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Abstract: Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome
responsible for high mortality and morbidity rates. It has an ever growing social and economic
impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal
management of HFpEF patients. The association between HFpEF and traditional cardiovascular
risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms
involved are not completely defined. Under the definition of HFpEF there is a wide spectrum
of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary mi-
crovascular dysfunction, oxidative stress and inflammation are only some of the main pathological
detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve
HFpEF patients’ outcomes and risk factors control is the primary and unique approach to treat those
patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such
as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting
point to understand the genetic, molecular and pathophysiological mechanisms underlying this
complex syndrome. The correlation between histopathological findings and imaging aspects may be
the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and
effective treatment able to modify the disease’s natural course.

Keywords: heart failure; heart failure with preserved ejection fraction; myocardial tissue characteri-
zation; cardiac magnetic resonance; endomyocardial biopsy; therapy

1. Introduction

Heart failure with preserved ejection fraction (HFpEF) is a complex and multifaceted
clinical syndrome. HFpEF percentage is between 22% and 73% of all heart failure (HF)
cases [1–4] and it is increasing, in contrast to heart failure with reduced ejection (HFrEF) [5].
HFpEF patients are often female, aged, obese, hypertensive and with atrial fibrillation
history [6]. It is a syndrome containing an heterogenous disease population, character-
ized by patients with valvular disease, hypertensive cardiopathy, amyloidosis, genetic
cardiomyopathies. This heterogeneity accounts for the several structural myocardial and
coronary alterations seen in HFpEF, which are partially unknown yet [7–9]. After one year
from diagnosis, mortality in HFpEF is about 20–29% [10] and, after five years, about 50%
of HFpEF patients die [10,11]. Compared to HFpEF, all-cause mortality is higher in HFrEF,
although its incidence is decreasing [10,12]. Furthermore, in-hospital mortality, although
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initially slightly more frequent in the HFrEF group, after 2–3 months become equivalent in
the two HF groups [10,13].

In HFpEF, the underlying myocardial alterations are incompletely defined. Myocar-
dial histopathological alterations have been characterized through invasive methods, such
as endomyocardial biopsy, but also cardiac magnetic resonance (CMR) or other imaging
technique are able to identify them in a simpler and non-invasive way. However, the
correlation between histopathological findings and imaging aspects is still a challenge
for medicine. Myocardial fibrosis, cardiomyocytes hypertrophy, coronary microvascular
dysfunction (CMD) and inflammation have been identified as major pathological processes
that affect HFpEF myocardium. Although these mechanisms have been also identified in
HFrEF, several observations highlight that their spatial and temporal onset and progres-
sion may differ between the two conditions. HFpEF hearts appear remodeled towards a
hypertrophic shape, and not dilated as HFrEF, left atrial dilation is very frequent and most
of HFpEF patients have evidence of diastolic dysfunction. In this regard, the advanced
imaging techniques, and in particular the refined tissue characterization allowed by CMR
is a very valid tool [14]. For an initial evaluation of suspected HFpEF patient, echocardiog-
raphy is still the imaging of choice [15], but most of the parameters are load-dependent
and do not always allow to detect diastolic dysfunction and, above all, to distinguish
the various underlying causes [16]. With regard to increase in filling pressures, which is
an HFpEF characteristic element, the gold standard remains the invasive catheterization,
which allows the calculation of the constant tau and beta, to describe the first and last part
of diastole respectively [17]. CMR overcomes the limits of echocardiography, allowing
not only to evaluate dimension, wall thickness and function, but especially to describe
the specific tissue composition, such as the presence of focal fibrosis, edema, fat, iron
overload [18]. Over the last decade the introduction of Mapping techniques improved
the ability to characterize the tissue and quantify the diffuse processes [19]. Both native
myocardial T1 and extracellular volume fraction (ECV) have a proven correlation with
histopathological data [20–23]. ECV shows a significant association with increased my-
ocardial type 1 collagen deposition [24]. Native myocardial T1 is a composite signal from
intracellular and extracellular component, while ECV quantify the extracellular space. ECV
expresses the extracellular space percentage, and it is obtained from the difference between
T1 times, before and after gadolinium administration corrected by the hematocrit.

Myocardial tissue characterization is a crucial aspect for the comprehension of HFpEF
molecular basis, as well as pathophysiological aspects. Currently, there is no specific
therapy for HFpEF and risk factors control is the primary and unique approach for HFpEF
management and prevention [25]. T1 Mapping technique has been demonstrated to
increase the ability to characterize the several possible etiologies of HFpEF [26–28].

The aim of this review is to provide an overview about the most recent findings about
myocardial tissue characterization in HFpEF, through invasive and non-invasive methods,
in order to allow a wide comprehension of HFpEF pathophysiological mechanisms and
provide new therapeutic targets for its treatment.

2. The Pathophysiology of Heart Failure with Preserved Ejection Fraction

HF is a complex syndrome characterized by the inability of heart to guarantee an
adequate blood output to peripheral organs or to provide it through cardiac filling pressure
increase. The definition of HFpEF is clinical and coupled with the evidence of a left
ventricular ejection fraction >50% [9].

Pathophysiology of HFpEF is less deciphered than HFrEF, since there are different
underlying etiologies, pathways, phenotypes and comorbidities. From the pathophysiolog-
ical point of view, in HFpEF, left ventricular concentric remodeling and/or hypertrophy
have been observed [4,7,8]. HFpEF patients left ventricle shows high filling pressure and
diastolic dysfunction. LV diastolic dysfunction is defined by the active phase of relaxation
impairment, an increase in viscoelastic chamber stiffness (passive phase), or a combination
of the two. Many histopathological mechanisms are the substrates of left ventricle stiffness,
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such as myocardial fibrosis, titin and other sarcomeric proteins alterations, sarcoplasmic
calcium reuptake imbalance and cytoskeleton alterations during protodiastole (Figure 1).
Three interconnected heart compartments are involved in HFpEF pathophysiology: coro-
nary microcirculation, myocardium and extracellular space. Depending on the prevalence
of microvascular dysfunction or excessive and abnormal collagen deposition, two main
different HFpEF patterns could be outlined: (1) an HFpEF pattern with impaired passive
phase of diastolic function, caused by altered quantity and quality of interstitial collagen,
but with normal microcirculation and (2) an HFpEF pattern with impaired active phase
of diastolic function, induced by structural and functional microvascular alteration, with
secondary interstitium involvement (Figure 1). In HFpEF hearts, only an elevated left
atrium- left ventricle gradient allows ventricular filling, and it associates with increased
atrium pressure [4,7,8]. Increased left ventricular filling pressure, as well as, left atrium
hypertension are associated with pulmonary hypertension and right ventricle dysfunction,
which has a significant impact on prognosis and outcomes [10]. Consequently, left ventricle
filling become more dependent on left atrium contraction, but progressive left atrium
dysfunction and atrial fibrillation further worsen left ventricle filling and pulmonary hy-
pertension. Right ventricle pressure overload and dysfunction determine systemic venous
congestion and, therefore, renal impairment, oedema, hepatic and intestinal congestion. On
the other hand, according to the interdependence ventricular principle, the right ventricle
pressure overload and dysfunction worsen left ventricle filling, triggering a vicious circle
which determines HFpEF progression [4,7,8]. In addition, systolic function is compro-
mised in HFpEF, despite ejection fraction is normal and, in fact, ejection fraction is not
always related with symptoms and clinical findings, in patients with HF [29–34]. HFpEF
related systolic dysfunction is characterized by a prevalent left ventricular longitudinal
shortening involvement, as confirmed by CMR feature tracking [35,36]. Systolic function is
actually closely related to the diastolic, because during the systolic phase, the myocardium
accumulates energy that allows a satisfying relaxation, during the diastolic phase [35].
Then, if the longitudinal systolic function is reduced, also diastolic dysfunction will be
affected. Ito et al. confirmed the close relationship between the relaxation constant tau
and the value of global longitudinal strain (GLS), allowing a reliable and realistic diastolic
function estimation, through a systolic parameter [36]. Moreover, reduced stroke volume
and cardiac output, as well as chronotropic incompetence have been also observed [4,7,8].
These findings mainly occur under stress condition. For this reason, HFpEF related systolic
dysfunction is emphasized during physical exercise, remaining often normal at rest. Finally,
cardiac output reduction is also due to ventricle-arterial coupling imbalance, determined
by increased vascular stiffness and endothelial dysfunction [7,8].

2.1. Heart Failure with Preserved Ejection Fraction and Myocardial Morphological Alterations:
Cellular and Interstitial Involvement

Myocardial fibrosis is characterized by extracellular matrix components storage. My-
ocardial fibrosis is a specific histopathological process related to myocardial remodeling
and it is closely associated with HF. This histopathological mechanism underpins many
genetic, epigenetic and molecular abnormalities, such as excessive extracellular matrix
production, post-translational collagen cross linking abnormalities, as well as matrix met-
alloproteinases dysregulation [7,8,37]. Myocardial fibrosis extent is also influenced by
gender and race differences and cardiovascular risk factors prevalence. In this regard, it
is mainly seen in African American more than Caucasian and in female more than male
gender, due to high prevalence of hypertension, kidney disease and diabetes in these
population [38–40].

From the clinical point of view, the myocardial fibrosis spatial distribution and tempo-
ral onset may play a prognostic role, being involved in systolic and diastolic dysfunction,
as well as arrythmias [37–42]. In HF patients, the myocardial fibrosis may vary in term of
spread and entity, defining a personalized and specific fibrosis distribution pattern. For
example, reparative fibrosis occurs after myocardial infarction and it constitutes the scar,
which is localized in a myocardial region according with the occluded coronary artery. It
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has mechanic and conservative properties because fibrotic tissue stabilizes a locus minoris
resistentiae developed in the infarct area. On the other hand, reactive fibrosis is more associ-
ated with non-ischemic myocardial involvement, in condition of pressure overload [37].
Specifically, in HFrEF myocardial fibrosis is characterized by reparative and localized
fibrosis in scar area, while HFpEF is characterized by reactive, diffuse and perivascular
fibrosis [43–45]. Reparative fibrosis is characterized by cardiomyocytes replacement, as it
happens in myocardial infarction, while the reactive fibrosis is characterized by increased
interstitium collagen deposition [46]. Both focal and diffuse fibrosis are present in HFpEF,
but the latter is prevalent. Focal fibrosis, both ischemic and non-ischemic, is well visualized
by the late gadolinium enhancement (LGE) technique [19] Specifically, in HFpEF patients,
Kanagala et al. identified that half population had LGE with the non-ischemic being the
prevalent form [47]. Not only the diffuse fibrosis degree, calculated by ECV, but also the
collagen and the crosslinking type affect the diastolic dysfunction [24,48]. Su et al. found
higher ECV in HFrEF than in HFpEF group [46]. However, in HFrEF, ECV was not related
to ventricular dysfunction because the main HF cause was a scarring fibrosis.
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Figure 1. Possible pathophysiological pathways and molecular mechanisms involved in heart failure with preserved ejection
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arrow). In the lower part of the figure, the main molecular mechanisms observed in HFpEF have been illustrated.

Considering the hemodynamic and clinical impact of myocardial fibrosis, several
aspects should be related with the increasing left ventricular filling pressure, worse di-
astolic function and hospitalization, in HFpEF patients. In this regard, type 1 collagen
production instead of type III collagen, a raise in collagen storage and cross linking have
been observed [43,49–51]. In particular, collagen cross linking may be induced by ad-
vanced glycation products (AGEs) and lysyl oxidases overexpression, in patients with
type 2 diabetes mellitus (T2DM) and diastolic dysfunction. In those patients, collagen
quantity and cross linking related with diastolic dysfunction parameters identified through
Tissue Doppler, at transthoracic echocardiography [43,49,52]. In case of pressure over-
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load, extracellular matrix and collagen myocardial deposition have been observed. In this
mechanism, the transforming growth factor beta (TGF-β) plays a crucial role. Myocardial
strain, cellular stress, as well as endothelin-1 and angiotensin II are TGF-β activation pro-
moters. TGF-β pathway is associated with p38, Ras homologous/Rho-associated protein
kinase (Rho/ROCK), Smad 2/3, Galectin-3 and extracellular matrix grow factors activation.
Moreover, several fibroblasts activation markers have been identified, such as fibroblasts
activating protein (FAP) and Periostin [53]. ECV has a strong correlation with the collagen
percentage found in endomyocardial biopsies [24,54] The extracellular component rise and
fibrosis are the main cause of myocardial stiffness, detected by beta constant increase, as
demonstrated by Rommel et al. [55].

Cardiac amyloidosis is one of the causes for HFpEF and its prevalence, in this pop-
ulation, is constantly increasing [56]. Transthyretin cardiac amyloidosis is characterized
by extracellular insoluble transthyretin amyloid deposition [56]. Two types of insoluble
transthyretin, variant or wild type, may constitute amyloid fibrils. Through non-invasive
approaches, the prevalence of transthyretin amyloidosis in HFpEF patients is 13% [57].
Hahn et al. reported a prevalence of cardiac amyloidosis around 14% in a cohort of HFpEF
patients and 50% of them could not be identified by screening criteria, suggesting that
cardiac amyloidosis diagnosis can be underdiagnosed in patients with HFpEF [38]. Several
clinical features were identified in patients with HFpEF and cardiac amyloidosis, such as
lower body mass index (BMI), lower arterial blood pressure values, advanced age, high
Troponin-I and N-terminal pro b-type natriuretic peptide (NT-proBNP) values, as well as
raised left ventricular wall thickness [38]. However, the real prevalence of transthyretin
amyloidosis should be higher, considering that about 25% of patients aged more than
80 years show myocardial wild-type transthyretin fibrils in autopsy studies [57,58]. The
high prevalence of occult cardiac amyloid in general population was evaluated by Treibel
et al. who demonstrated the presence of cardiac amyloid, in 6% of patients with more than
65 years who underwent surgery because of aortic stenosis. Moreover, cardiac amyloid
presence in these patients was associated with worse prognosis [59]. CMR gave a great con-
tribution allowing the identification of cardiac amyloid deposition through typical images
with abnormal gadolinium kinetics, global subendocardial LGE characteristic distribution,
increased ECV and high native T1 values [57,60]. The CMR pathological findings match
with heart walls amyloid deposition found on biopsy [60]. Moreover, the transmural LGE
pattern has also a determining role in distinguishing the transthyretin amyloid type, with a
better prognosis, from the immunoglobulin light-chain amyloid type [61].

Reduced left ventricular compliance and relaxation are mainly due to myocardial
fibrosis and increased myocardial stiffness induced titin post-translational modifications.
Titin is a big size sarcomeric protein involved in myocardial stiffness. Titin is produced
in two main isoforms: the longer N2BA and the shorter N2B. In HFpEF patients, the
N2BA/N2B ratio is altered. Oxidative stress and reduced nitric oxide (NO) production,
are associated with impaired nitric oxide/cyclic guanosine monophosphate/protein ki-
nase G (NO/cGMP/PKG) pathway and N2B titin post-translational modification [51,62].
Moreover, an increased N2B isoform expression has been observed and it associates with
increased myocardial stiffness [51,62,63].

Microtubules have a main role in the cardiomyocytes and myocardial compliance. In
failing heart, microtubules are detyrosinated and mechanically uncoupled, determining
increased viscoelastic resistance to diastolic stretch [64]. The role of microtubules in the
myocardial compliance regulation is reduced at increased cardiomyocytes stretching [64].
In this regard, the role of extracellular matrix and proteins became predominant. For this
reason, microtubules may represent a therapeutic target, in order to preserve myocar-
dial compliance through the diastolic associated viscous forces reduction [64]. Moreover,
many cardiomyocytes intracellular alterations, such as actin filaments fragmentation and
nuclear morphological alterations, have been identified in diabetes mellitus and other
comorbidities often seen in patients with HFpEF. In this regard, cytoskeletal disorgani-
zation represents a main mechanism involved in myocardial stiffness, during diastolic
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dysfunction occurring in diabetic cardiomyopathy [53,64–66]. The cardiomyocytes sar-
coplasmic reticulum calcium-ATPase 2 (SERCA2) expression is markedly reduced, due
to reactive oxygen species (ROS) and AGEs storage. Consequently, intracellular calcium
values remain high. This alteration leads to two main conditions: first, it determines a re-
duced cardiomyocytes relaxation and increased stiffness, secondly a sarcoplasmic calcium
reserves reduction, which causes impaired cardiomyocytes contraction and reduced global
myocardial contractility [50,65,66] Other cardiomyocytes alterations have been described
in HFpEF. Increased cardiomyocytes dimensions are associated with lower cGMP and PKG
activity participating to the concentric hypertrophy progression seen HFpEF. On the other
hand, in HFrEF cardiomyocytes are more stretched and thinner and they are characterized
by less passive stiffness and myofibrillar density [56,65,66]. The left ventricle geometric
remodeling contributes to the filling pressures increase [67]. Different studies have shown
an association between ventricular hypertrophy and constant tau of relaxation [68]. An
explanation for this process could be that the cardiomyocyte size increase is not coun-
terbalanced by an adequate increase in perfusion [69]. Moreover, the cardiomyocytes
mitochondrial dysfunction causes inadequate myocardial relaxation [70].

There is a relationship between CMR parameters, such as native myocardial T1 and
ECV, and invasive parameters [55]. Omori et al. performed a study including CMR with
native Myocardial T1 and ECV, invasive evaluation of filling pressures and endomyocardial
biopsy, in HFpEF patients [71]. They found that native T1 and especially ECV were
higher in HFpEF than in the control group and that they are both reliable in determining
the percentage of collagen volume fraction and the passive stiffness of the left ventricle,
calculated invasively through the beta relaxation constant [71]. ECV has a proven validation
with the histopathology found through intraoperative biopsy studies performed at the
time of aortic stenosis or heart transplant surgery [62,72,73].

The CMR importance in HFpEF also lies in its ability to predict patients’ prognosis
and outcome. Poyhonen et al. found that HFpEF patients with CMR positive for LGE
showed an increased risk of adverse events, including death [74]. Kato et al. demonstrated
a sensitivity of 80% and a specificity of 77% for LGE in predicting poor prognosis in
HFpEF patients [75]. Mascherbauer et al. found that T1 mapping abnormal value was
associated with death and/or re-hospitalization, in HFpEF patients [76]. T1 mapping
value is associated with extracellular matrix increase and worse prognosis in HFpEF [77].
Recently, Schelbert et al. demonstrated the ECV ability to predict mortality [78]. In this
regard, ECV may have an important prognostic role as increased mortality and morbidity
indicator [79]. In fact, HFpEF patients with ECV above normal values showed increased
cardiovascular event risk. This prognostic correlation was higher in the first six months of
follow-up [80].

2.2. Heart Failure with Preserved Ejection Fraction and Coronary Microvascular Dysfunction:
Morphological and Functional Aspects

CMD is a condition characterized by coronary flow reserve (CFR) impairment in ab-
sence of coronary epicardial obstruction or unaltered flow fractional reserve (FFR) [81–85].
Endothelium-independent involvement after intracoronary adenosine administration is
defined by a CFR value lower than 2.5–2.0, increased microvascular resistance index
(IMR) upper 25, FFR > 0.8 and hyperemic myocardial velocity resistance ≥1.9 [81,82].
Endothelium-dependent involvement is defined by vasoreactivity test with sequential
acetylcholine administration [81,82]. CMD represents a pivotal chronic coronary syndrome
pathophysiological substrate, determining ischemia with non-obstructive coronary artery
disease (INOCA) [81–85]. However, it has been also associated with acute coronary syn-
dromes, being the cause of myocardial infarction with non-obstructive coronary artery
disease (MINOCA) [81–85]. Many other myocardial conditions associate with CMD, such
as inflammation, as occurs in myocarditis, hypertrophy and myocardial storage disorders,
as occurs in hypertrophic and infiltrative cardiomyopathy. In the setting of CMD and
myocardial ischemia, several microvascular functional and morphological alterations have
been involved, beyond the classical mechanisms [81–88]. Endothelial dysfunction is a
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key mechanism in CMD. Endothelial dysfunction is sustained by oxidative stress, NO
synthesis imbalance, increased response to endothelin, mitochondrial dysfunction, im-
paired endothelial cells repair [84]. Endothelial dysfunction is associated with reduced
estrogens production and estradiol administration may improve diastolic function in
post-menopausal women [84,89]. Renin-angiotensin aldosterone system (RAAS) hyper-
activation promotes the microvascular resistances increase, as well as sympathetic hyper-
activity and alfa-adrenergic tone prevalence, in patients with CMD [81–88]. In addition,
endothelium independent vasodilation imbalance, characterized by excessive smooth mus-
cle vasoconstrictor tone, has been described in HFpEF patients as CMD mechanism [81–88].
Among morphological alterations, microvascular rarefaction and hyperpermeability and
inward hypertrophic remodeling have been described as main CMD histopathological
alterations [81–88]. CMD has been described in association with HF, in particular HFpEF
related risk factors, such as diabetes mellitus, dyslipidemia, ageing, arterial hypertension,
female gender and obesity [81–93]. Arterial hypertension and RAAS hyperactivation pro-
mote microvascular inward hypertrophic remodeling, inducing myocardial ischemia, HF
and chronic kidney disease, which is associated with HFpEF. Dyslipidemia determines mi-
crovascular endothelial dependent vasodilation impairment. This is mediated by oxidative
stress and inflammation response activation through oxidized LDL (Ox-LDL). Obesity is
characterized by epicardial and coronary perivascular adipose tissue storage and inflam-
mation. In diabetes mellitus the relationship with CMD is bidirectional and a main role of
oxidative stress and hyperglycemia has been described [81–92].

As previously discussed, HFpEF related CMD is sustained by microcirculation
histopathological alterations [43]. Microvascular rarefaction is a frequent finding in patients
with HFpEF and it promotes reduced myocardial perfusion and increased cardiomyocytes
oxygen extraction, leading to myocardial metabolic impairment [43,94]. Moreover, mi-
crovascular rarefaction is perpetuated by cardiovascular comorbidities often seen in HFpEF
patients, such as hypertension, diabetes mellitus and aging. Coronary microvascular rar-
efaction is associated with increased left ventricular filling pressure, subepicardial adipose
tissue storage, as well as myocardial oedema and fibrosis [43,95]. Moreover, reduced mi-
crovascular density worsens cardiovascular comorbidities such as diabetes, due to impaired
insulin tissue delivery, and hypertension [43,96]. In diabetes, microvascular rarefaction is
determined by several pathophysiological mechanisms, such as angiostatic proteins accu-
mulation, endothelial cells apoptosis and pericytes rarefaction [97,98]. Moreover, microvas-
cular rarefaction is diffuse and proportionate along the different myocardial region. In those
patients, myocardial fibrosis and microvascular rarefaction were inversely related. This
observation supports a pathophysiological role of microvascular endothelial inflammation
and dysfunction in the microvascular rarefaction, myocardial fibrosis and hemodynamic
alterations seen in HFpEF [50]. Microvascular rarefaction determines CFR impairment,
which is associated with reduced myocardial perfusion and cardiomyocytes death, due to
ischemia. In diabetes mellitus, coronary microvascular vasodilatory response is reduced,
due to endothelial dysfunction and NO reduced bioavailability. In this regard, endothelial
dysfunction is due to hyperglycemia, which promotes vessels local inflammation, leuco-
cytes migration and ROS production. Hyperglycemia is also associated with sympathetic
and smooth muscle cells dysfunction, as well as increased alfa-adrenergic tone.

Another important morphological alteration is microvascular hyperpermeability that
has been observed in HFpEF related comorbidities, as well as in HFrEF and ischemia-
reperfusion injury. Several molecular components are involved in the microvascular wall
dysfunction. In this regard, the glycocalyx alteration promotes the adhesion molecules
formation and neutrophils migration [43,99]. Pro-inflammatory molecules induce microvas-
cular hyperpermeability through intercellular junctions’ loss. It is characterized by vascular
endothelial cadherin hyperphosphorylation and trans-endothelial channels formation from
vesciculo-vacuolar organelles [43,100]. Pericytes alterations and distribution are associated
with microvascular tone and blood flow dysregulation, in HFpEF [43,101]. Zeng et al. found
that impaired HIF-2α/Notch3 and angiopoietins/Tie-2 pathways may bring to pericytes
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loss and reduced endothelial cells coverage, as well as pericytes-myofibroblasts transition.
The latter is associated with increased myocardial fibrosis and stiffness [102,103]. In a study
based on autopsies, Mohammed et al. found that microvascular density was lower, and fi-
brosis was more severe in patients with HFpEF [50]. CMD seen during myocardial ischemia
and HF may be also determined by coronary ion channels impairment [90–92,104–107].
With this regard, endothelial and smooth muscle cells coronary ion channels mediate, form
the molecular point of view, the coronary blood flow regulation mechanisms physiological
effects [90–92,104–107]. For this reason, their impairment determined by ROS, AGEs, in-
flammation, increased shear stress and genetic predisposition affects the coronary vascular
tone regulation [90–92,104–107]. These aspects promote microvascular rarefaction, as well
as myocardial ischemia, fibrosis and, therefore, HF.

The lymphatic vascular system may be involved in the pathophysiology of HFpEF,
contributing to the different myocardial histopathological findings observed in this condi-
tion [43]. In particular, lymphatic alterations may contribute to diastolic dysfunction, in
HFpEF. Lymphatic dysregulation and obstruction are a cause of impaired left ventricular
compliance and contractility. Moreover, it associates with widespread and lung interstitial
oedema according to HFpEF progression [43,108,109]. Several cardiovascular risk factors
associated with HFpEF are characterized by lymphatic network remodeling [43,110,111].
Hypercholesterolemia and high BMI values are associated with lymphatic network rar-
efaction. Hypertension is associated with pro-lymphangiogenesis molecules production
and lymphatic transportation imbalance [43,112–114]. In this regard, several molecules
inducing lymphangiogenesis, such as vascular endothelial growth factor (VEGF) -C and
-D may represent new treatment strategies against HFpEF [43,115]. Although coronary
involvement in HFpEF is poorly described in literature, coronary artery disease (CAD)
more diffuse and extensive, involving more vessels, in HFpEF has been described. CAD
extension and severity may be inversely related with ejection fraction [50].

Kato et al. study was the first to demonstrate the CFR impairment in HFpEF. They
used phase contrast cine-magnetic resonance imaging for a non-invasively calculation of
CFR, obtained from the ratio of coronary sinus blood flow with and without adenosine
triphosphate (ATP) infusion [116]. Results that confirmed a CFR reduction in 76% of
patients with HFpEF were statistically significant, compared to the hypertensive patients’
group, in which it was present in 31%. Furthermore, the CFR impairment was associated
with serum brain natriuretic peptide (BNP) values and HFpEF prognosis [116]. Loffler
et al. used CMR stress perfusion to evaluate the microvascular perfusion reserve (MPR) in
HFpEF. They found out that CMD was highly present and that MPR was inversely related
to ECV [117]. These studies support the hypothesis that HFpEF is a multisystem disease
with high endothelial involvement [116–118].

2.3. Heart Failure with Preserved Ejection Fraction and the Inflammation-Metabolic Pathway

Systemic inflammation is an important pathophysiological mechanism involved in the
HFpEF onset and progression. The HFpEF presence and associated conditions have been
demonstrated in many systemic inflammation disorders, such as rheumatoid arthritis, sys-
temic lupus erythematosus, psoriasis, inflammatory bowel diseases [119]. Moreover, many
cardiovascular comorbidities may induce a systemic inflammatory state and, therefore,
HFpEF [119,120]. In this regard, when acting together cardiovascular risk factors amplify
myocardial negative effects [119].

Epicardial adipose tissue is enhanced in hyperaldosteronism, hypercortisolism and
hypothyroidism conditions. The inflammatory-metabolic HFpEF paradigm recognizes the
epicardial adipose tissue as a target of systemic inflammation. Epicardial adipose tissue
is subjected to several changes, through which it induces many alterations to contiguous
tissues, through a paracrine and/or vasocrine effect. The vasocrine route refers to a
newly proposed way of intercellular signaling, whereby adipocytes accumulate around
arteries and larger arterioles of striated or cardiac muscle and secrete proinflammatory
cytokines into the periadventitial space around these vessels. Under inflammation stimuli,
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cardiac mesenchymal cells are prone to differentiate in adipocytes, promoting the epicardial
adipose tissue expansion. In this regard, the epicardial adipose tissue produces and
releases several pro-inflammatory molecules through which it may cause CMD, myocardial
fibrosis, myocardial electromechanical dysfunction and atherosclerosis progression, in
epicardial vessels. The ventricular myocardium involvement is associated with hampered
left ventricle filling and diastolic stiffness [119,121], mainly determined by inflammation
related titin phosphorylation [122]. The atrial myocardium involvement is associated with
fibrosis and atrial fibrillation [119,123–126]. Inflammatory-metabolic HFpEF is typical
phenotype of aged women with many cardiovascular comorbidities. Women have a more
developed epicardial adipose tissue and enhanced intramyocardial fat storage [119,127].
In this regard, women have a more impaired ventricle-arterial coupling, worsen arterial
stiffness and more accentuate ventricular concentric remodeling than man.

Obesity prevalence in HFpEF patients is about 70% [121] and the epicardial or in-
tramyocardial fat amount may be an indicator of disease severity [128]. CMR is the gold
standard for the non-invasive study of myocardial fat [129]. It allows to demonstrate the
association between fat and fibrosis, as showed by Wu et al. [130]. Moreover, Wu et al.
compared patients with HFpEF and HFrEF, in terms of intramyocardial and epicardial fat
values. They found out that the intramyocardial fat was significantly increased in the HF-
pEF group, while the epicardial type prevailed in the HFrEF group. Diastolic dysfunction
imaging parameters showed correlation with intramyocardial fat storage, in female gender,
while in the male gender the strongest correlation was with the amount of epicardial
fat [127]. According to Mahmod et al. myocardial triglycerides storage and lipotoxicity
were significantly more present in the HFpEF patients group than in the control group.
Moreover, their presence was independently associated with impaired diastolic strain rate,
at CMR feature tracking [131].

Epicardial adipose tissue expression and inflammation are associated with circulat-
ing hormones levels. In this regard, natriuretic peptides reduce epicardial adipose tissue
expansion and inflammation, as well as adipogenesis. Moreover, they counteract my-
ocardial fibrosis and CMD [119,132,133]. On the other hand, leptin promotes aldosterone
synthesis, as well as monocytes and T cells activation [119,134,135]. Aldosterone stimulates
myocardial fibrosis, CMD and promotes diabetes and myocardial metabolic alterations. In
women the leptin and aldosterone effects are more pronounced than man, while obese and
post-menopausal women show reduced natriuretic peptides circulating levels.

From the hemodynamic point of view, inflammatory-metabolic HFpEF is characterized
by sodium retention and glomerular resorption, systemic venous capacitance reduction and
arterial blood pressure increase. The latter allows the distinction between inflammatory
HFpEF from infiltrative and hypertrophic cardiomyopathies [119].

Considering the relationship among other HFpEF risk factors and inflammation, RAAS
activation induces monocytes migration and M2 macrophages myocardium infiltration,
TGF-β production and myocardial fibrosis [44]. Metabolic and energetic state, as well
as, ROS production and mitochondrial activity are regulated by several proteins, such
as Sirtuins. In this regard, sirtuin is a mitochondrial deacetylase involved in several
mitochondrial function, such as ROS and ATP production. Endothelial cells SIRT3 levels are
inversely related with aging, diabetes, coronary microvascular rarefaction and endothelial
cells reprogramming. Endothelial cells SIRT3 deficiency is associated with ROS production,
NO-cGMP pathway, CFR impairment and diastolic dysfunction. Also, hypoxia-related
angiogenesis is compromised in case of SIRT3 deficiency. The latter is due to vascular
VEGF, Angiopoietin 1 (Ang-1), Hypoxia-inducible factor 1-alpha (HIF-1α) and Hypoxia-
inducible factor 2-alpha (HIF-2α) impairment. This condition amplifies the microvascular
rarefaction. Moreover, SIRT3 deficiency is also associated with increased Notch 2 and TGF-
β1 production that promotes myocardial fibrosis [103]. The lack of SIRT3 is also associated
with p53 acetylation. Increased p53 activity induces cell’s senescence and angiogenesis
inhibition, which are involved in diastolic dysfunction. Aging is directly related with
diastolic dysfunction. Several morphological features which occur with aging may play a
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role in the diastolic dysfunction determinism, such as myofibril disarray, cardiomyocytes
nuclear size increase, cardiomyocytes death and fibroblasts substitution. These changes
may be induced by Akt inhibition and p53 activation, which have been observed in human
myocardial biopsy sample with diastolic dysfunction. P53 activation is determined by
oxidative deoxyribonucleic acid (DNA) damage induced by overload during hypertrophy.
Moreover, P53 activation is associated with pathological genes programs, and it is closely
related with senescence [103]. Topoisomerase 2 beta has an important role in some gene
transcriptional activation process. The topoisomerase 2b knockdown is associated with p53
activation and Akt inhibition, as well as morphological and signaling pathways changes,
observed in diastolic dysfunction [136].

Van den Hoogen et al. [137] found high plasma Immunoglobulin G1 (IgG1), Im-
munoglobulin G3 (IgG3) levels and IgG myocardial storage in HFrEF, as well as HFpEF
patients. IgG1 and IgG3 stimulate the immune response against cardiac antigens, mainly
through complement pathways activation. The inflammatory response induced by the
immunoglobulines plays a main role in myocardial remodeling, during HF. In particular,
increased IgG1 and IgG3 levels have been observed in end stage HFrEF, as well as in
the early phases of HFpEF. Moreover, their circulating values have been related with left
ventricular diastolic dysfunction severity, in man. For this reason, IgG1 and IgG3 levels
may represent an early marker of HFpEF, that allow to identify this pathological condition,
before symptoms onset [137].

Prenner et al. [138] studied the association between serum albumin and HFpEF related
adverse outcomes. In HFpEF patients, serum albumin shows an independent and robust
prognostic role, in term of death and hospitalization [138]. From the histopathological
point of view, reduced serum albumin was associated with myocardial interstitium over-
expression, defined by increased myocardial fibrosis detected at autopsies, or by ECV at
CMR. Probably, this association may be due to inflammation response, altered nutritional
substances intake and liver dysfunction. Moreover, there is a relation between low serum
albumin and increased aortic pulsatile wave power, a condition that may contribute to
increased aortic and vascular stiffness, as well as CMD [138].

Regarding the metabolic aspect, CMR may provide further information in HFpEF.
Through the hyperpolarized carbon-13 CMR spectroscopy, an increase in alanine and
bicarbonate and no increase in lactate have been demonstrated [139]. Alanine and bicar-
bonate are pyruvate metabolites, produced by alanine aminotransferase pathway (ALT)
and pyruvate dehydrogenase (PDH) pathway, while lactate was produced by lactate de-
hydrogenase (LDH). In HFpEF heart, a metabolic switch occurs, and energy is no longer
produced starting from fatty acids, but through glycolysis [139,140], with a greater PDH
activation, compared to healthy controls [139,141]. The increased ALT activity reflects the
hypertrophy that involves a greater nucleic acids and amino acids consumption [139,142].
The energetic sources change is an early modification that precedes the structural and
functional alterations [143]. The water metabolism is also altered in HFpEF and a study
with dynamic contrast-enhanced magnetic resonance under cardiac stress conditions pro-
vided further information about metabolic status in HFpEF [144]. This imaging technique
allowed to quantify the mean intracellular water lifetime (τi), which is inversely related
to the sodium–potassium adenosine triphosphatase (Na+/K+-ATPase) transporter activ-
ity [144,145]. Although under cardiac stress, there was a global decrease in τi and, therefore,
an upregulation of Na+/K+-ATPase activity, the regional analysis showed that this aspect
was more evident at the apical level, and subsequently, at the anterior and anterior-lateral
wall level. The inferior sectors showed no significant τi decrease. This model traces the
metabolic changes in HFpEF and explains why there is much expectation in the use of
drugs that act on an energy/metabolic level, such as sodium glucose co-transporter-2
(SGLT-2) inhibitors, in patients with HF and metabolic dysregulation [144–146].
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3. Precision Medicine and Personalized Approach to Heart Failure with Preserved
Ejection Fraction: The Genetic and Epigenetic Paradigm

The pathophysiology complexity and the lack of specific therapy against HFpEF made
this syndrome particularly prone to a personalized and precision medicine approach. The
target is to define the HFpEF genetic and molecular basis, in order to predict the patho-
physiological and clinical evolution, the patient’s outcome, as well as to find possible
innovative therapeutic targets [147]. Hahn et al. [148] identified a specific transcriptome
in patients with HFpEF, which differs from healthy controls, as well as HFrEF patients.
Patients underwent endomyocardial biopsy from which RNA sequences were obtained
to evaluate gene expression and demonstrate the presence of genetic susceptibility inde-
pendent by HFpEF traditional risk factors. In HFpEF patients, an upregulation of energy
production related genes has been observed [148]. It can be associated with the higher
prevalence of high BMI, among HFpEF patients, but also with the necessity to perfuse
more tissue quantity. Several genes involved in autophagy, angiogenesis and endoplasmic
reticulum activity are downregulated in HFpEF. Moreover, different HFpEF trascriptomic
subgroups, associated with specific clinical patterns have been identified. In this regard,
two HFpEF subgroups have been identified: the former consisted in female patients with
upregulated inflammatory pathways and myocardial concentric hypertrophy, while the
second subgroup showed molecular, clinical features and mortality, similar to HFrEF [148].

The importance of epigenetic has been recognized recently and several studies focus
on microRNA profiles that characterize HF subtype or stage. MicroRNA have a main role
in the epigenetic modulation of gene expression acting at post-transcriptional moment. The
presence of circulating microRNA demonstrate that they are released by cells after death
probably acting as paracrine molecules. MicroRNA are involved in the different pathophys-
iological and histopathological aspects, which characterize HFpEF. Moreover, differences
about microRNA targets, between HFrEF and HFpEF, have been observed regarding two
pathways involving fatty acids biosynthesis and extracellular matrix receptors expression.
The rationale of these observation is sustained by several histopathological findings that
characterize HFpEF, as the minor expression of extracellular matrix destruction enzymes,
such as metalloproteinase-2, and the enhanced expression of pro-fibrotic markers, such as
galectin- 3 and the soluble type of IL-1 receptor like 1 (ST2) [149,150]. Several microRNA
are highly expressed in patients with HFpEF such as miR-3908 and miR-3135b or hsa-miR-
30a-5p, hsa-miR-181a-2–3p, hsa-miR-199b-5p, hsa-miR-486–5p, hsa-miR-191–5p, hsa-miR-
106a-5p, hsa-miR-660–5p, and hsa-miR-193a-5p [149,151]. miR-101a may play a role in the
regulation of TGF-β pathway, reducing fibrogenesis [149,152]. In diabetic cardiomyopathy,
miR-146a is involved in inflammation and subsequent myocardial fibrosis, mediating
cytokines production, through NFκB pathway. miR-155 is associated with diabetes and
obesity and it is involved in cardiomyocytes adverse remodeling seen in HF [153].

Macrophages are involved in tissue remodeling taking part in inflammatory response.
Early phase of HFpEF is characterized by systemic inflammation outspread and the subse-
quent cardiac inflammation. In this context, macrophages, according with their polarization
state, mediate the interaction between inflammatory cells and cardiac cells contributing
to the cardiac remodeling [153–155]. Macrophages M1 polarization is associated with
pro-inflammatory activity and cell death, while macrophages M2 polarization is associated
with fibrogenesis, tissue repair and immunosuppression [154]. Many microRNA such
as miR-125b, miR-127, miR-9 and miR-155 are involved in myocardial macrophage M1
polarization, while miR-223, miR-124, miR-132, miR-125a-5p, miR-34a and miR-146a are
involved in myocardial macrophage M2 polarization [153–155].

Other microRNAs are involved in proteins post-translational modification such as
the ubiquitin induced proteolysis regulation [149]. miR-126 is the most represented en-
dothelial microRNA and its expression is markedly reduced in case of endothelial dys-
function. The lack of miR-126 is associated with several microvascular abnormalities seen
in HFpEF, such as the loss of vascular layer integrity, microvascular inflammation and
hemorrhage [153,156]. Transcoronary gradient represents the difference of microRNA
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concentration across the coronary circulation, between coronary sinus and coronary arterial
district and it is a marker of mircoRNA release within coronary circulation. Elevated miR-
92a and -133 transcoronary gradient is associated with CMD [153,157] while miR-138 may
represent a target to restore endothelial function and NO production, in HFpEF. In HFpEF,
microRNAs are involved also in cardiomyocytes structural alterations and extracellular
matrix composition regulation. In this regard, miR-17–92 cluster is crucial in extracellular
matrix genes expression associated with aging [153,158]. miR-22 is the most represented
heart microRNA. Cardiomyocytes miR-22 expression is increased under angiotensin II
stimulation. It regulates the sarcoplasmic reticulum reuptake modulating SERCA2 ac-
tivity [153,159]. miR-22 is markedly associated with cardiomyocytes hypertrophy and
cardiac fibrosis [153,160]. MiR-21, a pro-fibrotic microRNA, regulates Extracellular Signal-
Regulated Kinase Mitogen-Activated Protein (ERK-MAP) kinase pathway, involved in
fibroblasts vitality, as well as TGF-β pathway. MiR-208b is associated with titin structural
modification and dysfunction. miR-1 regulates calmodulin activity, in smooth muscle cells
during HF [153,161]. MiR-181b regulates PKG-1 expression and it represents a marker of
cardiomyocytes hypertrophy [152].

Gender differences in HFpEF patients have been observed in term of microRNA
expression. Florijn et al. demonstrated that plasma miR-224 and miR-452 are predominantly
expressed by HFpEF diabetic women, instead of diabetic HFpEF man. Moreover, miR-34a
is associated with kidney disease, diabetes mellitus and gender in patients with diastolic
dysfunction, while decreased miR-34a, -224 and -452 plasma levels have been observed in
diabetic patients with diastolic dysfunction and diabetic women with glomerular filtration
rate under 60 mL/min [162]. The definition of genetic and epigenetic alterations, in
particular microRNA role, is a key point in the setting of a personalized approach for the
diagnosis and management of HFpEF and HF in general.

4. Role of Myocardial Tissue Characterization and Pathophysiological Mechanisms for
the Identification of New Therapeutic Targets
4.1. The Renin-Angiotensin-Aldosterone System and Neprilysin Pathway

Angiotensin II receptor type 1 (AT1) stimulation induces myocardial hypertrophy
and fibrosis participating to HF worsening [163]. RAAS inhibitors reduce HFrEF re-
lated morbidity and mortality, while their role in HFpEF is controversial [164–166]. Over
the past years multiple clinical studies failed to demonstrate a direct outcome improve-
ment in HFpEF treated with RAAS inhibitors [167–171], while the positive role of β-
blockers [172], angiotensin receptor blockers (ARBs), and mineralocorticoid receptor an-
tagonists (MRAs) [173], on mortality and morbidity reduction, in HFrEF patients has been
demonstrated. Taking into account the positive role of RAAS blockade in hypertensive pa-
tients, as well as the hypertension prevalence in HFpEF subjects, RAAS inhibitors would be
expected to improve clinical outcomes in those patients. However, many trials evaluating
RAAS blockade in HFpEF patients were often ambivalent. The Irbesartan in Heart Failure
With Preserved Ejection Fraction (I-PRESERVE) study investigated the ARB irbesartan
effect versus placebo, in patients with HFpEF [174]. This study did not show a significant
reduction in all-cause death and in hospitalization due to cardiovascular disease, in patients
with HFpEF taking Irbesartan. However, this study had several limitations. First, HFpEF
diagnosis was often challenging. Secondly, the adopted dose of Irbesartan (300 mg/die)
for the study may not have been the optimal one to treat HFpEF and furthermore, the 34%
of study population did not take therapy continuously [174]. However, Lund et al. [175]
reported a significant treatment benefit in HF with mid-range ejection fraction (HFmrEF),
in a post hoc analysis. The Valsartan In Diastolic Dysfunction (VALIDD) study compared
valsartan to other antihypertensive drugs in patients with diastolic dysfunction and hyper-
tension [176]. In both groups, diastolic function improved after reduction of blood pressure,
notwithstanding the antihypertensive treatment.

A revolution of HFrEF treatment was carried out by the angiotensin receptor neprilysin
inhibitor LCZ696, that combine the two acting molecules, valsartan and sacubitril. By inhi-
bition of neprilysin, sacubitril increases atrial natriuretic peptide (ANP), BNP and C-type
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natriuretic peptide (CNP) plasma levels [177], through the guanylyl cyclase activation and
cGMP synthesis. Moreover, natriuretic peptides prevent myocardial fibrosis and help to
low blood pressure, due to vasodilation and increased diuresis. The Prospective Compar-
ison of angiotensin receptor neprilysin inhibitor (ARNI) with ARB Global Outcomes in
HF With Preserved Ejection Fraction (PARAGON-HF) trial about the ARNI use in patients
with HFpEF did not show a statistically significant lower rate of hospitalization for HF
and death from cardiovascular causes. However, it suggested possible benefit among
woman and patients with a left ventricular ejection fraction between 45–57% [178]. In a
recent network meta-analysis, Kuno et al. [179] compared outcomes of different RAAS
antagonists with each other and with placebo, in HFpEF patients. The combination of
sacubitril-valsartan is associated with lower HF hospitalizations, but not lower mortality
rate, in those patients. No statistical difference in all-cause mortality and cardiovascular
mortality, among ACE-I, ARBs, MRA, ARNI, and placebo has been demonstrated. Min-
eralocorticoid receptor antagonists (MRAs) prevent aldosterone’s effect on myocardial
fibrosis [180]. In the Effect of Spironolactone on Diastolic Function and Exercise Capacity in
Patients With Heart Failure With Preserved Ejection Fraction (ALDO-DHF) trial, spirono-
lactone showed a positive effect on diastolic function through the E/e′ ratio reduction [181].
It decreased left ventricular hypertrophy and N-terminal pro-B-type natriuretic peptide
(NT-proBNP) levels. Despite its role on quantitative markers, HF symptoms, exercise
tolerance, and life quality have not been significantly affected by spironolactone. In the
Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist
(TOPCAT) trial the MRA spironolactone was added to medical therapy with β-blockers and
angiotensin converting enzyme (ACE) inhibitors, in HFpEF patients [182]. In theTOPCAT
trial, Spironolactone addition did not determine a significant reduction in the primary
composite of cardiovascular death, hospitalization for HF and aborted cardiac arrest [182].

4.2. The Oxidative Stress and the Nitric Oxide Pathway

HF is associated with oxidative stress, which affects myocardium and vasculature.
Recent evidence suggests that oxidative stress may be the link between obesity, diabetes
mellitus, and related complications. In obese patients, there is an increasing level of reactive
oxygen and nitrogen species that directly correlate with central adiposity.

The cGMP pathway plays a fundamental role in regulating normal cardiovascular
function and its lack in HFpEF subjects leads to endothelial dysfunction. Endothelial
dysfunction is related to cGMP deficiency that is caused by insufficient stimulation of
soluble guanylate cyclase (sGC) and impaired NO bioavailability. This promotes CMD,
myocardial and vascular stiffness [183].

Correction of myocardial PKG activity and cGMP pathway has been proposed as a
target for specific HFpEF treatment, but Sildenafil related phosphodiesterase type 5 (PDE5)
inhibition did not show difference compared to placebo, in HFpEF patients [184].

The sGC stimulator Vericiguat was studied in the SOluble guanylate Cyclase stim-
ulatoR in heArT failurE Studies (SOCRATES) programme [185]. In the HFpEF group, it
did not show the achievement of primary end points of NT-proBNP or left atrial volume,
over a 12-week treatment period. However, an exploratory post hoc analysis showed clini-
cally significant improvements in health status defined by Kansas City Cardiomyopathy
Questionnaire [186].

Considering the hypothesis of decreased NO availability in HFpEF, nitrates have
been proposed to restore NO balance, in order to improve endothelial-myocyte paracrine
signaling. The Nitrate’s Effect on Activity Tolerance (NEAT-HFpEF) trial was conducted to
investigate the role of isosorbide mononitrates in HFpEF management [187]. Isosorbide
mononitrate did not improve the daily activity level, exercise capacity, quality of life or
NT-proBNP levels in patients with HFpEF. This is in contrast with nitrates’ positive effect
in HFrEF subjects and may be related to the pathophysiologic differences between the two
HF types. Common HFpEF features, such as increased ventricular and vascular stiffness,
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chronotropic incompetence and altered baroreflex sensitivity may limit the hemodynamic
benefits of nitrates, in HFpEF patients.

The inorganic nitrate pathway represents a different way to restore NO signal [188].
Unlike the organic nitrates, inorganic nitrite is converted to NO, in presence of hypoxia and
acidosis, which develop in tissues and venous circulation during exercise. Moreover, there
is no tolerance to nitrite. For this reason, inorganic nitrate/nitrite has been proposed as a
target therapy because NO is crucial at the time of greatest need, such as during exercise.
Notwithstanding this promising assumption, results of different trials such as the Inorganic
Nitrite Delivery to Improve Exercise Capacity in Heart Failure With Preserved Ejection
Fraction (INDIE-HFpEF) [188] and the Effect of KNO3 Compared to KCl on Oxygen
UpTake in Heart Failure With Preserved Ejection Fraction (KNO3CKOUT) (NCT02840799)
are ambivalent.

A new class of antioxidant peptides named “Szeto-Schiller peptides (SS peptides)”
is under investigation in HF. SS peptides belong to a class of antioxidant that bind to
cardiolipin, an important phospholipid of the inner mitochondrial membrane. These
peptides protect cardiolipin from oxidation and reduce mitochondrial oxidative damage.
One of the most prominent of these peptides is elamipretide (MTP-131, SS31). In patients
with HFpEF, elamipretide reduced left-ventricular end-diastolic volumes, compared to
placebo [189].

4.3. Role of Inflammation, Fibrosis and Calcium Handling as Therapeutic Targets

Proinflammatory cytokines, such as IL-1 are upregulated in HFpEF. They have an
important role in the myocardial function impairment. In HFpEF, IL-1 inhibits L-type
calcium channels, downregulates phospholamban activity and causes post-transcriptional
changes in SERCA2a [190]. Calcium handling dysregulation leads to impaired cardiac
relaxation and diastolic dysfunction. The Diastolic Heart Failure-Anakinra Response
Trial (D-HART) investigates Anakinra role in patients with diastolic dysfunction [191].
Anakinra is a recombinant IL-1 receptor antagonist, and it decreases inflammatory markers
levels, improving the HFpEF patients aerobic exercise capacity. It is still unclear the
role of canakinumab, a monoclonal antibody specifically targeting the IL-1β isoform, in
HF subjects; in a sub-analysis of the large Canakinumab Antiinflammatory Thrombosis
Outcome Study (CANTOS), that include patients with previous myocardial infarction and
increased high sensitivity C-reactive proteins levels, canakinumab showed clinical benefit.
It remains unclear its role upon diastolic function [192].

Myocardial inflammation and fibrosis are target of cell therapy. In animal models
Pirfenidone, antifibrogenic drug which target TGF-β signaling, inhibits left ventricular
fibrosis and diastolic impairment [193]. Its role in HFpEF subjects is under investigation by
the Pirfenidone in Heart Failure with Preserved Ejection Fraction-Rationale and Design
(PIROUETTE) trial (NCT02932566).

CD34 is a receptor expressed by bone marrow multipotent progenitor cells, which
are reduced in patients with both HFrEF and HFpEF. CD34+ cells may be suitable for
cell therapy to improve diastolic function in HFpEF. A pilot study with HFpEF subjects
showed that treatment with CD34+ cells determined diastolic function improvement and
NT- proBNP levels decrease [194]. The role of CD34+ cell therapy in patients with HFpEF
is currently under definition. Dysfunctional calcium handling in HFpEF causes impaired
myocardial relaxation. Late inward sodium current (INa) is increased in HF, causing
cardiomyocytes calcium overload. Ranolazine inhibits persistent or late INa in heart mus-
cle [195]. In the Ranolazine for the Treatment of Diastolic Heart Failure (RALI-DHF) study,
Ranolazine decreased left ventricular end diastolic pressure, without changing exercise
tolerance [196]. As reported by European Society of Cardiology guidelines, Levosimen-
dan, a calcium sensitizer and phosphodiesterase-3 (PDE3) inhibitor with vasodilative
properties, can be considered in patients with acute HF and severe reduction of cardiac
output [197,198]. It improved diastolic function and right-ventricular systolic function, in
patients with advanced HF. Moreover, Levosimendan a role in the inflammatory status
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regulation, through the IL-6/IL-10 ratio alteration [199]. In this regard, the Hemodynamic
Evaluation of Levosimendan in Patients With PH-HFpEF (HELP) trial (NCT03541603) is
investigating the effects of Levosimendan in HFpEF patients with left heart disease related
pulmonary hypertension.

4.4. The Heart Rate and Volemic Status Regulation as Therapeutic Targets

In HFpEF patients, high heart rate predicts poor outcome at sinus rhythm, instead
there are no clear correlations between worse prognosis and atrial fibrillation. This find-
ing was confirmed in The Irbesartan in Heart Failure With Preserved Systolic Function
(I-PRESERVE) trial [200] and the Meta-analysis Global Group in Chronic Heart Failure
(MAGICC) registry [201]. A slowdown in resting heart rate causes a raise in filling pres-
sures [202]. Ivabradine, an inhibitor of the funny current, reduces heart rate and improves
vascular stiffness, as well as systolic and diastolic function [203]. In The prEserveD left
ventricular ejectIon fraction chronic heart Failure with ivabradine studY (EDIFY) study,
ivabradine reduced heart rate, but worsened E/e′ ratio, exercise tolerance, and NT-proBNP
levels, in HFpEF patients [204]. Ivabradine heart rate lowering does not provide any con-
sistent benefit, because diastole prolongation does not seem to improve diastolic function
and prognosis in patients with HFpEF.

Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i) showed a striking reduction of
cardiovascular events, in patients with T2DM. SGLT2i reduces renal glucose reabsorption,
rise urinary glucose excretion and increases diuresis [205–207]. In the The Empagliflozin
Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients Removing Excess
Glucose (EMPA-REG OUTCOME) study, empagliflozin leads to a striking reduction of
cardiovascular events in high cardiovascular risk T2DM patients. Several aspects, such
as the pre-load reduction and the cardiac energetics improvement, through an increase
in ketones’ supply, should be involved in the SGLT2i positive effects on cardiovascular
and renal outcomes [197,208]. Empagliflozin showed a direct effect on diastolic function
improvement in HF [209]. The ongoing EMPagliflozin outcomE tRial in Patients With
chrOnic heaRt Failure With Preserved Ejection Fraction (EMPEROR-PRESERVED) and
the Dapagliflozin Evaluation to Improve the LIVEs of Patients With PReserved Ejection
Fraction Heart Failure (DELIVER) (NCT03619213) trials are respectively studying the
empagliflozin and dapaglifozin’s effects on HF hospitalization and cardiovascular mortality
reduction, in HFpEF subjects with and without diabetes.

Table 1 contains a summary of the main trials regarding HFpEF therapy according to
the targeted pathophysiological pathway.

Table 1. Main clinical trials of pharmacological therapy in heart failure with preserved ejection fraction.

Trial Name (Years) Drug (Posology) Sample
Size

ClinicalTrials.gov
Identifier

Follow up
Duration Results

RAAS and
Neprylisin Pathway

I-PRESERVE
(2002–2008)

Irbesartan (Oral, from 75
to 300 mg daily vs.

placebo)
4128 NCT00095238 49.5 months

Irbesartan did not improve
outcomes (death from any
cause or hospitalization for

CV cause)

CHARM-
PRESERVED
(1999–2003)

Candesartan(32 mg once
daily vs. placebo) 3023 NCT00634712 36.6 months

Candesartan did not
improve outcomes

(cardiovascular mortality or
hospitalization due to

congestive HF)
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Table 1. Cont.

Trial Name (Years) Drug (Posology) Sample
Size

ClinicalTrials.gov
Identifier

Follow up
Duration Results

RAAS and
Neprylisin Pathway

TOPCAT(2006–2013)
Spironolactone(Oral,

15 mg to 45 mg daily vs.
placebo)

3445 NCT00094302 39 months

Spironolactone did not
significantly reduce the
incidence of the primary

composite outcome of death
from CV causes, aborted

cardiac arrest, or
hospitalization for the HF

management

ALDO-DHF
(2007–2012)

Spironolactone(Oral,
25 mg daily vs. placebo) 422 ISRCTN94726526 12 months

Long-term aldosterone
receptor blockade improved

left ventricular diastolic
function but did not affect
maximal exercise capacity,
symptoms or quality of life

PARAGON-HF
(2019–2019)

Sacubitril/Valsartan(Oral.
Two periods:(1) a

single-blind treatment
from 3 to 8 weeks with

valsartan 80 mg bid,
followed by

sacubitril/valsartan
100 mg bid(2) a

double-blind randomized
treatment with

sacubitril/valsartan
200 mg bid or valsartan

160 mg bid

4822 NCT01920711 35 months

Sacubitril–valsartan did not
result in a significantly

lower rate of total
hospitalizations for HF and

death from CV causes

Oxidative stress
and Nitric oxide

pathway

KNO3CK
OUT-HFpEF
(2016–2022)

Potassium Nitrate
(KNO3)(Oral, 6 millimoles

of inorganic nitrate per
capsule, three times daily
for 6 weeks vs. placebo)

76 NCT02840799 N/A Outcome: VO2
(ongoing study)

INDIE-HFpEF
(2016–2018)

Inorganic nitrite or nitrate
preparations(Nebulized
sodium nitrite at 46 mg

then 80 mg three times per
day vs. placebo)

105 NCT02742129 17 months

Administration of inhaled
inorganic nitrite for 4 weeks,
compared with placebo, did

not result in significant
improvement in exercise

capacity and VO2

SOCRATES-
PRESERVED
(2013–2015)

Vericiguat(Oral, 2.5 mg
once daily for 2 weeks,

up-titration to 5 mg orally
once daily for 2 weeks,
up-titration to 10 mg
orally once daily for 8

weeks vs. placebo)

477 NCT01951638 16 weeks

Vericiguat, did not change
NT-proBNP levels at

12 weeks compared with
placebo but it was

associated with
improvements in quality of

life
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Table 1. Cont.

Trial Name (Years) Drug (Posology) Sample
Size

ClinicalTrials.gov
Identifier

Follow up
Duration Results

RAAS and
Neprylisin Pathway

NEAT-HFpEF
(2014–2016)

Isosorbide
mononitrate(6-week

dose-escalation regimen of
isosorbide mononitrate,
from 30 mg to 60 mg to
120 mg once daily vs.

placebo)

110 NCT02053493 6 weeks

Patients who received
isosorbide mononitrate

were less active and did not
have better quality of life or

submaximal exercise
capacity than patients who

received placebo

Inflammation
pathway and

calcium handling

D-HART (2014–2017)

Anakinra(Subcutaneous,
Interleukin-1 blockade,
100 mg subcutaneously

once daily for 12 weeks vs.
placebo)

60 NCT02173548 12 weeks

Anakinra significantly
reduced the systemic

inflammatory response and
improved the aerobic

exercise capacity of patients
with HFpEF and elevated

plasma CRP levels.

HELP (2018–2020)

Levosimendan(Injectable
Solution

0.075–0.1 µg/kg/min for
24 h weekly vs. placebo)

38 NCT03541603 6 weeks

Levosimendan infusion did
not affect exercise-PCWP

but did reduce PCWP
incorporating data from rest

and exercise, in tandem
with increased

6 min-walking-test

Fibrosis pathway

PIROUETTE
(2017–2020)

Pirfenidone(Oral, 801 mg
three times daily vs.

placebo
129 NCT02932566 12 months Change in myocardial ECV

from baseline to 52 weeks

SGLT-2 inhibition

EMPEROR-
Preserved

(2017–2021)

Empagliflozin(Oral, 10 mg
daily vs. placebo) 5988 NCT03057951 20 months

Time to first event of
adjudicated CV death or

HHF (ongoing)

DELIVER
(2018–2022)

Dapagliflozin (Oral, 10 mg
daily vs. placebo) 6263 NCT03619213 27 months

Composite of CV death,
HHF and urgent HF visit

(ongoing)

RAAS: renin angiotensin aldosterone system; CV: cardiovascular; HF: heart failure; VO2: maximal oxygen consumption; NT-proBNP:
N-terminal-pro hormone brain natriuretic peptide; PCWP: pulmonary capillary wedge pressure; HHF: heart failure hospitalization; CRP:
C-reactive protein; ECV: extracellular volume fraction.

5. Conclusions

HFpEF is a multifaceted and complex syndrome associated with global high mortality
and morbidity rates and its prevalence is constantly increasing. Although it is well known
the association among HFpEF and traditional cardiovascular risk factors, myocardial
alterations and pathophysiological basis are not well defined yet. In fact, the definition of
HFpEF includes a wide spectrum of different myocardial structural alterations. Myocardial
hypertrophy and fibrosis, CMD, oxidative stress and inflammation are only some of
the main pathological detectable processes at myocardium levels and their consecutio in
HFpEF onset and progression is not well established. A comprehensive overview of
mechanisms involved in myocardial alterations observed in HFpEF are summarized in
Figure 2. Only the accurate and detailed characterization of myocardial tissue allows the
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full comprehension of its pathophysiological mechanisms together with the possibility to
identify new therapeutic targets, in order to specifically treat HFpEF, beyond traditional
cardiovascular risk factors control. Myocardial tissue characterization is certainly possible
through endomyocardial biopsy and histological analysis. However, its invasiveness
hampers the possibility to use it on large scale population. Actually, the improvement of
imaging techniques, such as CMR and their greater diffusion in clinical practice allows
myocardial tissue characterization in a non-invasive way. Moreover, CMR allows a dynamic
study of myocardial metabolism, both during stress and at rest, in HFpEF patients. The
reliable use of imaging techniques to characterize myocardial tissue in HFpEF may promote
an earlier, non-invasive and large-scale diagnosis, and this could allow to identify this
syndrome during its earlier phase of development, when it is more likely to be successfully
treated. However, the correlation between myocardial histopathological findings and
imaging aspects is still a challenge for medicine and further evidence is needed.

RAAS: renin angiotensin aldosterone system; CV: cardiovascular; HF: heart failure; VO2: maximal oxygen consumption; 
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Figure 2. Schematic representation of the main myocardial and coronary histopathological and pathophysiological alter-

ations observed in heart failure with preserved ejection fraction (HFpEF). Cellular and interstitial involvement, coronary 

Figure 2. Schematic representation of the main myocardial and coronary histopathological and pathophysiological alter-
ations observed in heart failure with preserved ejection fraction (HFpEF). Cellular and interstitial involvement, coronary
microvascular dysfunction, genetic and epigenetic imbalance and the inflammation-metabolic pathway are the main
substrates leading to HFpEF. Each of the listed mechanism implies many molecular and ultrastructural alterations. RAAS:
renin angiotensin aldosterone system; TGF-β: transforming growth factor beta; IgG1: immunoglobulin G1; IgG3: immunoglobulin G3;
PDH: pyruvate dehydrogenase; ALT: alanine aminotransferase; SIRT3: sirtuin-3; NO: nitric oxide.
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