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ARTICLE INFO ABSTRACT

Keywords: The emergence of extended-spectrum p-lactamase and carbapenemase-producing Enterobacterales (ESBL-E and
ESBL-E CPE, respectively) is a threat to modern medicine, as infections become increasingly difficult to treat. These
CPE bacteria have been detected in aquatic environments, which raises concerns about the potential spread of
:‘;l_); antibiotic resistance through water. Therefore, we investigated the occurrence of ESBL-E and CPE in surface

water in Lower Saxony, Germany, using phenotypic and genotypic methods. Water samples were collected from
two rivers, five water canals near farms, and 18 swimming lakes. ESBL-E and CPE were isolated from these
samples using filters and selective agars. All isolates were analyzed by whole genome sequencing. Multidrug-
resistant Enterobacterales were detected in 4/25 (16%) water bodies, including 1/2 rivers, 2/5 water canals
and 1/18 lakes. Among all samples, isolates belonging to five different species/species complexes were detected:
Escherichia coli (n = 10), Enterobacter cloacae complex (n = 4), Citrobacter freundii (n = 3), Citrobacter braakii (n =
2), and Klebsiella pneumoniae (n = 2). Of the 21 isolates, 13 (62%) were resistant at least to 3rd generation
cephalosporins and eight (38%) additionally to carbapenems. CPE isolates harbored blakpc.2 (n = 5), blakpc.2 and
blaypn1 (n = 2), or blapxa-1s1 (n = 1); additionally, mcr-9 was detected in one isolate. Two out of eight CPE
isolates were resistant to cefiderocol and two to colistin. Resistance to 3rd generation cephalosporins was
mediated by ESBL (n = 10) or AmpC (n = 3). The presence of AmpC-producing Enterobacterales, ESBL-E and CPE
in northern German surface water samples is alarming and highlights the importance of aquatic environments as
a potential source of MDR bacteria.

Whole genome sequencing
Aquatic environment

highlighting the need for a One Health approach to address this
emerging health issue [5].

1. Introduction

Multidrug-resistant (MDR) Enterobacterales pose a significant threat
to global public health [1]. Among them, extended-spectrum p-lacta-
mase and carbapenemase-producing Enterobacterales (ESBL-E and CPE,
respectively) are considered high-priority pathogens by the World
Health Organization (WHO) on the global list of antibiotic-resistant
bacteria (ARB) [2]. Of concern, these bacteria are not limited to clin-
ical settings, but have also been detected in various environmental
sources, including surface waters [3,4]. The interplay between humans,
animals, and the environment leads to an accumulation of ARB,

The diversity of bacteria in aquatic environments is vast, and it has
been hypothesized that these environments not only harbor, but also
serve as a source for ARB and antibiotic-resistance genes (ARGs) [6,7].
This facilitates the spread of ARGs via horizontal gene transfer, partic-
ularly in surface waters, which communicate with water from multiple
sources such as healthcare facilities, industry, agriculture, livestock, and
urban wastewater, that are rich in antibiotics and ARB [7-9]. Depending
on the exposure of surface waters to these sources, a variety of ARB and
ARGs can be expected in different water bodies. The flow of surface
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water to croplands and their proximity to recreational water bodies
further underscores the role that aquatic environments may play in
exposing humans to ARB [6].

In the last decade, the dissemination of ESBL-E and, more rarely,
CPE, has been reported in surface waters throughout Europe [8,10-12].
However, there have been few studies that have analyzed surface waters
in Germany and data on the epidemiological distribution of ARBs and
ARGs in aquatic environments is scarce [13-15]. Therefore, in the pre-
sent study, we aim to investigate the occurrence of ESBL-E and CPE and
the diversity of ARGs in rivers, water canals near farms, and official
swimming lakes in Lower Saxony, Germany.

2. Materials & methods
2.1. Sampling procedure

Between September and October 2022, 31 water samples were
collected from 25 water bodies, including two rivers, five water canals
near farms and 18 official bathing lakes in Lower Saxony, Germany
(Fig. 1).

One of the rivers was sampled at six different locations: two were
located upstream of a larger city, two within the city, and two
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downstream of the city. The other river was sampled at two different
locations where swimming was officially allowed. Each location was
sampled once. Using a glass bottle attached to a stick, 500 mL of water
was sampled 20-30 cm below the water level at a site with a water depth
of 1.0-1.5 m (in accordance with the Lower Saxony Bathing Water
Ordinance) [18]. All samples were transported on ice and processed
within 24 h.

2.2. Sample processing

Water samples were centrifuged (3 min, 500 x g) to remove larger
compounds when necessary. One hundred mL of water was filtered
through mixed cellulose ester membrane filters with a pore size of 0.45
pm (Whatman, Buckinghamshire, UK) using a water suction unit
(Sartorius, Goettingen, Germany). For the selection of ESBL-E and CPE,
one filter from each sample was transferred to CHROMagar ESBL plate
(MAST Diagnostica, Reinfeld, Germany) and one filter to MTC (mer-
openem-ticarcillin-cloxacillin) agar, which is an in-house CRE agar
suitable for analysis of water samples. MTC suppresses non-fermentative
gram-negatives, gram-positives, and fungi, which are frequently present
in surface waters and could therefore mask CRE. The agar is based on the
chromogenic ORI agar (CHROMagar Orientation, CHROMagar, Paris,
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Fig. 1. Sampling sites in Lower Saxony, Germany. Pink dots: lakes, yellow: rivers, blue: water canals near farms (created using Microreact [16]). The map of federal
state of Lower Saxony [17]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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France) which was supplemented with meropenem (0.125 mg/L),
ticarcillin (50 mg/L), cloxacillin (400 mg/L), zinc sulfate (50 mg/L),
vancomycin (64 mg/L), and amphotericin B (20 mg/L). Extensive
testing with quality control and clinical strains was performed to
determine the appropriate concentrations of antibiotics in the agar.
After inoculation, plates were incubated at 37 °C for 18-24 h.

2.3. Phenotypic characterization

All colonies suspicious of Enterobacterales that grew on the selective
plates were identified by MALDI-ToF mass spectrometry (Biotyper,
Bruker, Bremen, Germany). The isolates were subjected to antibiotic
susceptibility testing (AST) using the Vitek2 system with AST-N428
cards (bioMérieux, Niirtingen, Germany) for the following antibiotics:
ampicillin, ampicillin/sulbactam, piperacillin, piperacillin/tazobactam,
cefuroxime, cefotaxime, ceftazidime, ertapenem, imipenem, mer-
openem, gentamicin, ciprofloxacin, tigecycline and trimethoprim/sul-
famethoxazole. Results were interpreted according to EUCAST guideline
version 12.0 [19]. Additionally, the minimal inhibitory concentrations
(MICs) of imipenem, meropenem, aztreonam/avibactam, ceftazidime/
avibactam, colistin, ceftolozane/tazobactam, imipenem/relebactam,
and temocillin for carbapenem-resistant isolates were determined by
broth microdilution assays (MICRONAUT-S, Merlin Diagnostics, Born-
heim, Germany). Susceptibility to cefiderocol was assessed by broth
microdilution (UMIC cefiderocol, Bruker, Germany) [20], meropenem-
vaborbactam by gradient test (bioMérieux). Isolates with an ESBL
phenotype were further investigated by the CLSI combination disk test
(MAST diagnostics, Reinfeld, Germany) as previously described
[21-23]. MDR Enterobacterales were defined as isolates with resistance
to 3rd generation cephalosporins and/or carbapenems.

2.4. Multiplex PCR for carbapenemase encoding genes

DNA of all isolates with elevated carbapenem-MICs was extracted
from overnight cultures using the DNeasy® Blood & Tissue Kit (QIA-
GEN, Hilden, Germany) according to the manufacturer’s instructions.
Identification of carbapenemase encoding genes (blayyy, blagpc, blanpy,
bla()XA_48, blaOXA_zg, blaIMp, blaGIM, blaIMI, blaOXA_58) in all CPE isolates
was conducted by multiplex PCR as described previously [24].

2.5. Whole genome sequencing (WGS)

Whole genome sequencing of all 22 isolates was performed as pre-
viously described [25]. Briefly, sequencing data was collected for entire
genomes, including plasmids. Indexed PCR-free fragment libraries were
generated from extracted genomic DNA with an average fragment
length of 400 bp. Paired-end sequencing with 2x150bp reads was carried
out on the NovaSeq6000 system (Illumina, San Diego) using an S4-
flowcell. Demultiplexing was accomplished with BCL-convert
(V.4.0.3). All genomes had an average coverage of at least 150x.

Raw reads were quality trimmed with Trimmomatic and assembled
using SPAdes [26,27]. Bacterial species were genetically determined via
Centrifuge [28]. Assembled genomes were examined for resistance
genes with the ResFinder database, using ABRicate [29,30]. The MLST
types were determined with the PubMLST database [31] using mlst
2.19.0 [32].

3. Results

In 4/25 (16%) water bodies MDR Enterobacterales were detected,
including 1/2 rivers, 2/5 water canals and 1,/18 bathing lakes (Table 1).

3.1. Detection of bacteria in water samples

MDR Enterobacterales were detected in 9/31 water samples (29%),
yielding a total of 21 different isolates which were further analyzed. Of

One Health 17 (2023) 100606

Table 1
Overview of multidrug-resistant (MDR) Enterobacterales detected in different
surface water types in the study area.

Surface water type Water bodies Total Samples Total
harboring MDR  number harboring MDR  number
Enterobacterales  of water Enterobacterales  of MDR
(%) samples (%) isolates
detected
Rivers (n = 2) 1/2 (50%) 8 6/8 (75%) 18
Water canals (n = 5) 2/5 (40%) 5 2/5 (40%)
Bathing lakes (n = 18) 1/18 (5.5%) 18 1/18 (5.5%) 1
4/25 (16%) 31 9/31 (29%) 21

MDR, multidrug-resistant.

these, 18 were samples from one river and obtained at six different lo-
cations (R-1.1 to R-1.6), two were from two different water canals near
farms (WC-1/WC-5), and one was from a swimming lake (L-6), Table 1.
Five different Enterobacterales species were identified, including E. coli
(n = 10), Enterobacter cloacae complex (n = 4), Citrobacter freundii (n =
3), Citrobacter braakii (n = 2) and Klebsiella pneumoniae (n = 2) (Table 2).

Interestingly, 18/21 MDR Enterobacterales were found in river 1.
Remarkably, the presence and diversity of MDR Enterobacterales iden-
tified in the river sampled at six different locations varied greatly. While
only four ESBL-E were detected upstream of the city, one AmpC-
producer, two ESBL-E, and three CPEs were detected within the city
limits, and three ESBL-E and five CPEs were detected downstream of the
city. The two sampling sites located below the city were downstream
from the point where water from urban wastewater treatment plants
(WWTP) is discharged into the river, which could potentially explain
their presence.

3.2. Antibiotic susceptibility profiles and molecular characterization of
isolates

All isolates were resistant to at least one of the 3rd generation
cephalosporins and 8/21 were resistant to at least one of the carbape-
nems (Supplementary Table S1).

Of the 13 carbapenem-susceptible isolates, 10 were ESBL producers
and three AmpC-producers based on phenotypic tests. All ESBL-E were
E. coli and harbored at least one ESBL gene. The most commonly
detected ESBL gene was blacrx.m-15 (n = 5), followed by blactx.m-1 (n =
2), blactx-m-14, blacrx-m-27, and blacrx.m.32 (n = 1 each). In addition to
their ESBL genes, four isolates harbored blargy.1p and two harbored
blapxa.1, both narrow spectrum f-lactamases. Among the AmpC pro-
ducers, blacyy.s1, blaacr.g, blacmy.101 (n = 1 each) were detected
(Table 1). All ESBL and AmpC-producers were susceptible to
carbapenems.

Among carbapenemase-producing isolates five isolates harbored
blagpc.2, two isolates both blagpc.o and blayyy.1, and one isolate blapxa.1g1.
All CPEs except one isolate additionally carried either an ESBL gene
(blacrxm-15) or an AmpC gene (blaacc.1, blaacr-10, blacmy-e6, blacwy-70),
Table 2. Interestingly, one of the C. freundii isolates that carried blakpc.2
and blaypy (R-1.5.2) was found to also harbor the colistin resistance gene
mer-9. All carbapenemase-producing isolates were susceptible to the new
pB-lactam/p-lactamase inhibitor combinations aztreonam/avibactam and
imipenem/relebactam, and resistant to ceftolozane/tazobactam. Resis-
tance to other antibiotics was observed for temocillin (6/8, 75%), cefta-
zidime/avibactam (2/8, 25%), meropenem-vaborbactam (2/8, 25%),
cefiderocol (2/8, 25%), and colistin (2/8, 25%), Table 3.

The two colistin-resistant Enterobacter cloacae complex isolates
belong to the Enterobacter cluster I, based on molecular comparison of
the partial hsp60 sequence as described by Hoffmann and Roggenkamp
[33]. Members of this cluster have been associated with heteroresistance
towards colistin [34]. We furthermore detected the presence of the erc
gene in both isolates. The presence of this gene in Enterobacter spp. has
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Table 2
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Genetic characterization of ESBL-E, CPE and AmpC-producing Enterobacterales detected in surface water in Lower Saxony.

Surface water Sampling site Isolate Species p-lactamase type by phenotypic tests Sequence type (MLST) p-lactamase according to WGS
Rivers
River 1 1 R-1.1.1 Escherichia coli ESBL ST-44 CTX-M-1, TEM-210, OXA-1
R-1.1.2 Escherichia coli ESBL ST-1266 CTX-M-32, TEM-1B
2 R-1.2.1 Escherichia coli ESBL ST-12779 CTX-M-14, TEM-1B
R-1.2.2  Escherichia coli ESBL ST-10 CTX-M-15
3 R-1.3.1 Citrobacter braakii carbapenemase ST-568-like KPC-2, VIM-1, CMY-70, TEM-1B, OXA-1
R-1.3.2 Enterobacter cloacae complex carbapenemase ST-23 OXA-181, CTX-M-15, ACT-2, OXA-1
R-1.3.3  Escherichia coli ESBL ST-167 CTX-M-15, TEM-1B
4 R-1.4.1 Escherichia coli ESBL ST-131 CTX-M-27
R-1.4.2 Citrobacter freundii AmpC ST-307 CMY-51
5 R-1.5.1 Citrobacter freundii carbapenemase ST-11 KPC-2, CMY-66, TEM-1B, OXA-1
R-1.5.2 Citrobacter freundii complex  carbapenemase ST-955-like KPC-2, VIM-1, ACC-1, TEM-1B, OXA-1
R-1.5.3 Enterobacter cloacae complex carbapenemase ST-29 KPC-2, TEM-1B, OXA-1
R-1.5.4 Klebsiella pneumoniae carbapenemase ST-782 KPC-2, CTX-M-15, SHV-28
R-1.5.5 Escherichia coli ESBL ST-131 CTX-M-15, OXA-1
R-1.5.6 Escherichia coli ESBL ST-93 CTX-M-1, TEM-1B
R-1.5.7 Escherichia coli ESBL ST-2741 CTX-M-15
6 R-1.6.1 Klebsiella pneumoniae carbapenemase ST-1401 KPC-2, SHV-26, TEM-1B, OXA-1
R-1.6.2 Enterobacter cloacae complex carbapenemase ST-29 KPC-2, TEM-1B, OXA-1
Water canals
Water canal 1 1 WC-1 Escherichia coli ESBL ST-517 CTX-M-15
Water canal 5 1 WC-5  Enterobacter cloacae complex AmpC ST-1001 ACT-9
Swimming lakes
Lake 6 1 L-6 Citrobacter braakii AmpC ST-386-like CMY-101
ESBL, extended-spectrum p-lactamase; MLST, multilocus sequence typing; ST, sequence type; WGS, whole-genome sequencing. Carbapenemase genes are marked in
bold.
Table 3

Minimal inhibitory concentrations (MIC) of carbapenemase-producing isolates to carbapenems, new p-lactam/f-lactamase inhibitor combinations, temocillin, colistin
and cefiderocol.

MIC (mg/L)
Isolate Species MEM IMP AZA CZA CZT IMR MEV TEM COL FDC
R-1.3.1 Citrobacter braakii (KPC-2, VIM-2) >16 >16 <0.5 > 32 >16 2 8 32 <0.5 0.25
R-1.3.2 Enterobacter cloacae complex (OXA-181) 1 2 <0.5 <2 >16 1 1 > 64 >8 4
R-1.5.1 Citrobacter freundii (KPC-2) 8 2 <0.5 <2 >16 <0.5 0.06 32 1 2
R-1.5.2 Citrobacter freundii complex (KPC-2 VIM-1) > 32 16 <0.5 > 32 >16 2 >64 > 64 <0.5 0.25
R-1.5.3 Enterobacter cloacae complex (KPC-2) > 32 16 <0.5 <2 >16 <0.5 0.06 32 >8 1
R-1.5.4 Klebsiella pneumoniae (KPC-2) 8 8 <0.5 <2 16 <0.5 0.03 16 1 2
R-1.6.1 Klebsiella pneumoniae (KPC-2) > 32 >16 <0.5 <2 8 1 0.5 16 1 0.5
R-1.6.2 Enterobacter cloacae complex (KPC-2) > 32 >16 <0.5 <2 > 16 < 0.5 0.06 32 2 8

AZA: aztreonam/avibactam, CZA: ceftazidime/avibactam, COL: colistin, CZT: ceftolozane/tazobactam, FDC: cefiderocol, IPM: imipenem, IMR: imipenem/relebactam,
MEM: meropenem, MEV: meropenem/vaborbactam TEM: temocillin.

been shown to promote heteroresistance towards colistin via increased
expression of the PhoP-PhoQ two-component system, which in turn
upregulates the arnBCADTEF operon [35].

The resistance genes other than p-lactamases carried by the isolates
are summarized in Supplementary Table S2.

4. Discussion

Our study revealed that 3rd generation cephalosporin resistant

Enterobacterales and CPE were present in 4 out of 25 (16%) sites and in
9 out of 31 (29%) water samples in Lower Saxony, Germany, a state
known for its intensive agriculture and livestock production. This in-
dicates a high prevalence of these isolates in surface waters in this re-
gion, particularly in the studied river. Furthermore, the genome-based
analyses identified a broad spectrum of p-lactamase genes in these
strains.

Our results regarding ESBL-E species and ESBL genes were consistent
with those of previous studies on surface water throughout Europe
[12,15]. All ESBL-E were E. coli and blacrx-m-15 was the most frequently
detected ESBL gene. Interestingly, blacrx.n.32 was detected in a river
upstream of the city, a gene that had not previously been reported from
surface waters. It has been identified in wild mallard and slaughterhouse
wastewater in Germany [36,37]. Detection of this gene in the respective

area could indicate a potential contamination from wildlife or livestock.

In our study, all CPE isolates were resistant to ceftolozane/tazo-
bactam as expected, while only the metallo-p-lactamase-producing iso-
lates displayed resistance to ceftazidime/avibactam, which is in line
with recently published data [38-40]. Interestingly, two Citrobacter
isolates producing both KPC-2 and VIM-1 tested susceptible to imipe-
nem/relebactam (MIC 2 mg/L). Both were resistant to imipenem (MIC
>16 mg/L). The borderline susceptibility of these isolates can therefore
likely be explained by the inhibition of KPC and AmpC by relebactam,
while expression of VIM-1 was not high enough to confer full resistance
to imipenem. Of note, imipenem and imipenem-relebactam MICs can be
relatively low (<2 mg/L) in VIM-producing Citrobacter freundii isolates,
as previously reported in clinical isolates from Germany [40-43].

So far, at least five major carbapenemases have been identified in
surface waters worldwide with varying prevalence according to the
epidemiological trends in the area. [8,44-47]. There is only a limited
number of studies that have analyzed CPE from surface waters and
conducted genetic analyses of these organisms [13]. To date, only one
study has reported the presence of CPE (blapxa-s1 and blayyy.1) in surface
waters of northern Germany [14]. In the current study, to the best of our
knowledge the presence of blagpc 2, blakpc.2 and blayy.1, and blapxa-181
was shown for the first time in a river in Germany. An unexpected result
was that blagpc.o accounted for the majority of the carbapenemase
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genes, although Germany is not considered an area with a high preva-
lence of blagpc-2 [48]. KPC-producing Enterobacterales are endemic in
the United States, Colombia, Greece, and Italy [49]. Previously, several
outbreaks of KPC-producing Enterobacterales have been reported in
Germany [50-52]. In two of these outbreaks, the index patients were
found to have been hospitalized in Greece, and the strain identified in
the third outbreak was related to the strains identified in these two prior
outbreaks. Our findings show that surface water in Lower Saxony can
harbor CPE, with blakpc.2 being the dominant gene and highlight the
need for further surveillance and monitoring of environmental CPE.

Another concerning result of the study was the observation that the
CPEs were also resistant to a significant number of other antibiotics. The
detection of colistin resistance in two CPE isolates is particularly
alarming as colistin is often used as a salvage therapy. Both E. cloacae
isolates harbored the erc gene which mediates heteroresistance to
colistin [35]. A third isolate was positive for mcr-9 but was phenotypi-
cally susceptible to colistin [53]. The detection of mcr-harboring and
colistin-resistant bacteria in the surface waters of Lower Saxony could
potentially be related to the high density of agriculture in the region, as
previous research has established a link between colistin resistance in
Enterobacterales and the use of polymyxins in livestock [54]. Unlike
many other countries that ban or limit its application, colistin is still
regularly administered in veterinary medicine in Germany [55,56].
Despite the decline in sales of polymyxins for food producing animals
over the years, the consumption in Germany for veterinary use still ex-
ceeds that of neighboring countries [55,57]. Notably, we identified a
unique combination of two carbapenemase-encoding genes, blagpc.o,
and blayyy.1, and the mobile colistin resistance gene mcr-9 in C. freundii
complex. According to previous reports, mcr-9 is the second most
prevalent mobile colistin resistance gene worldwide after mcr-1 [58].
Unlike other identified mcr genes that typically confer resistance to
colistin, mcr-9 usually only reduces susceptibility which could lead to a
silent dissemination of this gene [59]. Its prevalence is primarily
attributed to the use of antibiotics in clinical settings; however, it is
noteworthy that livestock production also plays a significant role in its
prevalence [58]. In Germany, mcr-9 has so far only been detected in
Salmonella isolates in foods of animal origin [60].

Furthermore, of particular concern is the observation of resistance to
the novel antibiotic cefiderocol in two E. cloacae isolates - one harboring
blapxa-181 and the other blakpc.o. Cefiderocol, known for its potent ac-
tivity against carbapenem-resistant Enterobacterales carrying class A, B,
and D carbapenemases, has been extensively studied [61]. Recent
studies have shown a variable resistance rate to cefiderocol among
carbapenemase-producing Gram-negative bacteria originating from
different countries [62-65]. Although observed at relatively low fre-
quencies, the presence of cefiderocol resistance has been reported in
Enterobacterales carrying OXA-181 and KPC-2 carbapenemases [64,65].
A recent study has demonstrated a low resistance rate in clinical isolates
from Germany [66]. Resistance to cefiderocol in 2/8 isolates of envi-
ronmental origin is therefore surprising.

Although WWTPs can reduce the number of ARB, studies have shown
that achieving complete eradication is not possible; hence WWTPs could
be hot spots for ARB and ARGs [67,68]. This situation becomes even
more crucial when considering that WWTP’s release points are surface
waters, especially rivers [10,68]. Our study supports these observations.
Out of the 18 MDR Enterobacterales isolates we detected in one river;
half were located downstream from the point where the WWTP dis-
charged water into the river.

There are some limitations of our study. It was conducted in a single
season, making it difficult to ascertain the extent to which our results
may have been influenced by seasonal weather and environmental
factors. Additionally, each location was sampled only once. Neverthe-
less, our study is one of only few analyzing the presence of MDR
Enterobacterales in German surface waters and provides WGS and
phenotypic susceptibility data, including on the newest last resort
antibiotics.
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In conclusion, the present study provides evidence that 3rd genera-
tion cephalosporin resistant Enterobacterales and CPE are prevalent in
surface waters in Lower Saxony, Germany. We identified a broad spec-
trum of ARGs, including different carbapenemase genes and the previ-
ously undiscovered blacrxm.32 and mcr-9 in an aquatic sample in
Germany. The discovery of cefiderocol and colistin-resistant bacteria
and the presence of mobile colistin resistance gene mcr-9 adds further
urgency to this issue, as both cefiderocol and colistin are often used as a
last-resort therapy for patients infected with antibiotic-resistant bacte-
ria. Overall, our study highlights the need for further research to fully
comprehend the extent of antibiotic resistance and the impact of the
various sources of ARB (e.g., livestock, hospital wastewater) on the
aquatic environment.
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