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BACKGROUND: Recently, numerous prostate cancer risk loci have been identified, some of which show association in specific
populations. No study has yet investigated whether these single nucleotide polymorphisms (SNPs) are associated with prostate
cancer in the Ashkenazi Jewish (AJ) population.
METHODS: A total of 29 known prostate cancer risk SNPs were genotyped in 963 prostate cancer cases and 613 controls of AJ
ancestry. These data were combined with data from 1241 additional Ashkenazi controls and tested for association with prostate
cancer. Correction for multiple testing was performed using the false discovery rate procedure.
RESULTS: Ten of twenty-three SNPs that passed quality control procedures were associated with prostate cancer risk at a false
discovery rate of 5%. Of these, nine were originally discovered in studies of individuals of European ancestry. Based on power
calculations, the number of significant associations observed is not surprising.
CONCLUSION: We see no convincing evidence that the genetic architecture of prostate cancer in the AJ population is substantively
different from that observed in other populations of European ancestry.
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Recent studies have identified numerous single nucleotide poly-
morphisms (SNPs) that modify an individual’s risk of developing
prostate cancer (Amundadottir et al, 2006; Eeles et al, 2008;
Gudmundsson et al, 2007a; Gudmundsson et al, 2008; Gudmunds-
son et al, 2007b; Haiman et al, 2007; Robbins et al, 2007; Thomas
et al, 2008). Although some investigators have considered the
possibility of heterogeneity between ethnic groups, where a SNP
shows a different effect on prostate cancer risk depending on the
population being studied, these studies only considered ethnic
groups with different continents of ancestral origins (Haiman et al,
2007; Waters et al, 2009; Yamada et al, 2009; Hooker et al, 2010;
Zheng et al, 2010). As alleles of numerous SNPs are known to vary
in frequency across Europe (Bersaglieri et al, 2004), and
population substructure is consistently observed in Americans
with ancestry from different locations in Europe (Price et al, 2008;
Tian et al, 2008), there is a possibility that prostate cancer risk
alleles may have different effects in different populations of
European ancestry.

Ashkenazi Jews are Jews whose ancestors come primarily from
central and eastern Europe; the majority of North American Jews
and a large proportion of Israeli Jews are of Ashkenazi ancestry.
The global linkage disequilibrium (LD) profiles of the Ashkenazi
Jewish (AJ) population do not seem to differ significantly from that
of other populations of European ancestry. However, it has been
suggested that there may be significant local differences in allele
frequencies and haplotype structure between the Ashkenazi
population and other European populations, including at loci
associated with common cancer (Gold et al, 2008; Olshen et al,
2008; Price et al, 2008; Tian et al, 2008). Therefore, examination of
known prostate cancer risk SNPs in the AJ population provides a
unique opportunity to test for genetic heterogeneity at these loci
among individuals of European ancestry.

Here, we report the results of a case–control association study
in the AJ population of 29 previously identified prostate cancer
SNPs. Our data argue against the hypothesis that risk alleles for
prostate cancer generally have different effects in the Ashkenazi
and non-Ashkenazi European ancestry populations.

MATERIALS AND METHODS

Case and control DNA samples were obtained under IRB-approved
protocols. Specifically for the samples from the Israeli blood bank,
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corresponding institutional review boards and the National
Genetic Committee of the Israeli Ministry of Health approved
the studies. The DNA samples from 963 prostate cancer cases were
used in this study. Of these, 885 cases presented at Memorial
Sloan-Kettering Cancer Center (MSKCC) with histologically
confirmed prostate cancer and report all four grandparents were
from Eastern Europe and Jewish. An additional 78 cases from
Montreal, a Canadian metropolitan area, for whom both parents
were of Ashkenazi ancestry were included. These patients were
treated for prostate cancer at one of the three McGill University
affiliated hospitals: the Royal Victoria and Montreal General
Hospital sites of the McGill University Health Center and the
Jewish General Hospital. Control DNA was collected from 1854
healthy men in New York and Israel – 419 participants in New
York Cancer Project (Mitchell et al, 2004), 194 samples from the
National Laboratory for the Genetics of Israeli Populations
(NLGIP) (www.tau.ac.il/medicine/NLGIP/nlgip.htm), and 1241
healthy individuals from the Israeli Blood Bank. All controls self-
report that all four grandparents are of Ashkenazi ancestry. These
samples have been previously described (Kirchhoff et al, 2004;
Shifman et al, 2008; Tischkowitz et al, 2008). The cases range in
age from 26 to 94 (mean 68, s.d., 8.3). The controls range in age
from 18 to 98 (mean 46, s.d., 15.2).

A total of 29 SNPs of interest were identified based on previous
reports of association with prostate cancer risk from recent
genome-wide association studies (GWAS) and other studies
(Table 1). Most of these SNPs were selected on the basis of being
reported in one of the GWAS papers as being significantly
associated with prostate cancer risk. We also included numerous
SNPs at 8q24 that were discovered in follow-up studies of this
locus after its initial identification by linkage and association.
Finally, we also included a SNP (rs7008482) reported as a prostate
cancer risk SNP in the African-American population to see if this
SNP had an effect in the Ashkenazi population despite not being
associated in other European populations studied.

Samples from MSKCC, McGill University, the NY Cancer
Project, and the NLGIP were genotyped using the Sequenom

MassArray technology at MSKCC. This includes all cases and 31%
of the controls. We designed two multiplex assays to genotype all
29 SNPs using Assay Design software (Sequenom, San Diego, CA,
USA). PCR amplification and extension were performed using
Sequenom iPLEX Gold reagents as per the manufacturer’s protocol
and analysed on the Sequenom MassARRAY system (Sequenom).
Genotypes were called using the Typer 4.0 software package
(Sequenom).

For quality control on the Sequenom data, we first manually
inspected the cluster plots. Then, the data was processed with
PLINK (Purcell et al, 2007). In all, 112 individuals with more than
20% missing data were removed. All SNPs had o20% missing data
and showed no significant deviation from Hardy– Weinberg
equilibrium in controls (P40.01; Table 2). Six SNPs had
significant differences in genotype calling rate between cases and
controls (Po0.01; FDRo0.05) and were therefore removed from
further consideration.

The controls from the Israeli blood bank were processed
separately as they were initially genotyped genome wide as part
of a separate study not related to cancer. These samples were fully
anonymised immediately after collection and subsequently geno-
mic DNA was extracted from blood samples by using the Nucleon
kit (GE Healthcare, Piscataway, NJ, USA). The samples were
genotyped on the Illumina HumanOmni1-Quad arrays (Illumina,
San Diego, CA, USA) according to manufacturer’s specifications
under protocols approved by the Institutional Review Board of the
North Shore-LIJ Health System. SNPs were filtered on the
following bases: call rate o98%, minor allele frequency o0.02
and Hardy –Weinberg exact test Po0.000001. The samples were
filtered based on cryptic identity and first- or second-degree
relatedness using pairwise identity-by-decent (IBD) estimation
(PI_HAT 40.20) in PLINK with 128 403 LD pruned (r240.2)
genome-wide SNPs and population stratification using Principal
Component Analysis with Ancestry Informative Markers specific
for the AJ population.

Of the 23 SNPs that passed quality control from the Sequenom
genotyping, 20 were directly genotyped on the Illumina chip. The

Table 1 Known prostate cancer risk SNPs successfully tested in this study

SNP Chr. Gene Alleles (Maj/Min) MAF Prev. OR Citation

rs721048 2 EHBP1 G/A 0.19 1.15 Gudmundsson et al (2008)
rs2660753 3 CHMP2B; POU1F1 C/T 0.11 1.18 Eeles et al (2008)
rs9364554 6 SLC22A3; SLC22A2; LPAL2; LPA C/T 0.29 1.17 Eeles et al (2008)
rs10486567 7 JAZF1 G/A 0.23 0.74 Thomas et al (2008)
rs6465657 7 LMTK2; BHLHB8 T/C 0.46 1.12 Eeles et al (2008)
rs7008482 8 — T/G 0.83 1.8 Robbins et al (2007)
rs1016343 8 — C/T 0.18 1.37 Eeles et al (2008)
rs13254738 8 — A/C 0.34 1.11 Haiman et al (2007)
rs16901979 8 — C/A 0.031 1.79 Gudmundsson et al (2007a)
rs6983267 8 — G/T 0.50 0.8 Yeager et al (2007)
rs7000448 8 — C/T 0.39 1.14 Haiman et al (2007)
rs4242382 8 — G/A 0.12 1.41 Thomas et al (2008)
rs4242384 8 — A/C 0.09 1.88 Eeles et al (2008)
rs7920517 10 MSMB G/A 0.48 0.82 Eeles et al (2008)
rs10993994 10 MSMB T/C 0.60 0.8 Eeles et al (2008)
rs4962416 10 CTBP2 T/C 0.27 1.2 Thomas et al (2008)
rs7931342 11 — G/T 0.49 0.84 Eeles et al (2008)
rs10896449 11 — G/A 0.48 0.78 Thomas et al (2008)
rs4430796 17 TCF2 G/A 0.49 1.24 Gudmundsson et al (2007b)
rs7501939 17 TCF2 C/T 0.42 0.83 Gudmundsson et al (2007b)
rs1859962 17 — G/T 0.54 0.8 Gudmundsson et al (2007b)
rs2735839 19 KLK2; KLK3 G/A 0.15 0.83 Eeles et al (2008)
rs5945572 X NUDT11; NUDT10 G/A 0.35 1.24 Gudmundsson et al (2008)

Abbreviations: alleles¼major/minor alleles; chr.¼ chromosome; gene¼ nearby gene as reported in the cited literature; MAF¼ allele frequency in the controls of the cited paper
for the minor allele as observed in the Ashkenazi Jewish population; prev. OR¼ previous odds ratio for the SNP as cited by the given paper; SNP¼ single nucleotide
polymorphism. When MAF is 40.5, it indicates that the minor allele in the Ashkenazi Jewish population is the major allele in the study that initially reported the SNP.
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remaining three SNPs were analysed only with the data from the
Sequenom genotyping. Association analysis was performed in
PLINK using logistic regression. Regression was performed twice,
once without an adjustment for age and once with an adjustment
for age of either diagnosis (cases) or sample collection (controls).
Multiple testing was accounted for by holding the false discovery
rate to be 5% using the Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995).

To compute the power to detect association for each SNP, we
assumed the previously reported odds ratio (OR), allele frequen-
cies in our control population, and a sample size based on the
number of successfully genotyped cases and controls. We used a
previously reported method to compute the power at a significance
level of 0.05 (Klein, 2007).

As a reference population of non-Ashkenazi white Americans,
we used the GWAS data from the CGEMS Prostate Cancer GWAS –
Stage 1 – PLCO (phs000207.v1.p1) in dbGaP (http://www.ncbi.
nlm.nih.gov/gap), removing duplicate individuals. To test for the
heterogeneity of the OR between the CGEMS data and our data, we
used the Breslow– Day test as implemented in PLINK.

RESULTS

In the current study, we genotyped 29 SNPs previously reported as
being associated with prostate cancer risk in 963 AJ prostate
cancer cases and 613 AJ controls. The overall genotype call rate
(fraction of genotypes for which a call is made) was 95%. After
quality control (QC) filtering the Sequenom data as described in
the methods, resulting in 23 SNPs that pass QC, we added data
from 20 SNPs in 1241 male AJ controls genotyped with the
Illumina Omni-1 Quad platform. As some controls came from
Israel and some from the United States, we first queried if we
observed allele frequency differences between AJ controls based on
origin. Although two SNPs showed nominal differences in allele
frequencies (rs9364554 and rs4242384; Po0.05), neither of these

differences were significant after correcting for multiple testing.
We were also concerned that the use of different genotyping
platforms could lead to errors in our results. To test for this, we
compared allele frequencies between individuals genotyped on the
Illumina and Sequenom platforms and observed no differences (all
nominal P40.3).

We tested for association in 875 cases and 1810 controls total
under an additive model. Before adjusting for age, 12 SNPs were
nominally associated with prostate cancer risk (Po0.05; Table 3).
Of these, 10 were significant at a false discovery rate of 5%. Among
the 12 significant SNPs, only one – rs7008482 – shows a direction
of effect opposite from that which was previously reported. As the
SNP was identified in a case–control study of African-American
men, we queried what effect this SNP had in the stage 1 data from
the CGEMS prostate cancer GWAS of white Americans (Yeager
et al, 2007). Although not significantly associated with risk
(P¼ 0.2), this SNP has the same direction of effect that we observe
in the Ashkenazi population (OR¼ 0.92; 95% CI¼ 0.81– 1.04). We
next queried whether adjusting for age would influence these
results. After removing 26 individuals without age information and
adjusting for age as a covariate, nine SNPs were nominally
significant (Po0.05), of which three are significant at a false
discovery rate of 5% (Table 3). Notably, seven SNPs are nominally
significant both with and without age adjustment.

We next wished to query if we could observe any heterogeneity
between the effect size we observed in the Ashkenazi population
and the effects observed in other populations of European
ancestry. To do so in a systemised way, we used the stage 1
CGEMS data. There are 18 SNPs that we tested here that are also
present in the CGEMS data. Of these, only one (rs4962416) shows
heterogeneity (P¼ 0.002). Although this SNP is associated with
prostate cancer risk in the CGEMS stage 1 study (OR¼ 1.3; 95%
CI¼ 1.2– 1.5), we observe no evidence for association in the AJ
population (OR¼ 1.0; 95% CI¼ 0.9–1.1).

For several of the SNPs, we did not replicate the association with
prostate cancer risk observed in a number of prior studies (Kim

Table 2 Genotype counts and deviation from Hardy–Weinberg equilibrium stratified by disease status and source study

Genotype counts (Hardy–Weinberg P)

SNP
Alleles

(Maj/min)
MAF in
controls MSKCC controls

NLGIP
controls

Israeli blood
bank controls MSKCC cases Montreal cases

rs721048 G/A 0.14 7/99/303 (1) 2/46/112 (0.37) 30/299/912 (0.36) 21/214/575 (0.79) 2/11/51 (0.19)
rs2660753 C/T 0.24 27/156/226 (1) 14/50/95 (0.084) 69/445/727 (0.94) 57/297/456 (0.35) 1/21/42 (0.67)
rs9364554 C/T 0.19 10/117/282 (0.72) 10/55/95 (0.66) 51/386/804 (0.59) 32/272/506 (0.59) 5/19/40 (0.28)
rs10486567 G/A 0.29 42/143/224 (0.013) 12/57/91 (0.53) 112/513/614 (0.73) 60/342/408 (0.34) 5/24/34 (0.75)
rs6465657 T/C 0.41 77/188/142 (0.31) 34/82/44 (0.75) 200/578/459 (0.44) 165/386/259 (0.35) 13/27/24 (0.31)
rs7008482 T/G 0.38 68/179/160 (0.14) 22/64/71 (0.22) 175/598/464 (0.47) 104/339/346 (0.16) 5/21/38 (0.49)
rs1016343 C/T 0.19 10/130/269 (0.25) 6/47/107 (0.79) 48/372/819 (0.46) 38/282/489 (0.84) 3/23/38 (1)
rs13254738 A/C 0.41 64/204/141 (0.54) 29/70/61 (0.25) 218/572/447 (0.14) 153/425/232 (0.10) 9/34/21 (0.60)
rs16901979 C/A 0.04 1/34/374 (0.55) 0/10/147 (1) ND 1/62/748 (1) 0/8/55 (1)
rs6983267 G/T 0.50 96/207/104 (0.77) 36/82/42 (0.87) 318/615/305 (0.82) 168/391/249 (0.52) 12/27/25 (0.43)
rs7000448 C/T 0.48 90/203/116 (1) 39/85/36 (0.53) 279/606/341 (0.77) 234/380/191 (0.14) 16/26/21 (0.21)
rs4242382 G/A 0.065 1/62/345 (0.49) 0/14/146 (1) 4/150/1087 (0.81) 8/125/677 (0.38) 0/5/59 (1)
rs4242384 A/C 0.062 1/57/351 (0.71) 0/12/148 (1) ND 5/118/687 (1) 0/5/59 (1)
rs7920517 G/A 0.45 81/194/132 (0.55) 42/75/41 (0.53) 250/605/386 (0.65) 150/392/268 (0.77) 12/33/19 (0.80)
rs10993994 T/C 0.50 97/202/109 (0.84) 46/77/35 (0.87) 305/634/301 (0.46) 184/396/229 (0.62) 13/34/17 (0.80)
rs4962416 T/C 0.33 46/193/170 (0.51) 18/78/64 (0.49) 133/516/591 (0.21) 95/344/370 (0.27) 6/25/33 (0.76)
rs7931342 G/T 0.33 46/173/185 (0.57) 20/71/69 (0.86) 149/533/556 (0.23) 69/319/422 (0.44) 6/29/29 (1)
rs10896449 G/A 0.34 52/175/181 (0.38) 20/72/68 (0.86) 155/542/543 (0.28) 76/321/411 (0.27) 6/29/29 (1)
rs4430796 G/A 0.43 69/206/134 (0.54) 35/76/49 (0.63) 225/607/392 (0.73) 183/397/230 (0.67) 11/35/18 (0.46)
rs7501939 C/T 0.44 82/206/121 (0.77) 29/77/52 (1) 222/614/390 (0.49) 131/395/283 (0.77) 13/31/19 (1)
rs1859962 G/T 0.47 99/189/121 (0.14) 27/89/41 (0.11) ND 157/392/262 (0.67) 14/36/14 (0.45)
rs2735839 G/A 0.18 8/119/281 (0.37) 8/42/110 (0.18) 50/372/818 (0.36) 30/210/570 (0.058) 3/22/39 (1)
rs5945572 G/A 0.25 97/5/307 (NA) 47/2/110 (NA) 303/0/936 (NA) 244/2/563 (NA) 17/0/47 (NA)

Abbreviations: MAF¼minor allele frequency; min¼minor; maj¼major; MSKCC¼Memorial Sloan-Kettering Cancer Center; NA¼ not applicable (X-chromosome SNP and all
male study); ND¼ not done (no data is available on the Illumina chip for these individuals); NLGIP¼National Laboratory for the Genetics of Israeli Populations; SNP¼ single
nucleotide polymorphism. Genotype counts are given as minor homozygote/heterozygote/major homozygote.
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et al, 2010). We note that the minor allele frequencies (MAF) at
most of these SNPs in controls differ by at least 5 percentage points
between the original report and our AJ individuals, and for seven
SNPs the MAFs differ by at least 10 percentage points. As these
differences in MAF could influence our power to replicate the
previous findings, we computed the power using initially observed
ORs from prior studies for each SNP along with the MAF observed
in the AJ controls. We found that out of the nine SNPs for which
we do not observe association with prostate cancer risk, our power
to detect an association ranges from 37 to 99%; there is 480%
power to detect association at four of these SNPs (Table 3). We
next queried if we would expect to find 12 or fewer significant
associations by chance given the computed powers. In 10 000
simulations, given the computed power, we expect to find 12 or
fewer significant associations 16% of the time.

DISCUSSION

Here, in the AJ population, we have replicated the association with
prostate cancer risk for many of the prostate cancer risk SNPs
tested. Overall, the effect of these SNPs in the AJ population is
similar to that previously reported with the discovery of the SNPs.
However, there are some SNPs for which we did not replicate the
previously reported association despite having adequate power to
do so. One potential explanation is the ‘winner’s curse’, in which the
first report of an association overestimates the magnitude of effect,
leading to an inflated power estimation. In fact, for rs10486567, our
estimate of 99% power was based on an OR of 0.74 as initially
reported (Thomas et al, 2008). A more recent replication study
suggests a more modest effect size of 0.84, which would result in
only 80% power to detect the association in the present study
(Prokunina-Olsson et al, 2010). Another possible explanation is that
a previously reported risk SNP is truly not associated with prostate
cancer in the AJ population, either due to differences in linkage
disequilibrium patterns or the absence of the functional variant in
the AJ population. This may explain the lack of association between

rs16901979 and prostate cancer in the AJ population, as the
observed OR for this rare SNP was 1.0 in our study.

Of the significant results, only one SNP – rs7008482 – showed a
different direction of effect than that which has been previously
reported. This SNP was first identified as a prostate cancer risk
allele in the African-American population (Robbins et al, 2007). In
a well-powered study of Japanese men, no evidence for association
between this SNP and prostate cancer was observed (Yamada et al,
2009). Similarly, despite being present on the genome-wide
genotyping chips used in several prostate cancer GWAS, this
SNP was never reported as being associated with prostate cancer in
European populations (Eeles et al, 2009; Gudmundsson et al, 2009;
Yeager et al, 2009), though it does have the same direction of effect
in the CGEMS stage 1 data (white American individuals) as we
observe in the Ashkenazi population. As the direction of effect is
opposite from that previously reported, more studies will be
needed to determine if this is a real prostate cancer risk SNP,
perhaps tagging different functional alleles in different popula-
tions, or represents a false positive finding. Fine mapping this
locus in the AJ and African-American populations could help shed
light on this question.

Of the 18 SNPs also present in the CGEMS Stage 1 data set, only one
(rs4962416) showed a significant heterogeneity of the OR between the
CGEMS study and our AJ study. This SNP does not appear to be
associated with prostate cancer in the AJ population. Although other
SNPs appear to have ORs near 1, the weak effect of these SNPs in the
initial reports makes it difficult to determine if these SNPs are truly
not associated in the AJ population, illustrating population hetero-
geneity, or that our sample size is simply not large enough. Larger
studies in which we are well powered to replicate the known prostate
cancer associations will be necessary to answer this question.
Furthermore, our sample size is likely too small to distinguish more
subtle differences in the ORs between the populations.

We used controls from both the United States and Israel.
Although we have previously found that AJ individuals from these
two countries cluster similarly using principal components
analysis (Gold et al, 2008), we nevertheless tested each SNP for

Table 3 Association of known prostate cancer risk SNPs in the Ashkenazi Jewish population

Unadjusted Age adjusted

SNP Chr. Gene Alleles (Maj/Min) OR (95% CI) P OR (95% CI) P Power

rs721048 2 EHBP1 G/A 1.09 (0.93–1.27) 0.3 1.16 (0.94–1.44) 0.17 0.37
rs2660753 3 CHMP2B; POU1F1 C/T 1.04 (0.91–1.19) 0.55 0.98 (0.82–1.16) 0.78 0.65
rs9364554 6 SLC22A3; SLC22A2; LPAL2; LPA C/T 1.1 (0.96–1.27) 0.19 1.01 (0.83–1.22) 0.94 0.54
rs10486567 7 JAZF1 G/A 0.98 (0.86–1.11) 0.71 1.14 (0.97–1.35) 0.12 1
rs6465657 7 LMTK2; BHLHB8 T/C 1.14 (1.01–1.27) 0.026 1.12 (0.96–1.3) 0.15 0.47
rs7008482 8 — T/G 0.84 (0.74–0.94) 0.0036 0.87 (0.74–1.02) 0.08 1
rs1016343 8 — C/T 1.24 (1.07–1.42) 0.0031 1.19 (0.98–1.43) 0.075 0.98
rs13254738 8 — A/C 1.19 (1.06–1.33) 0.0039 1.15 (0.98–1.34) 0.086 0.42
rs16901979 8 — C/A 1.01 (0.69–1.48) 0.94 0.94 (0.58–1.53) 0.8 0.77
rs6983267 8 — G/T 0.81 (0.72–0.91) 0.00026 0.83 (0.72–0.97) 0.018 0.97
rs7000448 8 — C/T 1.2 (1.07–1.34) 0.0021 1.18 (1.01–1.37) 0.033 0.61
rs4242382 8 — G/A 1.31 (1.05–1.62) 0.015 1.63 (1.21–2.21) 0.0013 0.75
rs4242384 8 — A/C 1.24 (0.92–1.68) 0.16 1.61 (1.09–2.36) 0.017 0.95
rs7920517 10 MSMB G/A 0.92 (0.82–1.03) 0.17 0.84 (0.72–0.98) 0.026 0.92
rs10993994 10 MSMB T/C 0.89 (0.79–1) 0.047 0.84 (0.72–0.98) 0.022 0.97
rs4962416 10 CTBP2 T/C 1 (0.89–1.13) 0.96 0.95 (0.81–1.11) 0.51 0.82
rs7931342 11 — G/T 0.8 (0.7–0.9) 0.0003 0.79 (0.67–0.92) 0.0035 0.82
rs10896449 11 — G/A 0.8 (0.71–0.91) 0.00044 0.8 (0.68–0.93) 0.0054 0.99
rs4430796 17 TCF2 G/A 1.17 (1.04–1.31) 0.0092 1.19 (1.02–1.39) 0.023 0.95
rs7501939 17 TCF2 C/T 0.9 (0.8–1.01) 0.065 0.95 (0.81–1.11) 0.53 0.89
rs1859962 17 — G/T 0.89 (0.77–1.04) 0.14 0.92 (0.76–1.11) 0.4 0.83
rs2735839 19 KLK2; KLK3 G/A 0.91 (0.79–1.06) 0.24 0.89 (0.73–1.08) 0.24 0.73
rs5945572 X NUDT11; NUDT10 G/A 1.3 (1.08–1.55) 0.0049 1.17 (0.92–1.48) 0.21 0.87

Abbreviations: alleles¼major/minor alleles; Chr.¼ chromosome; gene¼ nearby gene as reported in the cited literature; min¼minor; maj¼major; OR¼ odds ratio for the
minor allele; SNP¼ single nucleotide polymorphism; 95% CI¼ 95% confidence interval. SNPs in bold are significant at a nominal Po0.05 either without age adjustment, with age
adjustment or both. Underlined P-values are significant at a false discovery rate of 5%.
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allele frequency differences between Israeli and United States
controls. As we did not find any significant difference, we do not
think this is a major source of potential error in our study.

These results provide evidence of some differences in the genetic
architecture of prostate cancer between the AJ population and other
populations of European ancestry. However, these few differences
are not enough evidence to argue that there are substantive
differences in genetic susceptibility to prostate cancer between these
populations. Further study of the genetics of prostate cancer in this
unique population will be needed to understand to what extent
genetic risk to prostate cancer is similar to that in other European
populations and to what extent it is different.
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