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Abstract

The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active
research areas. New alignment approaches have incorporated digital signal processing techniques. Among these,
correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional
images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences
are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query
and database become object and scene, respectively. An image correlation process is carried out in order to search for the
best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could
eventually be accomplished at light speed. This paper shows an initial research stage where results were ‘‘digitally’’ obtained
by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from
50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were
considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%),
specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes
were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a
real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the
optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this
paper are encouraging and support the study of image correlation methods on sequence alignment.
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Introduction

Genomics is a discipline focused on studying living organism’s

genetic material, looking primarily for functional and evolutionary

relationships among them [1]. Sequence alignment compares two

or more DNA, RNA or protein sequences and seeks the greatest

amount of overlap or matching among them. Given that matching

areas usually involve coding and regulatory regions and other

functional features, the use of similarity allows us to infer

functional or evolutionary relationships between sequences [1,2].

Thus, alignment techniques must distinguish between matches due

to biological similarities from chance similarities.

To solve this issue, Needleman & Wunsch [3] and Smith &

Waterman [4] proposed the use of dynamic programming

algorithms which have become the most implemented algorithms

in a number of popular alignment programs, such as BLAST and

others [5]. Additionally, several alignment methods have been

suggested with a variety of differences among them, such as

sequence size handling, level of achieved similarity, gap and

mutation (mismatches) treatment, search type (global or local),

speed, and required accuracy [1]. Probably, the most important

issue in sequence alignment is the trade-off between accuracy and

efficiency [6]. In general, highly accurate methods tend to be slow

when analyzing big databases and fast algorithms often sacrifice

sensitivity and confidence in match quality [7].Thus, developing

highly effective and efficient alignment methods remains a

challenge.

Didelot et al. [8] used a Monte Carlo Markov Chain method for

inferring alignment recombination rates and localizing recombi-

nation events. However, this algorithm resulted impractical when

searching large databases. To decrease computational burden,

Rozanov et al. [9] provided a genotyping tool for viral genomes.

Their algorithm was faster than Didelot et al.’s method, but less

accurate. Other approaches, such as k-word composition based

alignment-free methods [10] and heuristic techniques, such as

genetic algorithms [11], tree data structure [12] and self-

organizing neural network [13] have also been proposed.

Although most sequence comparison methods are based on string

matching, other comparison types are also possible. Visualization

and graphical methods have been used to examine global

similarities among coding sequences [12,14]. 2-D and 3-D DNA

graphical representations have allowed visual characterizations

with low degeneracy [15,16]. Randic et al. [15] proposed a

method where graphs were obtained by assigning positive and
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negative x and y values (axes) to the four nucleotide bases. 2D

visualization comparisons have also been accomplished by using

dual base curves (DB-curve) [17], where two bases are assigned

with +45u and 245u vectors, and the remaining bases with a +90u
vector. Sequence similarities and differences can be readily

observed; however, these representations show limitations when

analyzing long sequences. Signal processing and pattern recogni-

tion methods require coding DNA sequences into numeric

sequences. Anatassiou [18] showed that protein or DNA sequences

can be mapped into one or more numerical sequences to obtain a

clear signal. Genomic signal processing was defined by Dougherty

et al. [19] and allows a variety of methods, such as the Fourier

(FFT) [20,21] and wavelet transformations [22] for solving

relevant bioinformatics and computational biology problems.

The FFT incorporation using correlation methods for DNA

sequence aligning, allowed obtaining very good results. Rockwood

et al [7] proposed a cross-correlation method to compare

sequences, applying the FFT to improve computational efficiency.

Bases were represented as complex numbers. Their work

demonstrated that the cross-correlation alignment method was

able to detect even deeply hidden sequence homology that many

existing alignment methods are unable to detect. Brodzik [23]

compared the standard magnitude-and-phase cross-correlation

technique with the phase-only cross-correlation technique and

demonstrated that they are a robust way to isolate insertion/

deletions and to identify matching segment positions. In this work

DNA bases were represented as binary numbers and the sequence

by a digital signal.

Our work’s aim is to evaluate the correlation process when

four DNA nucleotides are transformed into four different

numbers, respectively represented by four gray pixel intensities

and visualized in a 2D image. Both sequences, the query and the

known database are represented as images and compared using a

computer simulated optical correlation technique [24,25]. The

main advantage of the proposal is if sequences are well

recognized by the digital correlation process, the optical

correlations occur at light speed. The idea was inspired by the

fact that sequence comparison is often carried out visually by

geneticists, taxonomists, and molecular biologists when small

number of sequences are under study. The paper includes a set

of simulations to evaluate the effectiveness and the limitations of

this method. Many queries were carried out and the results

compared to BLAST outputs.

Materials and Methods

Optical Correlation
Optical correlators are pattern recognition tools used to

determine if an object is in an input scene. The similarity degree

between input scene and object is evaluated by correlation peaks

intensity. The peak location also gives information concerning

object position in the scene. There are two main correlating

architectures: the Vander- Lugt Correlator [26] and the Joint

Transform Correlator [25]. The first requires a priori digital

Fourier transformation of the object, or ‘‘filter’’, whereas in the

second architecture transformed images are obtained by an optical

process. In this paper we will refer to the Vander- Lugt Correlator

as the simulated optical correlator.

The correlation function between two signals s(x, y) and o(x, y), is

defined by the expression shown in Equation 1:

c(x,y)~s(x,y) � o(x,y)~

ðð
s e,gð Þ o� e{x,g{yð Þde dg ð1Þ

Where {*} is the complex conjugated. The correlation function

between two functions is maximum when these functions are

identical, if one of these functions is the input scene s(x,y) and the

other function corresponds to the object o(x,y), one will have a

maximum value when the object is present in the scene. If S(u, v)

and O(u, v) are the Fourier Transformation of s(x, y) and o(x, y),

respectively, the correlation can be carried out in the frequency

domain as stated by Equation 2:

TF{1 c(x,y)f g~S(u,v) O�(u,v) ð2Þ

The input scene, S(u, v) and the reference object, O(u, v) are

described in the frequency domain by the Fourier Transformation

[27]. The function O*(u, v), also called Classical Matched Filter

(CMF) or mask, selects object information in the frequency

domain by means of a filtering process.

The correlation process can be carried out in an optical

correlator: the Fourier transformed input scene S(u, v) is obtained

optically in a certain plane (image plane of light source plane) that

holds the spectral information of the image (frequency domain). If

the spectral information of the filter O*(u, v) is put in this plane, the

correlation process occurs according to the right side of the

equation 2. A second optical Fourier transform is necessary to

obtain the correlation process in the spatial domain. This process

can be computer simulated; however, the great advantage of an

optical correlator is its capacity to make the Fourier transforma-

tion process and correlation at light speed. Once the optical system

is aligned, transformation and correlation are immediate; thus,

these may be useful in applications where time is critical or the

amount of data is large.

To increase the processing speed, liquid crystal display (LCD)

spatial light modulators are currently used in optical setups. In this

case, the scene and the filter are displayed onto a LCD,

modulating in amplitude and phase, respectively [28]. Figure 1

shows an optical correlation process schema. The correlation

plane is formed at the correlators end, specifically, at the image

scene-object plane of the second lens, where it is captured by a

CCD camera.

This architecture requires that the object information beprovided,

as a filter, onto the Fourier Transform plane. The filter allows the

modification of the information contained in the object’s image

spectrum [29,30]. Because of its good efficiency and simplicity, the

PhaseOnlyFilter (POF)hasbeenwidely studied inoptical correlation

[31,32]. This filter optimizes the luminous efficiency criteria, which is

extremely important in the image optical correlation processing,

since it maximizes the amount of luminous energy at the correlation

plane. The POF is defined in Equation 3.

O � (u,v)~
G � (u,v)

DG(u,v)D
ð3Þ

Where G(u, v) is the Fourier Transformation of the object. Filters

depend on this application, due to the fact that they optimize certain

image characteristics [28].

Sequences
The database was configured extracting one million NCBI

DNA base pairs, corresponding to a section of the sequences

4,809,037 base pairs (bp): NC_003198.1 (Salmonella enterica subp.

enterica serovar Typhi str. CT18 chromosome, complete genome).

The database was divided into one hundred scenes with a size of

100 x 100, thus containing 10,000 bp each.

Image Correlation for DNA Alignment
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As in many studies [15] [22–23], queries were artificially

generated in order to evaluate the effect of their correlation

process variability (like their length, mismatched bases number

and presence or absence in the database). Queries were

implemented by extracting randomly 303 varying size sequences

from 50 to 4,500 bp. The queries were represented as 303 objects.

To simulate differences between the queries and the original

sequences, new sequences were created by randomly substituting a

percentage of bases. Base positions and new bases (substitutes)

were randomly chosen. Figure 2 illustrates a 60 pb sequence

mutation. The mutation process generated six new sets of 303

queries each, with 10 to 60% mutations (step 10), similar to noise

addition in pattern recognition. Finally 2,121 query sequences

were searched in a 1,000,000 bp database.

Evaluation Criteria
Given that different alignment methodologies use different

evaluation criteria, and that alignments were treated as a pattern

recognition problem, we evaluated our methodology using

standard pattern recognition criteria, the time needed, or

efficiency, to compute the alignment.

Four statistical indexes, commonly used in classification

processes, were used to measure recognition. Sensitivity (Se)

measures the ability to detect true positives, in other words, to

correctly identify an object when it is in the scene. Specificity (Sp)

measures the ability to detect true negatives, in other words, to

correctly detect that the object is not in the scene. Exactitude (Ex)

computes all the correctly classified objects whereas Error (Er)

computes the incorrectly classified objects. These indexes are

calculated according to the following relationships and are

expressed in percentages:

Se~
TP

TPzFN
ð4Þ

Sp~
TN

TNzFP
ð5Þ

Ex~
TPzTN

n
ð6Þ

Er~
FPzFN

n
ð7Þ

where n is the total number of recognized elements; TP (true

positives) is the number of objects correctly identified in a scene;

TN (true negatives) is the number of objects correctly identified as

not being in the scene; FP (false positives) and FN (false negatives)

are object numbers wrongly identified as being or not being in a

scene, respectively. The statistical indexes and the time were

computed after the simulations were performed.

Digital Image Correlation
The whole correlation process was simulated in Matlab 7.1,

using a 1.8-GHz Mobile AMD Semprom Portable Computer with

1.472 GB of memory, running on Microsoft Windows XP

Professional Service Pack 3.The 2.2.24+.BLAST version was

obtained from the NCBI website on October 2010. The algorithm

presented in Figure 3 performed each object-scene recognition

process. The analysis of the more time expensive algorithm steps

shown in Figure 3 were performed using a MATLAB profiler.

a) Codification. Sequences were represented as images

formed by four gray level pixels representing bases. Each

nucleotide was coded by a numeric value ranging from 0 and

255, as shown in Figure 4. Each value represents a gray level in the

grayscale, where zero corresponds to black and 255 corresponds to

white. The values of Figure 4 were chosen because they represent

a constant separation of the gray levels; however, future biological

analysis may give more consistent numeric correspondences.

Scenes have a fixed dimension (1006100) but query dimension

was variable. Figure 5 shows four object sequences, so10, so150,

so220 so300 with 150 bp, 1,550 bp, 2,400 bp and 4,300 bp sizes,

respectively (left on Figure 5), and four scene sequences, se2, se18,

se35, se97 (right of Figure 5). Each object was placed side by side

Figure 1. Convergent Vander- Lugt optical correlator. O is a monochromatic source light, L1 and L2 are lenses, the scene and the filter planes
hold both images to correlate and a CCD camera registers the correlation plane. The Fourier transform of the input image s(x,y) is obtained at the
Filter plane where the optical correlation S(u,v)H*(u,v) takes place. The correlation result c(x,y) is captured by the CCD camera.
doi:10.1371/journal.pone.0039221.g001

Figure 2. Creation of mutated sequences. Example of the 10% of mutation (6 bases) of a 60 bases sequence, creating a new sequence (bottom)
from the original sequence (upper). The loci and the replacing bases are randomly chosen.
doi:10.1371/journal.pone.0039221.g002
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with the scene from where it was extracted. Scenes were the same

size while object’s size varied.

b) Correlation process. After coding, the next step was to

accomplish the object recognition. The Fourier transformation of

the object and the scene were carried out and the Vander- Lugt

optical correlation process was simulated. A phase only filter was

applied to the object, due to its simplicity and good performance

[23], but also due to the fact that there is no image distortion in

our application, then luminosity is the most relevant aspect. The

use of a filter to process the spectral information of the object

increases the correlation efficiency [25]. Then, cross-correlation

was performed. The cross-correlation theorem (Eq. 2) states that

the correlation between two images is the product of their Fourier

transformation. Results need to be anti transformed to obtain the

spatial peak location.

The next step was to identify the maximum peak of intensity at

the correlation plane. This was done by identifying the coordinates

where the peak intensity of the correlation matrix was maximum.

When the peak was identified, a threshold was used to state if the

object was or not in the scene. The threshold was established

heuristically, after an extensive computed correlation analysis. The

threshold was set to 575, which was the value that reached the

highest exactitude (Equation 6). Thus, if the peak was above the

threshold, the object was stated as present in the scene, and if the

peak value was below 575, the object was considered not present

in the scene. The whole correlation process is presented in

Figure 6.

In this process, as the database was coded in many scenes, each

object remained fixed and the scenes changed until the whole

database has been correlated and all the peaks are identified. To

address eventual span (the object is divided in two scenes), the

Figure 3. Algorithm of the digital correlator. The different steps of the digital correlation process are represented in the algorithm. This
algorithm is executed for each pair object-scene. The output results are stored and the whole process is finally evaluated.
doi:10.1371/journal.pone.0039221.g003

Figure 4. Base Codification. Each nucleic acid base is represented by
a specific number which represents the gray level of a pixel.
doi:10.1371/journal.pone.0039221.g004
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solution was to overlap the next scene with the previous one. The

size of the overlap was the query’s length. This method allows

queries search in large databases.

c) Evaluation. Correlation process accuracy and efficiency

were calculated and compared to BLAST. All objects (original and

mutated) were correlated with the scenes. True positives and

negatives, false positives and negatives were computed, allowing

the four statistical correlation index computations. However, due

to the great amount of true negatives, the simulation specificity

was too high. This is due to the fact that one object was present in

only one of the 100 scenes (one true positive versus 99 true

negatives). As exactitude incorporates sensitivity and specificity,

the high values of the latter affected it. This is why only sensitivity

was used to evaluate the correlation method and compare it with

BLAST. The efficiency evaluation was performed measuring the

processing time taken by the most important steps of Figure 3

algorithm and compared it with BLAST. The relationship

between the time required to perform the correlation and the

length of the sequences was also evaluated.

Results

Table 1 shows statistical index results obtained from the

simulations. The correlation process showed high levels of

sensitivity and specificity even with mutation rates up to 40%.

Figure 7 shows the correlation peaks of the four objects and scenes

shown in Figure 5. The correlation peak indicates clearly when the

object was in its corresponding scene (diagonal in Figure 7). When

the object was correlated with other scenes, peaks were less

outstanding. In these simulations, the objects had no noise.

Another interesting observation is that the peak’s amplitude varied

according to the query’s length (Figure 8). The peaks location

indicated the objects starting position in the scene. The location

was exact most of the time; however, a one pixel shift occurred

when the object sequence started in the second half of the scene

image. It is important to note that a one pixel shift in the vertical

direction corresponds to a 100 base shift. Table 2 shows the

percentage of well located object starts and the presence of shift

effects for 303 sequences without noise.

When an object was recognized in a scene, its peak intensity

remained a function of the degree of similarity between both

sequences. Thus, when the object sequence was longer, the

correlation peak was higher, as shown in Figure 8. The same

pattern was found for the noise level or ‘‘mutation’’ and the peak’s

heights. Higher peaks were associated with lower noise levels and

smaller ones with higher noise levels (Table 3).

To evaluate the correlation behavior with greater amounts of

data, a simulation was carried out considering the correlation of

the object so33 (400 bp) with the whole database (1,000,000 bp).

Unexpectedly, the peak amplitude of the hit in the 1,000,000 scene

Figure 5. Sequence Codification. The sequences are represented by successions of pixels that compose a n x m gray image. The queries or
objects (left) have variable lengths while data bases or scenes (right) are represented with a fixed image dimension (100 x 100 in this example).
doi:10.1371/journal.pone.0039221.g005

Figure 6. Correlation Process. The scene and object images are Fourier transformed. The object is filtered. Both Fourier Transforms are correlated.
The peak indicates matching.
doi:10.1371/journal.pone.0039221.g006

Table 1. Correlation statistical indexes (%).

Noise 0% 10% 20% 30% 40% 50% 60%

Se 99,01 98,35 97,69 95,05 88,12 42,52 0

Sp 98,99 99,98 99,98 99,98 99,98 99,99 99,98

Ex 99,98 99,96 99,96 99,93 99,86 99,42 98,98

Er 0,02 0,04 0,04 0,04 0,14 0,58 1,02

doi:10.1371/journal.pone.0039221.t001

Image Correlation for DNA Alignment

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e39221



was higher than the one obtained for the same object correlated

with the 10,000 scene (Figure 9). This is unexpected given that

when the whole database is represented in one scene, the pixels are

smaller.

Table 4 shows time variation for the main functions used for the

correlation in two situations: in the first a 1,000 bp length object

was correlated to a 10,000 bp scene; in the second a 4,500 bp

length object was correlated to a 10,000,000 bp scene. The results

show that transforms and the correlation functions represented

more than 70% of the total time. These functions are more

sensitive to the sequences length but they can be reduced near to

zero when implemented in an optical correlator. The bottle neck

of the process is the time taken to load and codify the queries and

the scenes. Some optimization alternatives will be analyzed in the

Discussion.

Comparison with BLAST
BLAST comparisons were focused on two aspects: sensitivity

and time. Equation 4 (Se) was applied to BLAST results obtained

by blasting the same set of queries and databases previously used

with the optical correlator. Table 5 shows sensitivity index values

(%) between the correlator and BLAST at the same noise level.

Although our optical correlator method and BLAST showed

similar sensitivities at low noise levels, BLAST sensitivity rapidly

declines when noise increases. In contrast, the correlator

remained with high sequence recognition levels, which was

translated to high sensitivity levels, even with medium to high

levels of noise (40% and 50%; Figure 10). Table 6 shows time, in

seconds, taken by both methods to search 303 object sequences

in 100 scenes at different noise levels. BLAST was clearly faster

than the correlation method and the time involved in the

sequence comparisons remained the same at different noise

levels.

Figure 7. Results of the Correlations. The graphics presents the correlation peaks of the four objects and the four scenes presented in Figure 5.
When the object sequence is correlated with the scene from where it was extracted, an outstanding peak can be observed indicating alignment
(diagonal). In the other correlations, peaks are less outstanding.
doi:10.1371/journal.pone.0039221.g007

Table 2. Correlation peak relative position e.

No of objects Percentage

Exact location 191 63,04

Vertical one pixel shift 111 36,63

Wrong location 1 0,33

Total 303 100

doi:10.1371/journal.pone.0039221.t002
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Discussion

Previous work using sequence alignment correlation methods

acknowledged that the main advantage of using Fourier-based

approaches compared to standard systems is its higher computa-

tional efficiency [20,25]. In these studies the sequences represen-

tation method was linear. The present work’s aim is to evaluate the

correlation methods performance and efficiency when each

nucleotide is represented as a gray pixel. This representation

allows the use of image correlation techniques that can be

implemented optically. The image correlation methodology is a

robust and well studied process [24–32]. Its main weakness occurs

when the query object rotates or varies in scale compared to the

reference object, decreasing the strength of the correlation output

rapidly [24,25]. In our application there are no such distortions:

the compared sequences are coded in the same way, thus the

whole potential of the optical image correlation can be exploited.

To evaluate this assumption we compared the correlation

methods sensitivity, specificity, and efficiency indexes against a

sequence comparison (alignment) method: BLAST. But this

comparison is complex: BLAST uses a heuristic local method to

evaluate symbol similarity according to statistical significance,

whereas the optical correlation method runs an exhaustive 2D-

global search. The time used by both methodologies to carry out

the alignments was also difficult to compare due mainly to the

additional codification step required by the correlation method,

and by the fact that the correlation was computer simulated.

However, similar to Rockwood et al [7] and Brodzik [23] results,

the image correlation method comparison with BLAST was

encouraging. When compared to the standard method, the results

showed that the correlations performance was similar to BLAST

in both situations: when the sequence was present in the database

(sensitivity) and when the sequence was absent from the database

(specificity). For sequences with mismatch or noise degrees,

superior to 20%, the correlation method outperformed BLAST

significantly, being able to detect similarities with more than 40%

mismatch. Further more, the similarity location is related to the

peak’s position, being a good predictor of the object start in the

scene. In addition, the correlation peaks amplitude was closely

related to the degree of similarity between the two sequences.

The main drawback of the correlation method was the extra

time used by the correlation process, especially when compared to

BLAST. As shown in Table 4, as the sequence length increases,

the correlation step becomes longer. This step can be significantly

Figure 8. Peak and sequence length relationship. The amplitude of the peak in the correlation plane increases when the sequence length
increases; however their relationship is not lineal.
doi:10.1371/journal.pone.0039221.g008

Table 3. Positive peak mean values for several noise levels
(%).

Noise 0% 10% 20% 30% 40% 50% 60%

Intensity 2111 1806 1503 1211 920 694 0

doi:10.1371/journal.pone.0039221.t003
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reduced by carrying out an optical correlation given that

transformations and correlations are performed at light speed.

However, even in the optical situation, many processes remain

digital, like codification, filtering and peak evaluation, representing

a bottleneck for the optical process speed. Thus, some alternatives

to reduce the time of the digital processes must be studied. For

example the codification time can be reduced by having the

databases already coded as images. The bases ASCII code can also

be used as pixel representation, eliminating the codification step

(the ASCCI of A, C, G, T is 65, 67, 71 and 84 respectively;

preliminary results showed that changing only C to increase the

intervals between base codes gave similar good results). Addition-

ally, the filtering process can be eliminated using the Joint

Transform Correlator.

One of the most significant expectations of this work is sequence

representation flexibility. In this paper four gray levels were

considered to represent each nucleotide base; however, colors may

be incorporated. Complementary bases can be represented with

closer gray levels to improve sensitivity, sequence substrings can be

coded in one pixel (e.g. pairs of bases or codons), different open

reading frames [33] can be represented with different colors, etc.

On the other hand, as shown in Table 4 and Figure 9, the method

can be scaled with greater databases. Both aspects (codification

and scene size) allow the processing of great amounts of data as a

large number of sequences may be condensed into a substantially

smaller representation.

Figure 9. Correlation with great data bases. The figure presents the correlation result of the sequence so33 (400 bases) correlated with a scene
that contains the complete database (100061000 bases). This shows that the size of the scenes may also vary.
doi:10.1371/journal.pone.0039221.g009

Table 4. Time (seconds) used by the main functions involved
in the correlation process.

Scene’s Length 10.000 pb 10.000.000 pb Mean Percentage

Object’s Length 1000 pb 4500 pb

Textread** 0.672 0.862 0.77 10.2%

Scene Codification 0.532 2.057 1.29 17.3%

Object Codification 0.080 0.133 0.11 1.4%

Correlation 0.747 4.907 2.83 37.7%

FT* 0.234 2.378 1.31 17.4%

Inverse FT* 0.170 2.233 1.20 16.0%

TOTAL 2.435 12.570 7.503 100%

*FT: Fourier Transform.
**Textread: Time taken to import data from disk to a MATLAB variable.
doi:10.1371/journal.pone.0039221.t004

Table 5. Sensitivity (%) of the Correlator and BLAST %.

Noise 0% 10% 20% 30% 40% 50% 60%

Correlator 99,01 98,35 97,69 95,05 88,12 42,52 0

BLAST 100 96.37 42.90 1.65 0 0 0

doi:10.1371/journal.pone.0039221.t005

Image Correlation for DNA Alignment
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The main contribution of this work was to demonstrate that the

image correlation process is able to find similarities between two

DNA sequences coded as images, even when the query had a high

degree of mutated bases. Further analysis should be performed in

particular aspects of the process. For example, it is necessary to

associate the amplitude of the correlation peak to the number of

matched bases; and thus, creating a score value. It is also necessary to

find an equivalent e-value to refine the searches. Rockwood et al [7]

proposed a base-by-base comparison after the peak is detected to

extract the exact matches. Thus a combination of global and local

search algorithms can be studied. The shift of the correlation peak

location that occurs when the sequence is in the second half of the

scene seems to be constant, thus new simulations should be

performed to evaluate if a constant criterion can be used to adjust

the location according to the horizontal position of the peak. These

issues have to be explored before applying the correlation method to

real data.

The main purpose of this work was to evaluate the performance of

image correlation processes applied to DNA sequence alignment

and to compare it to one of the most popular alignment alternatives,

BLAST. The optical correlator was computer simulated and 2121

sequences with different mismatch lengths and levels were searched

in 100 sequences of 10000 bases each. The results showed that image

correlation had a high sensitivity, specificity and exactitude when

recognizing similarities between sequences. This ability was superior

to BLAST when the percentage of mismatches increased. The high

point of the correlation peak was related to the degree of similarity

between the sequences. Its location indicated the spatial location of

the match. The time efficiency of the method was very low compared

to BLAST, due to the fact that codification and correlations were

performed in a computer. However the results are encouraging as

some processing could be done optically, thus reducing hugely the

processing time.

Future work includes to decrease the time of the algorithms that

will remain digital, to create score and e-value equivalent indexes

and to test the process in a real optical correlator. In our opinion, the

method opens possibilities for future developments, mainly focused

on the pixel representation of one or more bases, to increase the

amount of data analyzed during one correlation and decrease search

Figure 10. Sensitivity and mutation level. The sensitivity of BLAST decays faster than the sensitivity of the correlation, when the percentage of
mutation increases. The latter recognizes similarity with more than 40% of mutated pairs.
doi:10.1371/journal.pone.0039221.g010

Table 6. Time (seconds) taken to process 303 objects in 100
scenes.

Noise 0% 10% 20% 30% 40% 50% 60%

Correlator* 185.52 259.96 412.97 216.3 269.07 245.13 195.98

BLAST 1.01 1.01 1.01 1.01 1.00 1.00 0.99

*Scene Codification time was excluded.
doi:10.1371/journal.pone.0039221.t006
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time. The results obtained in this work support the idea that optical

image correlation may be an interesting research alternative to face

the challenge of processing the large amount of genomic data

currently accumulating from most genomic researches.
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