the strength of the association between the
corresponding species. By using this framework, we can
model the positive and negative associations between
species, thereby shedding light on how cooperation and
competition shape the structure of the bacterial commu-
nity. Bacterial association networks are constructed from
sample-taxa count matrices. A sample-taxa count matrix
is commonly generated by sequencing the collected bio-
logical samples and determining the taxa (species)
counts in each sample. However, DNA sequencing does
not provide the absolute counts of these taxa within a
sample, and instead provides only their relative abun-
dances (i.e., compositional data) [23]. Due to this aspect,
inferring associations between species is challenging, and
using measures like correlation can produce misleading
results when applied directly to compositional data [24].
With this limitation in mind, we applied a Gaussian
Graphical Model (GGM) framework on Centered Log-
Ratio (CLR) transformed sequence count data to model
the conditional dependencies between species to
construct association networks [25]. Prior studies that
investigated the associations between bacteria within the
CRC-associated gut microbiome have either not dealt
appropriately with compositional data (for instance,
application of correlation directly to untransformed
data), or have utilized low taxonomic resolution data
(16S rRNA data) which should be used cautiously to
assign taxonomic classifications beneath genus-level
[5, 26–30]. For the analysis presented here, we utilize
252 whole-genome shotgun (WGS) sequenced fecal
samples provided by healthy and late-stage (stage III
and IV) CRC subjects from a previously published
study [31] to investigate bacterial associations at the
species level [32]. The authors of that study originally
performed metagenomic and metabolomic analyses to
assess any taxonomic and functional differences of
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the gut microbiota, and metabolites, as well as find
diagnostic markers for CRC. For their analyses, these
researchers only focused on finding alterations of the
microbiota pertaining to species currently known to
be culturable and constructed bacterial association
networks using correlation (Spearman’s) at the genus-level.
Our analysis framework and goals are different. For our
study, we used a comprehensive collection of nearly eleven
thousand bacterial strain reference genomes from NCBI’s
RefSeq database to calculate the genome relative abundance
of bacterial species in each sample using an Expectation-
Maximization (EM) algorithm. Subsequently, species were
selected based on their prevalence, relative abundance, and
feature importance, and were used to construct bacterial
association networks using the graphical lasso (glasso)
approach [33]. These networks were then analyzed to assess
the differences in bacterial community structure between
the healthy and late-stage CRC-associated gut microbiome.
Taxonomic and functional analysis was performed to high-
light differences in gut microbiome bacterial community
functional capabilities and species carriages. Our results not
only identify both individual and groups (modules) of
species potentially capable of aiding tumor progression, but
also shows how the bacterial community structure has dra-
matically altered in response to potential ecological changes
occurring within the CRC-associated gut microbiome.

Results
Bacterial community taxonomic profiling
Following sample pre-processing (see methods), we
computed the relative abundance of species within each
sample using an EM-based method in order to construct
a sample-taxa matrix (see methods). This sample-taxa

matrix was then used to investigate the bacterial community
diversity in the two sample groups (Healthy and late-stage
CRC) by measuring the bacterial richness and Shannon
index of each sample. Samples originating from the CRC
group exhibited significantly greater diversity, both richness
and Shannon index, (Mann-Whitney U test: MWU);
Richness: MWU pvalue = 0.0005 and Shannon Index:
MWU pvalue = 0.0009) compared to those of the Healthy
group (Fig. 1a,b). Considering that measures of species
diversity differ in their sensitivity to species evenness and
richness [34], we additionally applied the Simpson index of
diversity to compute species diversity within sample groups
(see supplemental file). These results were congruent with
our previous analyses showing a statistically significant
(MWU: pvalue = 0.0238) higher species diversity in CRC
samples compared to that found in Healthy samples (Sup-
plemental 1). We next assessed the differences in bacterial
community taxonomic profiles between the healthy and
late-stage CRC-associated gut microbiomes. Prior to per-
forming further analyses we applied a CLR-transformation
to our sample-taxa matrix (see methods). Taxonomic
profile-based sample ordination was carried out using Prin-
cipal Components Analysis (PCA). The first two principal
components explain only a small fraction of the total vari-
ance (PC1: 7.98%, PC2: 5.61%) (Supplemental 2), and the
linear transformation based on PCA did not show evidence
for separation of Healthy samples from CRC samples. How-
ever, we were able to distinguish between the two sample
groups using a Random Forest Classifier (RFC) (AUC=
0.87) (Fig. 2a). While RFCs rank features (species) based on
their importance, these default measures of importance are
known to be biased and lead to the return of suboptimal
predictor features [35]. To obtain statistical significance for

Fig. 1 Species Diversity Within Healthy and CRC Samples. a. Boxplot of sample species richness (total species) showing significantly greater
species richness within the CRC sample group. b. Boxplot of sample Shannon diversity shows significantly greater species diversity within CRC
sample group. Black dots represent individual samples and stars (***) denote statistical significance (MWU pvalue < 0.001)
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species importances provided by the RFC we applied a
technique where we included a “random” feature into our
feature set (see methods). By using an ensemble of 100 RFCs
we uncovered 17 bacterial species that were statistically
(MWU and False Discovery Rate Multiple Testing
Correction; MWU-FDR: qvalue< 0.05) more ‘important’
(deemed significantly ‘important’) than the random
feature for distinguishing groups (Fig. 2b). We found
that the accuracy classification score of 100 RFCs
trained on the 17 significantly ‘important’ species was
on average greater than that of the 100 RFCs trained on
all species (All Species Mean Accuracy: 74%; 17
significantly ‘important’ Species Mean Accuracy: 80%)
(Fig. 2c). We next performed species differential
abundance analysis (see methods) which revealed 174
species significantly (MWU-FDR qvalue< 0.05) reduced
in relative abundance, and 10 species significantly ele-
vated in relative abundance within the CRC-associated
gut microbiome compared to the Healthy gut microbiome.

These 174 bacterial species are from a diverse background
of 84 genera, although the largest fraction of species were
from the genera Enterobacter (6.8%), Klebsiella (6.3%),
Streptococcus (5.2%), Lactobacillus (5.1%), Citrobacter
(4.6%), Bifidobacterium (4%), Bacteroides (3.4%), and
Clostridium (3.4%) (Supplemental 3). The 10 species
significantly elevated in relative abundance within CRC
were: Parvimonas micra (qvalue = 3.09e-09), Peptostrepto-
coccus stomatis (qvalue = 4.51e-08), Gemella morbillorum
(qvalue = 4.55e-08), Fusobacterium nucleatum (qvalue =
1.08e-06), Streptococcus anginosus (qvalue = 1.13e-03), Dial-
ister pneumosintes (qvalue = 1.37e-03), Peptostreptococcus
anaerobius (qvalue = 4.74e-03), Streptococcus sp. KCOM
2412 (Streptococcus periodonticum) (qvalue = 7.18e-03),
Ruminococcus torques (qvalue = 1.55e-02), and Filifactor
alocis (qvalue = 2.85e-02) (Supplemental 4a-c). Interest-
ingly, many of the species that were deemed both signifi-
cantly ‘important’ and elevated in relative abundance within
CRC are also found in the oral microbiome and noted to

Fig. 2 Healthy and CRC Taxonomic Profiling. a. Random Forest Classifier (RFC) ROC showing an AUC = 0.87. b. Seventeen statistically significant
(MWU-FDR qvalue< 0.05) ‘important’ species from 100 RFCs compared to a random feature. c. Classification accuracy of 100 RFCs using either all
species or the 17 significantly ‘important’ species. d. Distribution of total oral microbes within Healthy and CRC sample groups. A significantly
(MWU pvalue< 0.05) greater total population of oral microbes were found in the CRC-associated gut microbiome. Bacterial species were classified
as oral microbes by using the expanded Human Oral Microbe Database (eHOMD)
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be associated with oral diseases (periodontitis, periapical
lesions, root canal infections, oral cancers, etc.) which have
been associated with increased risks of CRC [36–45]. Sub-
sequently, we utilized the expanded Human Oral Microbe
Database (eHOMD) [46] to classify all oral species within
our samples and found a significant increase in the total
oral microbe population richness existing within the CRC-
associated gut microbiome in comparison to that of the
Healthy group (MWU: pvalue = 6.51e-05) (Fig. 2d).

Bacterial community functional profiling
To analyze the differences in community functional cap-
abilities between the Healthy and CRC gut microbiomes
we measured the relative abundance of protein families
(TIGRFAMs [47]) and protein domains (Pfams [48])
within our WGS samples creating a sample-function
matrix (see methods). A CLR-transformation was
applied to this matrix and then PCA was performed.
PCA showed evidence of inter-group clustering of
samples (Healthy and CRC) and ultimately only ex-
plained a moderate variance (PC1: 27.19%, PC2: 4.33%)
(Supplemental 5). Differential abundance analysis was
performed using the CLR-transformed sample-function
matrix which showed 12 Pfams (7 elevated and 5 re-
duced in CRC compared to Healthy) and two TIGR
FAMs (1 elevated and 1 reduced in CRC compared to
Healthy) to be statistically significantly (MWU-FDR:
qvalue< 0.05) different in their relative abundance
(Supplemental Table 1). Pfams that were significantly
elevated within the CRC gut microbiome were linked to
bacterial invasins and adhesins (ex: FadA), while those
that were significantly reduced were tied to antibiotic
resistance, bacteriophage maturation, and threonine
biosynthesis. The single TIGRFAM significantly elevated
in CRC was linked to proline iminopeptidase, while the
only TIGRFAM significantly reduced was again linked to
threonine biosynthesis.

Bacterial association networks
Species chosen for network construction were selected
based on their prevalence, abundance, and ‘importance’.
First, the prevalence of each species was calculated
across all samples within each group (Fig. 3a). The
distributions of bacterial species prevalence counts
within groups were found to exhibit a bi-modal distribu-
tion with one peak occurring at the 90% prevalence
threshold. Going forward we refer to the species found
above 90% sample prevalence within groups as the
highly prevalent species (HPS). A large majority of spe-
cies within each group’s HPS were found to be shared
(Healthy: 97% and CRC: 95%) (Fig. 3b). The five unique
HPS in the Healthy group were: Hespellia stercorisuis,
Clostridium saccharolyticum, Monoglobus pectinilyticus,
Streptococcus sp. oral taxon 431, and Odoribacter laneus.
The eight HPS unique to the CRC associated group
were: Intestinibacillus massiliensis, Prevotella copri, Hae-
mophilus parainfluenzae, Ruminococcus bicirculans,
Streptococcus mitis, Neglecta timonensis, Bifidobacterium
catenulatum, and Anaerotignum neopropionicum. Inter-
estingly, Streptococcus mitis and Haemophilus parain-
fluenzae are both classified by the eHOMD as oral
microbes. The relative abundances of HPS were found
to account for the majority (Median = 82%) of a sample’s
total relative abundance (Fig. 3c). Moving forward we
utilized the union of HPS within groups for network
construction. In addition to these highly prevalent and
abundant species we wanted to incorporate the species
who were both deemed significantly ‘important’ by our
RFCs and found in differential abundance. This led to
the addition of 8 species (Parvimonas micra, Peptostrep-
tococcus stomatis, Gemella morbillorum, Fusobacterium
nucleatum, Streptococcus anginosus, Dialister pneumo-
sintes, Peptostreptococcus anaerobius, and Ruminococcus
torques) to our species group (165 species total) used in
network construction. Bacterial association networks
were then constructed from the CLR-transformed

Fig. 3 Highly Prevalent and Abundant Species within Groups. a. Bi-modal distribution of species prevalence counts across samples within the
Healthy and CRC sample groups. b. Stacked-bar plot showing the total unique and shared species of the highly prevalent (> 90% prevalence)
species within the Healthy and CRC sample groups. c. Boxplot of the total sample relative abundance accounted for by the highly prevalent
species within groups. Black dots represent individual samples

Loftus et al. BMC Microbiology           (2021) 21:98 Page 5 of 18



relative abundance of these selected species (see
methods and supplemental information for additional
information). Following network construction, we first
checked our networks for non-randomness by compar-
ing multiple network properties (average shortest path
length, transitivity, and modularity) to those displayed
from random networks (see methods). Compared to ran-
dom networks, the Healthy and CRC networks both ex-
hibited statistically significant (Monte Carlo Simulation;
MCS) shorter average shortest path lengths (ASPL)
(Healthy and CRC: MCS pvalue< 0.001), higher
transitivity (Healthy and CRC: MCS pvalue< 0.001), and
higher modularity (Healthy and CRC: MCS pvalue< 0.001)
(Table 1). These results indicate that networks con-
structed displayed properties that were significantly non-
random, and that species within networks: are connected
to one another through short paths, have positive associa-
tions with the neighbors of their neighbors (friends of
friends), and form modules (i.e. a group or cluster of spe-
cies) that are characterized by the majority of associations
occurring between species within the same module, and
few associations existing with species outside the module.
Group networks contained similar distributions of

association weights with positive associations being in
greater abundance than negative associations (Fig. 4a).
Notably, the CRC network contained a greater total of
negative associations compared to that found in the
Healthy network. Interestingly, 29% of these negative
associations involved a species deemed as an oral mi-
crobe, whereas within the Healthy network zero negative
associations were found to involve oral microbes.
Surprisingly, the majority of associations found within
networks were unique to that network (Healthy: 69%,
CRC: 72%) (Fig. 4b). We hypothesized that this dramatic
difference in community structure could reflect changes
in the ecosystem and proceeded to analyze the taxonomic
relationship between species within networks (see methods)
(Fig. 4c). Both networks exhibited significantly (MCS pva-
lue< 0.05) more positive relationships between species
within the same genera (Healthy: MCS pvalue = 0.00099,
CRC: MCS pvalue = 0.00099) and family (Healthy: MCS
pvalue = 0.00099, CRC: MCS pvalue = 0.00099) compared
to those found in a random network (see methods). How-
ever, only within the Healthy network did species still have
significantly more positive associations with other species
from the same order more so than random (Healthy: MCS
pvalue = 0.00099, CRC: MCS pvalue = 0.44). The CRC

network also exhibited a larger abundance in taxonomically
distant (outside phylum) relationships compared to the
Healthy network (Healthy: 4%, CRC: 17%), although posi-
tive associations between taxonomically distant microbes
were still significantly less in Healthy (Within Phylum:
MCS pvalue = 0.00099, Outside Phylum: MCS pvalue =
0.00099) and CRC (Within Phylum: MCS pvalue = 0.00099,
Outside Phylum: MCS pvalue = 0.00099) than random
networks. We next examined the dissimilarity between
functional profiles of associating species within the Healthy
and CRC networks (Supplemental 6a-c). Interestingly,
many of the bacterial associations that are unique to the
CRC network were shown to be occurring between species
that were functionally dissimilar to one another.
Considering that our networks exhibited high

modularity, and that community functions in microbial
environments are driven through polymicrobial synergy
[49, 50], we applied a module detection algorithm to our
networks, and proceeded to analyze the obtained species
modules within our networks (see methods). We first
started by comparing the potential functional capabilities
of modules by constructing CLR-transformed module
functional profiles (see methods). PCA of module func-
tional (protein domain) profiles exhibited large variance
(PC1: 33.73%, PC2: 14.53%), and modules appeared to
form clusters which contained representation from both
groups (Fig. 5a). To define clusters of modules, silhou-
ette analysis was performed which estimated five clusters
as the optimal K to use for K-means clustering (Fig. 5b).
After module clusters were defined by K-means cluster-
ing (Fig. 5c), taxonomic analysis of these clusters was
carried out. Across networks, modules that fell within
the same cluster were found to be taxonomically similar,
excluding cluster 1 and cluster 5 which exhibited a shift
in species occupancy where some species found within
cluster 1 in the Healthy network were shown to be
within cluster 5 in the CRC network, and vice-versa
(Supplemental 7a,b,c,g). However, both networks had
strong agreement on the species found within clusters 2,
3, and 4. Species within cluster 2 were only ‘pathobiont’
(i.e., species that are generally not harmful but contain
the capacity to cause disease under particular environ-
mental conditions [51, 52]) oral microbes (Supplemental
7d), whereas cluster 3 was mainly Streptococcus species
(Supplemental 7e), and cluster 4 predominantly Bacter-
oides species (Supplemental 7f). Subsequently, cluster
functional analysis was performed to find protein

Table 1 Group Network Properties Compared to Random Networks

Network Nodes Edges Density ASPL Transitivity Modularity

CRC 165 324 0.024 *** 1.687 *** 0.379 *** 0.689

Healthy 165 292 0.022 *** 1.554 *** 0.453 *** 0.742

Network properties of Healthy and CRC networks. Both Healthy and CRC networks were found to exhibit significantly shorter Average Shortest Path Lengths
(ASPL), higher Transitivity, and higher Modularity then 1000 random networks. Stars (***) denote statistical significance (Monte Carlo simulation pvalue < 0.001)
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domains, as well as the main roles and sub roles of pro-
tein families, which made clusters functionally ‘distinct’
from one another (see methods) (Supplemental 8a-c).
Functional capabilities (protein domains and protein
family main/sub roles) distinguishing cluster 1 were
linked to: cell surface adhesion, counter-conflict strat-
egies, tyrosine recombinases, degradation of polysaccha-
rides, glycosaminoglycan binding, tumor protease
inhibition, peroxidase functions, carbohydrate/cellulose
binding activities, and amino acid biosynthesis. Cluster 2’s
distinguishing functions were linked to: adherence to host
cells and extracellular matrix, cellular infection, collagen
binding, complement resistance, ornithine/lysine/arginine
decarboxylase (tissue putrefaction/polyamine synthesis/

acidic environment resistance), metallopeptidases, type V
secretion systems, ammonia production, and excretion of
poisonous metal ions (copper efflux system), cell envelope,
DNA metabolism, fatty acid and phospholipid metabolism,
biosynthesis and degradation of surface polysaccharides
and lipopolysaccharides. Cluster 3’s distinguishing functions
were linked to: mucin binding, zinc scavenging/uptake,
cell-surface adhesion, glucose binding/transport, and cop-
per binding, protein and peptide fate/synthesis/secretion,
degradation of polysaccharides/carbohydrates, organic alco-
hols, and acids. Cluster 4’s distinguishing functions were
linked to: metal binding, diguanylate cyclase/phospho-
diesterase, quorum sensing, carbohydrate-binding, and cyst-
eine/papain proteases, nucleosides and nucleotides,

Fig. 4 Group Network Associations. a. Distribution of bacterial association weights within Healthy and CRC networks. b. Stacked-bar plot of the
proportion of associations (edges) that are unique and shared between Healthy and CRC networks. c. Bar-plots representing the proportion of
total associations within the lowest common taxonomic relationship between bacterial species. Stars (***) indicate statistical significance (Monte
Carlo simulation pvalue < 0.001), star color (green or red) indicate higher or lower than that found in random networks, respectively
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transport and binding proteins, TCA cycle, iron carrying,
and the degradation and biosynthesis of surface polysaccha-
rides. Lastly, cluster 5’s distinguishing functions were linked
to: aminopeptidases, tripartite tricarboxylate receptors, eth-
anolamine transportation, starch utilization, and xyloglu-
can/polysaccharide binding, energy metabolism, amino
acids and amines, cation and iron compounds, electron
transport, and the biosynthesis and degradation of surface
polysaccharides and lipopolysaccharides. The abundance of
species utilized for network construction found within each
cluster was examined (Healthy: cluster 1 (33%), cluster 2

(2%), cluster 3 (5%), cluster 4 (26%), cluster 5 (7%), no clus-
ter (27%); CRC: cluster 1 (19%), cluster 2 (3%), cluster 3
(3%), cluster 4 (12%), cluster 5 (30%), no cluster (33%))
(Fig. 6). Our findings showed that within the CRC network
there was an increase in the total species found within a
module of cluster type 2 and 5 and a reduction of species
in cluster type 1, 3, and 4 compared to the Healthy. These
results are also reflected in our findings of a statistically
significant change in the total sample relative abundance
that species within clusters accounted for between groups
(Cluster 1: MWU pvalue = 4.29e-12; Cluster 2: MWU

Fig. 6 Healthy and CRC Bacterial Association Networks. Bacterial association networks presented in a circular layout. Edge color (green or red)
represent positive or negative associations, respectively. Far left network (Shared Associations Network) shows the associations (edges) found in
both the Healthy and CRC network. Node color within that network represents the phylum of the species. The two networks on the right are
displaying the associations unique only to the Healthy or CRC network. Node color within these networks represent the module cluster this
species was found within. Node size is a function of the node’s degree (total associations). For a list of species shown and not shown within
networks see supplemental

Fig. 5 Species Module Functional Clusters Within Networks. a. Principal component analysis of module functional profiles. Gold and grey dots
represent individual modules from Healthy or CRC networks, respectively. b. Silhouette analysis showing K = 5 having the highest average
silhouette coefficient. c. K-means clustering of the module functional profile PCA using K = 5

Loftus et al. BMC Microbiology           (2021) 21:98 Page 8 of 18



pvalue = 3.16e-16; Cluster 3: MWU pvalue = 0.0002; Clus-
ter 4: MWU pvalue = 2.62e-13; Cluster 5: MWU pvalue =
2.81e-29; No Cluster Species: MWU pvalue = 4.40e-17)
(Fig. 7). Moreover, the majority of negative associations
within networks (Healthy: 100%, CRC: 96%) were found
to occur between species that occupy modules within dif-
ferent cluster types (Supplemental 9). Interestingly, only
within the CRC network did an intra-cluster negative as-
sociation arise between species of cluster 1 where a reduc-
tion in species membership and abundance was also
exhibited.

Influential bacterial species within networks
Finally, we examined which species potentially have the
greatest influence on the structure of our networks, and
therefore possibly within the ecosystem as well, by iden-
tifying ‘Hub’ nodes. ‘Hub’ nodes are species with many
associations that serve as a central point of connection
between many other species [53, 54]. Most modules
within networks (Healthy: 84.6%; CRC: 87.5%) were
found to be disassortative with respect to node degree
(Supplemental 10) suggesting that ‘Hub’ species existed
within these modules [53]. We proceeded to identify
‘Hub’ species by selecting the species with the largest
degree centrality within all modules exhibiting a degree
assortativity below zero (see methods). In total, 22
unique ‘Hub’ species were identified, and of these ‘Hubs’
only two, Bacteroides fluxus and Bacteroides pectinophi-
lus, were shared between Healthy and CRC networks.
We noted that Bacteroides fluxus and Bacteroides pecti-
nophilus also maintained their position as ‘Hubs’ within
the same module cluster type (Cluster 4 and Cluster 1,
respectively) across networks (Supplementary 11a,b).
Interestingly, only within the CRC network were oral
microbes, Peptostreptococcus stomatis and Streptococcus
parasanguinis, designated as ‘Hub’ nodes. The module
Peptostreptococcus stomatis is a ‘Hub’ within is particu-
larly fascinating as it is the only CRC cluster 2, ‘patho-
biont’ cluster, module where all species are both oral
microbes (Gemella morbillorum, Parvimonas micra, and
Dialister pneumosintes) and found to be significantly ele-
vated in relative abundance. Moreover, Anaerotruncus
colihominis, a ‘Hub’ species only within the Healthy
network, was found to be negatively associated with
Gemella morbillorum within this module in the CRC
network (Supplementary 12).

Discussion
In this study, WGS data available from healthy and late-
stage colorectal cancer subjects were utilized in conjunc-
tion with community profiling and network inference
techniques to better understand the alterations in
bacterial community ecology that have occurred within
the late-stage cancer-associated human gut microbiome.

Our study uncovered key distinctions in both the bacter-
ial species and genomic functional capabilities that were
different between the two communities, suggesting an
overgrowth of potentially pathogenic species classified as
oral microbes. We also observed a dramatic difference in
bacterial community structure which we believe to be
due to an alteration in bacteria partner selection in
response to probable ecosystem changes occurring
within the CRC-associated gut microbiome.
Our study showed that the CRC gut microbiome

contained a significantly higher bacterial diversity. This
higher diversity was somewhat unexpected since a high
bacterial diversity is regularly associated with the healthy
gut microbiome [55], and previous studies have de-
scribed a lower diversity within the CRC gut microbiome
[4, 26], although, these findings are still in contention as
other studies have also found a higher bacterial richness
[56]. In either case, this discrepancy in species diversity
estimations between studies could be due to differences
in the sequence data type (amplicon vs shotgun) used as
16S rRNA data is known to highly skew estimates of
bacterial diversity [57]. We hypothesized that this higher
species diversity was due to the formation (or expansion)
of a bacterial niche in the cancer-associated ecosystem,
most likely caused by the presence of the tumor mass.
Any bacterial species existing closely to, or within, the
tumor microenvironment (TME) niche would be
exposed to a hostile environment characterized by low
oxygen, high acidity, and an abundance of oxidative
stressors [58, 59]. These environmental conditions are in
part created by the altered metabolism of tumor cells
which would lead to the reduction in the typical pro-
teins, carbohydrates, and lipids available (nutrient scar-
city) in the surrounding microenvironment [60–63].
Tumor cells will also scavenge for any additionally
needed resources by degrading the extracellular matrix
(ECM), and cannibalizing the surrounding necrotic
intestinal tissue to fuel their metabolism [64]. These
degradation products could provide certain microbiota
capable of utilizing them a rich assortment of free
resources including amino acids, membrane proteins,
phospholipids, and some sugars. As our CRC samples
were obtained from late-stage cancer subjects, this TME
niche could be widespread across the colon having
repercussions for even microbes not involved in the
colonization of this niche. Our findings from using
machine learning, differential abundance testing, and
network inference point towards species capable of
filling this niche, functions likely to promote its forma-
tion, and the potential impact that the creation of this
niche has on the gut microbiota.
Species differential abundance testing between groups

found 174 species significantly reduced and 10 species
significantly elevated in relative abundance within the
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Fig. 7 Cluster Species Total Sample Relative Abundance. Boxplots of the total sample relative abundance that all species within each module
cluster account for within groups. The species within module clusters 1, 4, and 3 account for a significantly greater total sample relative
abundance within the Healthy network compared to the CRC network. The species within module clusters 2 and 5 and no cluster account for a
significantly greater total sample relative abundance within the CRC network compared to the Healthy network. Stars (***) indicate statistical
significance (MWU pvalue < 0.001)
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CRC-associated gut microbiome compared to the
Healthy gut microbiome. Of the 10 species, six (Parvimonas
micra, Peptostreptococcus stomatis, Gemella morbillorum,
Fusobacterium nucleatum, Streptococcus anginosus, and Pep-
tostreptococcus anaerobius) were previously found elevated
in relative abundance by the research study that generated
the data analyzed here [31]. However, we additionally found
Dialister pneumosintes, Streptococcus sp. KCOM 2412
(Streptococcus periodonticum), Ruminococcus torques, and
Filifactor alocis as being significantly elevated in relative
abundance within the CRC sample group. This discrepancy
in findings is most likely due to differences in both read
mapping and species relative abundance calculations.
That study mapped reads to the All-Species Living Tree
Project (LTP) of the SILVA database [65] assigning
taxonomy to the species which provided the lowest E-
value, and calculated species relative abundances as the
number of reads assigned to the species divided by the
total number of aligned reads within the sample. In
contrast, we mapped reads to a comprehensive collec-
tion of bacterial reference strain genomes downloaded
from RefSeq [66], and calculated species relative abun-
dances utilizing an accurate probabilistic framework
[67]. To our knowledge, this is the first time Filifactor
alocis has been shown to have elevated relative abun-
dance within CRC. Filifactor alocis, previously known
as Fusobacterium alocis, is a gram-positive obligate
anaerobe that has routinely been discovered in peri-
odontitis and endodontic infections and is described as
an excellent marker organism for periodontal disease
[40, 68, 69]. Interestingly, all 10 of the species found
significantly elevated in relative abundance within CRC
were classified as oral microbes, and despite normally
existing within the Healthy gut microbiome these
species are considered ‘pathobionts’ as they have
numerous associations with infections [37, 70] and even
CRC [56, 71–75]. Many of these species also have been
previously shown to exist in close association with co-
lonic tumor tissues [72] and possess the capability to
colonize the TME niche as they are: anaerobic [76],
regularly form biofilms together [39, 77], and exhibit
asaccharolytic metabolism [76]. Since oral microbes
exhibit an asaccharolytic metabolism they target pep-
tides and amino acids for their digestion [76] and in
doing so produce ammonia which would raise the local
pH helping their colonization within the acidic TME.
In this way, these species would be optimized for
growth in the hostile TME niche. Outside of just these
10 oral species, we also uncovered a significantly higher
richness of bacteria classified as oral microbes within
the CRC gut microbiome. This finding suggests that
oral microbes have become increasingly more capable
of colonizing the gut within the CRC-associated
ecosystem.

Interestingly, of the few bacterial community functions
(Pfams and TIGRFAMS) found in differential abundance
between the CRC and Healthy gut microbiomes, many
could precipitate cancer progression, or aid in the
colonization of the TME niche. Multiple protein func-
tions found to be significantly reduced within the CRC
gut microbiome were tied to threonine biosynthesis.
Threonine is an essential amino acid; therefore, it must
be provided exogenously from the gut microbiota’s me-
tabolism [78]. It is also an important amino acid in the
production of short chain fatty acids (SCFAs) since it
can be utilized for the formation of acetate, butyrate, or
propionate [79]. Interestingly, of the 174 species found
significantly reduced in CRC many are from genera
(Lactobacillus, Bacteroides, Bifidobacteria, Clostridium,
Eubacterium, etc.) shown to be linked to the production
of SCFAs [80–82]. The reduction in the enzymatic cap-
ability to synthesize threonine could drive tumor pro-
gression as SCFAs (e.g., butyrate) have been shown to
have anti-oncogenic and anti-inflammatory properties
[83]. Of the functions found significantly elevated in
relative abundance in the CRC gut microbiome many
were tied to adhesins and invasins. These protein func-
tions would allow bacteria to adhere to epithelial cells,
especially those that are being sloughed off the intestinal
wall, to gather nutrients. They would also assist in the
invasion of the intestinal barrier which would drive in-
flammation and could cause DNA damage thereby indu-
cing unwanted cellular mutation. For example, FadA, an
adhesin found significantly elevated in relative abun-
dance, is unique to the oral lineage of Fusobacterium
nucleatum’s phylum (Fusobacteria) and has previously
been shown to promote binding and invasion into host
epithelial cells [84], as well as driving cancer initiation
[85, 86]. Additionally, we found a significantly elevated
relative abundance of a protein function linked to pro-
line iminopeptidase (PIP), an enzyme that catalyzes the
release of proline residues from peptides. Proline is an
important stress substrate in cancer metabolism as it is
utilized in many critical functions related to apoptosis,
autophagy, and nutrient/oxygen deprivation [87]. Tumor
cells can harvest the proline they require by metaboliz-
ing collagen contained within the extracellular matrix
(ECM), as nearly 25% of the collagen is proline [88].
Interestingly, in our study a few of the oral species found
significantly elevated in relative abundance (Peptostrep-
tococcus stomatis, Gemella morbillorum, Parvimonas
micra, and Dialister pneumosintes) were shown to form
a network module with the functionally distinct capabil-
ity to bind and degrade collagen.
Only a few associations were shared between the

bacterial association networks for the two sample groups
which suggested there was a large difference in the
bacterial community structure within Healthy and CRC-
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associated gut microbiomes. Part of the difference in
community structure occurring within the CRC-
associated gut microbiome is due to positive associations
forming less between species that were taxonomically
similar, and more between functionally dissimilar species
compared to those found in the Healthy gut micro-
biome. Moreover, we found a greater number of nega-
tive associations within the CRC network, and in many
of these negative associations an oral microbe was found
to be involved, whereas, in the healthy network no such
negative associations with oral microbes were occurring.
This suggests that competitive exclusion between taxo-
nomically and functionally similar species within the
CRC-associated gut microbiome has increased, and oral
microbes have become more competitive within this
ecosystem. Additionally, as oral microbes are also found
to be present within the Healthy gut microbiome, but
negative associations against oral microbes were not, we
hypothesized that the native microbiota has shifted
towards utilizing similar resources to those targeted by
oral microbes within the CRC gut microbiome. Our
analysis of species modules within networks reflects this
notion. Using PCA and K-means clustering, species
modules within networks were found to fall into one of
five distinct clusters depending on their functional
capabilities. However, both Healthy and CRC networks
contained representation (at least one module) within all
clusters suggesting the niches that these clusters target
are maintained across Healthy and CRC-associated gut
microbiomes in some capacity. Yet, despite cluster
retention, there was a dramatic shift in both the propor-
tion of total species and the total sample relative abun-
dance certain clusters accounted for within networks.
For example, within the Healthy network we found
clusters functionally geared towards amino acid bio-
synthesis, carbohydrate degradation, protein binding/
uptake, and tumor inhibition contained a greater
number of species and represented a larger total sam-
ple relative abundance. Whereas, in the CRC network
we observed a species shift towards forming modules
functionally equipped for protein degradation, amino
acid uptake, biosynthesis and degradation of surface
polysaccharides and lipopolysaccharides, and ethanol-
amine utilization. Interestingly, Klebsiella species have
been tied to ethanolamine usage in the healthy gut
[89, 90] and were found in reduced relative abun-
dance in the CRC gut microbiome, suggesting that
these species were potentially outcompeted. In any
case, this shift in species cluster membership and
cluster total sample relative abundance suggests that
the bacterial community structure has been reorga-
nized to aid in the formation of modules of specific
cluster types that contain functional capabilities better
suited for life in the CRC-associated gut environment.

As mentioned previously, one module cluster (clus-
ter 2) drew our attention as it was comprised solely
of ‘pathobiont’ oral species and contained distinct
functions which would allow these species to not
only flourish within the TME niche but aid in cancer
progression. These functions included: adherence to
host cells and extracellular matrix, collagen-binding,
complement resistance, ornithine/lysine/arginine de-
carboxylase (tissue putrefaction/ polyamine synthe-
sis/acidic environment resistance), metallopeptidases,
type V secretion systems, ammonia production, ex-
cretion of poisonous metal ions (copper efflux sys-
tem), DNA metabolism, fatty acid and phospholipid
metabolism, and biosynthesis and degradation of sur-
face polysaccharides and lipopolysaccharides. Despite
a module of this cluster type existing within the
Healthy network, all species existing within the CRC
module (Peptostreptococcus stomatis, Gemella morbil-
lorum, Parvimonas micra, and Dialister pneumo-
sintes) were found to be significantly elevated in
relative abundance. It is also important to note that
this module in the CRC network grew with the addition of
another oral species, Dialister pneumosintes. Which sug-
gests these oral species are indeed thriving in the CRC-
associated gut microbiome and through their metabolic
actions potentially driving tumor progression. It could be
prudent to preemptively target Peptostreptococcus stoma-
tis for elimination from the gut microbiome as it was the
‘hub’ species within the module. By doing so this could
lead to the dissipation of the associations between these
species and potentially dampen tumor progression. In any
case, future in vivo studies should be performed to eluci-
date the extent that polymicrobial synergy between these
species contributes to tumorigenesis.

Conclusion
In summary, our analysis of whole-genome shotgun
sequenced fecal samples provided from a large cohort of
late-stage colorectal cancer and healthy subjects revealed
key differences in the bacterial community within
Healthy and CRC-associated gut microbiomes. We
showed a higher species diversity exists within the CRC-
associated gut microbiome that is potentially due to the
formation of a tumor-associated niche, and this niche is
most likely occupied by species originating from the oral
cavity. Moreover, we highlighted Peptostreptococcus sto-
matis as an influential ‘hub’ node within a ‘pathobiont’
oral species module where every species within the mod-
ule were found in elevated relative abundance in CRC.
Our results also indicated that tumor presence influ-
ences the reorganization of the native bacterial commu-
nity structure to aid in the formation of modules that
contain functional capabilities better suited for life in the
CRC-associated gut environment.
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Methods
Data acquisition and cohort description
For this study, 252 whole-genome shotgun sequenced
fecal samples were retrieved from DDBJ Sequence Read
Archive (DRA) under the bioproject ID PRJDB4176 [31].
The original study population of this cohort consisted of
healthy and early/advanced colorectal cancer stage
patients who were undergoing total colonoscopy at the
National Cancer Center Hospital, Tokyo, Japan. Fecal
samples were collected immediately following the first
defecation after a bowel-cleansing agent was adminis-
tered orally. Cancer patients who had or were thought
to have hereditary disease, an inflammatory bowel dis-
ease, an abdominal surgery history, or whose stool sam-
ples were insufficient for data collection were excluded
from the original study. Samples chosen to be utilized
within this study came from 178 healthy and 74 late-
stage (52 stage III / 22 stage IV) colorectal cancer (CRC)
subjects. Sample groups had comparable male to female
frequencies (Healthy: 56.18/43.82; CRC: 58.11/41.89)
(Supplemental 13a) and subject ages (Healthy median
age: 62; CRC median age: 61) (Supplemental 13b). For
additional information on all samples used in this study
see supplemental file.

Data pre-processing
Reads were trimmed with Trimmomatic [91] (version
0.36) utilizing a 4:15 sliding window approach where a
read is clipped once the average quality score within a
sliding window of 4 base pairs drops below a quality
score of 15. Afterwards, reads from human origin
were filtered by utilizing Bowtie2 [92] (version 5.4.0,
−-very-sensitive setting) and the GRCh38.p12 human
genome [93].

Species level community taxonomic profiling
For bacterial community taxonomic profiling of WGS
reads we elected to utilize a reference-based mapping
approach. Sample reads were mapped to a reference
database of 10,839 bacterial reference strain genomes
downloaded from RefSeq [66] utilizing Bowtie2 (version
5.4.0, settings: --very-sensitive --reorder --mp 1,1 --rfg 1,
1 -k 1000 –score-min L,0,-0.1). In total over 3.5 billion
(3,515,063,526) reads were mapped. Next, a probabilistic
framework based on a mixture model [67, 94] was used
to analyze the read mapping information to estimate the
relative copy number of each reference genome in a
sample. This framework used an Expectation-Maximization
(EM) algorithm to optimize the log-likelihood function as-
sociated with the model. We have previously shown our
EM algorithm to be highly accurate in its species relative
abundance estimation capabilities [95]. Any bacterial strain
found within a sample in less than 1e-5 relative abundance
was considered to be noise and their abundance was

dropped to 0. Bacterial strain-level assignments were rolled
back to species-level assignments (by using accession and
tax ids with NCBIs taxonomic assignments), and relative
abundances were summed to produce bacterial species gen-
ome relative abundances. Principal components analysis
was performed using Scikit-learn (version 0.23.2). Before
PCA, species relative abundances within the sample-taxa
matrix were first Centered Log-Ratio (CLR) transformed
(all zero values were replaced with 1e-10 before transform-
ation). CLR-transformation [24] is defined as:

clr xð Þ ¼ ln
x1
g xð Þ ; ln

x2
g xð Þ…; ln

xD
g xð Þ

� �

where (x) is the vector of species abundances within
each sample and (D) is the total number of species. The
geometric mean of vector (x) is defined as:

g xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 �…xDD

p

Random Forest analysis
CLR-transformed species relative abundances were ana-
lyzed using the Random Forest Classifier (RFC) package
from Scikit-learn [96]. Random forests were trained and
tested with a 70% training and 30% testing sample split
and 100 trees per forest. One-hundred RFCs were
constructed in order to deem a species as significantly
‘important’. First, a ‘random’ feature was created from
randomly selected CLR-transformed species sample rela-
tive abundances to assist in the selection of significantly
‘important’ species, as default importance measurements
from random forest classifiers are known to be biased
[35]. Next, the importances (Gini importance) for each
species provided from all 100 RFCs was compared to
those of the 100 ‘random’ feature importances. Only
species with statistically significant higher ‘importance’
according to a Mann-Whitney U test and Benjamini-
Hochberg (FDR) multiple testing correction (MWU-
FDR: qvalue< 0.05) were deemed significantly ‘import-
ant’. The AUC (Area Under the Receiver-Operator
Curve) and Classification Accuracy (Jaccard index)
were both utilized to measure the accuracy of trained
forests. The AUC is an estimator of true and false posi-
tive prediction rates of our RFC, whereas the Classifica-
tion Accuracy computes subset accuracy (where a
prediction for a set of labels must exactly match those
from the known true corresponding label set).

Bacterial species diversity analysis
To measure the diversity of species found within each
sample, total bacterial richness (total species found in a
sample) and the Shannon index [97] were calculated.
The Shannon index is calculated as:
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Shannon Index (H) = −
PD

i¼1Pi � ln Pi

where (D) is the total number of species, and (Pi) is
the proportion of that species within the sample.

Differential relative abundance of species
Species relative abundances within the sample-taxa
matrix were first CLR-transformed (all zero values were
replaced with 1e-10 before transformation). Mann-
Whitney U test and FDR correction were utilized to test
for significant species relative abundance differences
between groups. Only species with a qvalue < 0.05 and a
sample prevalence greater than 10% within at least one
group were deemed truly differentially abundant.

Bacterial species functional profiles
Gene prediction was performed on all bacterial refer-
ence strain genomes utilizing Prodigal [98] (version
2.6.3). All protein sequence translations for genes out-
put by prodigal were provided to InterProScan [99]
(version 5.39–77.0) to find matches for protein
domains and protein families against the Pfam [48]
(version 32.0) and TIGRFAM [47] (version 15.0) data-
bases, respectively. All Pfams and TIGRFAMS found
within genomes were counted and then counts were
normalized (by total) producing relative abundances.
Species functional profiles were created separately for
Healthy and CRC groups. This was performed by
weighing strain functional profiles by strain average
abundance within a group and then summing the
strain functional profiles together, followed by re-
normalization (by total).

Sample functional profiling
To explore the bacterial community functional capabilities
contained within each sample, a simplified annotation
format file (SAF) containing the bacterial chromosomal
coordinates of features (either Pfams or TIGRFAMs) for
all strains was created. Next, the SAF was provided to
FeatureCounts [100] (Subread package 2.0.0) to find all
features contained within the sample reads. Lastly, the
counts of features were subsequently length normalized,
summed, then re-normalized (by total) to create a sample
functional profile. Function (Pfams or TIGRFAMS) rela-
tive abundances within the sample-function matrix were
first CLR-transformed (all zero values were replaced with
1e-10 before transformation). Mann-Whitney U test and
FDR correction were utilized to test for significant func-
tion relative abundance differences between groups. Only
functions with a qvalue < 0.05 were deemed significantly
different.

Species selection for association network construction
Species selected for network inference were either highly
prevalent/abundant species (the union of species exhibit-
ing > 90% sample prevalence within both groups), or
species that were deemed as both significantly ‘important’
by random forests and differentially abundant. In total
there were 165 species selected for network construction.

Bacterial association network inference
For each sample group, a bacterial association network
was constructed from CLR-transformed sample-taxa
matrix of that group using a Gaussian Graphical Model
(GGM) framework. For each group, a sparse precision
matrix (Ω) was computed using the huge [101] package
in R, and this matrix formed the adjacency matrix of the
association network. The stability approach to regularization
(StARS) method [102] was utilized to choose the tuning
parameter (ρ) in the l1-penalty model for sparse precision
matrix estimation. The partial correlation matrix, P, was
calculated as:

P i; j½ � ¼
−Ω i; j½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω i;i½ � �Ω j; j½ �
p

Finally, any associations below a magnitude of 0.01
within the partial correlation matrix was treated as stat-
istical noise and removed.

Network topology comparison
For each network, the following properties were com-
puted using NetworkX [103] (version 2.4): average short-
est path length (ASPL), transitivity, and modularity. The
ASPL (α) was calculated as:

α ¼ Σs;t∈L
D s; t½ �
n n − 1ð Þ

where (L) is the set of nodes in the graph (G), the short-
est path between the nodes (s) and (t) is D [s,t], and (n)
is the total number of nodes in (G). The transitivity (T)
of a network was calculated as:

T ¼ 3
Total triangles
Total triads

in which triangles are considered a subset of three nodes
within a network where each node is adjacent to all
other nodes within the subset, and triads are connected
triples (i.e. three nodes abc where edges (a,b) and (b,c)
exist and the edge (a,c) can be present or absent). Tran-
sitivity is the fraction of all possible triangles present in
the graph and is a measurement of node clustering. Fi-
nally, the modularity (Q) [104] of a network was calcu-
lated as:
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Q ¼
Xn
c¼1

Lc
m

−
kc
2m

� �2
" #

where (n) is all modules of a graph partition, (c) is
an individual module from the partition, (m) is the
total number of edges of the graph (G), (Lc) is the
total intra-module edges, and (kc) is the sum of
edges of all nodes within module (c). Networks
were first partitioned into modules before modular-
ity could be calculated (for module detection see
Module Functional Profiles below). Monte Carlo
simulations were utilized to test networks for non-
randomness where 1000 random (Gn,p) networks were
created, using NetworkX, and network properties (ASPL,
transitivity, and modularity) were measured and used to
produce pvalues for group network properties. For the
creation of random networks (n) was equal to the group
network of interest’s node total and (p) the network
density.

Taxonomic relationship analysis of species associations
For each association, the lowest common taxonomic
relationship between species was characterized by
using the NCBI taxonomic assignments. Monte Carlo
simulations were utilized to test for significance and
produce pvalues. First, 1000 random (Gn,m) networks
were produced, using NetworkX, for comparison to
each group network. Within these networks (n) was
equal to the group network node total, and (m) the
total edges (associations) within group networks.
Next, species names and association weights from
group networks were randomly assigned to nodes
and edges within each random network. Lastly, the
total of each lowest common taxonomic relationship
between nodes in each random network were com-
puted and compared to those found within group
networks.

Module functional profiles
Species modules were first detected within networks
utilizing an asynchronous label propagation algorithm
[105] for module detection. The module detection algo-
rithm was allowed to partition the graph into modules
100 times. The modules produced from the partition
resulting in the highest ‘performance’ were kept for
subsequent analyses. Performance (p) is calculated as:

p ¼ aþ b
t

where (a) is the total intra-module edges, (b) the total
inter-module non-edges, and (t) is the total potential
edges. Following module detection, module functional
profiles were created by weighing the species functional

profile (Pfam or TIGRFAM) of each species within a
module by that species mean relative abundance within
a group (Healthy or CRC), and then re-normalizing by
total.

Module cluster functional analysis
Module functional profiles were CLR-transformed
before PCA. To find clusters, modules were partitioned
by performing K-means clustering, from Scikit-learn, on
the PCA. Silhouette analysis, from Scikit-learn, was used
to find the optimal K for K-means clustering. Silhouette
coefficients (SC) range from [− 1,1] where a positive SC
near 1 indicates that a module within our PCA is far
away from neighboring clusters and a high average
silhouette score is indicative of well-defined clusters.
After clusters were defined, the distinct functionality of
clusters was examined. First, PCA was run in a pairwise
fashion on the modules from each cluster to find the
most important functional features (Pfams or TIGRFA
MS), which made a cluster distinct from every other
cluster. Across all PCAs, the features which separated
each cluster along the first principal component exhibit-
ing an importance above a magnitude of 0.01 were noted
and summed. Afterwards the top 100 TIGRFAMS with
the highest importance within each cluster were se-
lected, and the main and sub roles of each TIGRFAM
elucidated. TIGRFAM main and sub role abundance im-
portances were created by summing the importances of
all TIGRFAMS that were assigned to that main and sub
role then normalizing by total. Lastly, the top 10 Pfams
with the highest total importance were utilized for a
more in-depth inspection into a cluster’s distinct
functionality.

Node centrality ‘hub’ analysis
Degree centrality was used to find bacterial ‘Hubs’
within modules by choosing the species with the most
associations (edges) within a module. Only ‘Hubs’ from
module sub graphs that exhibited disassortative mixing
in respect to degree (degree assortativity < 0), as measured
by NetworkX, were selected for examination.

Statistical significance testing
A two-tailed nonparametric t-test (Mann-Whitney U
test) [106] was used to compare groups for statistical
significance. Benjamini-Hochberg (False discovery rate;
FDR) [107] was used for multiple testing correction.
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