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The utility of cancer whole genome and transcriptome sequencing (cWGTS) in oncology is
increasingly recognized. However, implementation of cWGTS is challenged by the need to
deliver results within clinically relevant timeframes, concerns about assay sensitivity,
reporting and prioritization of findings. In a prospective research study we develop a workflow
that reports comprehensive cWGTS results in 9 days. Comparison of cWGTS to diagnostic
panel assays demonstrates the potential of cWGTS to capture all clinically reported muta-
tions with comparable sensitivity in a single workflow. Benchmarking identifies a minimum of
80x as optimal depth for clinical WGS sequencing. Integration of germline, somatic DNA and
RNA-seq data enable data-driven variant prioritization and reporting, with oncogenic findings
reported in 54% more patients than standard of care. These results establish key technical
considerations for the implementation of cWGTS as an integrated test in clinical oncology.
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ancer is caused by the accumulation of somatic variants,

including point mutations, structural variants (SVs), and

copy number alterations (CNAs) that drive oncogenesis,
disease progression, and in some cases define therapeutic vul-
nerabilities. The introduction of next-generation sequencing
(NGS)-based targeted gene-panel assays has aided disease diag-
nosis, guided care, and improved patient outcomes through
refinement of treatment options!~>. However, targeted panels are
optimized to assess clinical biomarkers in common cancers!)>4,
Recent studies showed the utility of whole-exome sequencing
(WES) in identifying coding mutations in rare cancer genes®’.
However, for patients with pediatric or rare cancers that have low
mutation burden, distinctive methylation profiles®® are primarily
driven by SVs and fusion genes, panel/ WES tests fail to identify a
clinical biomarker in most cases!~47. This underscores an unmet
need for better diagnostic workflows to guide clinical
management.

Cancer whole-genome and transcriptome sequencing (c(WGTYS)
offers the opportunity to assess the full spectrum of germline and
somatically acquired mutations, SVs and CNAs, along with
quantification of tumor mutation burden (TMB) and genome-
wide mutational patterns'?. The likely clinical utility of c(WGTS in
pediatric and rare cancers is increasingly evidenced in recent
literature”-11-16, However, clinical implementation of WGS in
oncology is challenged by cost of sequencing, complexity of
laboratory, and analytical workflows to process large-scale data
within clinically relevant timeframes, concerns about the sensi-
tivity of low-coverage WGS in detecting actionable mutations
captured by high-depth panel assays, and the interpretability of
cWGTS findings with regard to clinical utility’. Here, we
demonstrate the feasibility, analytical validity, and resolve critical
technical considerations for the implementation of cWGTS in
primary cancer care in the context of pediatric, adolescent, and
young adult solid tumor patients with rare cancers.

Results

Sample processing. The study cohort included patients present-
ing with primary diagnostic or relapse/refractory disease. Of 201
patient fresh frozen (FF) tumors nominated for paired cancer/
normal whole-genome and transcriptome sequencing (c(WGTS),
58 were excluded upon pathology review and 29 did not meet our
requirement for >20% tumor purity as assessed by WGS. The
majority of the excluded cases were post-therapy neuroblastoma
and sarcoma samples with a predominance of necrotic disease.
The final cohort included a single sample each from 114 pediatric,
adolescent, and young adult patients (median age =12.6 years,
range: 4.5 months to 43.8 years) with solid tumors (Supplemen-
tary Tables 1, 2, Supplementary Fig. 1a-d).

Implementation of a c(WGTS workflow for clinical decision
support. To prototype a clinical c(WGTS workflow, we developed
an end-to-end process (Fig. la) that included dedicated: 1.
project-management team, 2. lab operators for sample processing,
3. sequencing machines for c(WGTS, 4. data-import channel, 5.
Biosciences platform for automated deployment of analysis
pipelines and API integration with institutional and public
databases!”, 6. reserved computing nodes in a high-performance
computing environment, and 7. systematic pipeline for prior-
itization and reporting of genomic findings (Fig. la, Supple-
mentary Fig. 1e). We quantified the end-to-end time from sample
acquisition to the generation of an automated report. Time logs
were audited starting at the time of surgical biopsy submission to
report delivery for review by an interdisciplinary molecular tumor
board for samples in our study with audit trails recorded through
our biosciences platform (Supplementary Fig. le). End-to-end,

this workflow was executed on average in 17 days during the
developmental phase (range: 11-29, n =59 samples), reaching a
fully optimized workflow with a final turnaround of 9 days
(Fig. 1b, n=16). This is shorter than the standard turnaround
time (TAT) for many clinical NGS-panel sequencing tests
(2-4 weeks)1>* markedly faster than the majority of WGS-
processing timeframes in literature (3-8 weeks, Fig. 1b)!1-16 and
comparable to the TAT achieved by centralized infrastructures of
scale such as the Hartwig Foundation!®. This demonstrates the
feasibility of implementing cWGTS profiling to support diagnosis
and treatment decisions with a clinically relevant turnaround
time within a comprehensive cancer care center.

Comprehensive genome characterization utilizing cWGTS.
Across all mutational classes, (WGTS identified on average 7353
acquired mutations per sample, including cancer-associated
alterations in 99% (n =114) of patients (Supplementary Fig. 2).
These include CNAs (n = 105 patients), germline predisposition
(n=17), mutations in cancer-associated genes (n="77), trans-
locations/fusion transcripts (n=27), disease-associated SVs
(n=175), and outlier TMB or microsatellite-instability (MSI)
scores (n=7) (Supplementary Table 3). Further signals of
interest included the delineation of mutation signatures!?,
detection of chromothripsis?® or whole- genome duplication
(WGD)32!, cancer-associated viral sequences (i.e., EBV)2223
estimation of telomere length?4, and gene expression signatures.
SVs, most of which can only be detected using WGS, represented
the third most frequent class of genomic alterations.

Concordance analysis of c(WGTS to targeted DNA- and RNA-
panel tests. Within our cohort, targeted DNA profiling of cor-
responding formalin-fixed paraffin-embedded (FFPE) biopsies by
MSK-IMPACT# detected actionable biomarkers as defined by
OncoKb Levels 1-42> in 24% of patients (n=27) (Fig. 2a-c,
Supplementary Table 4). Consistent with prior findings demon-
strating that patients with rare cancers do not yield clinically
relevant biomarkers by panel sequencing®, most patients in our
cohort (76%, n = 87) had no therapy-informing alterations. These
results are representative of the expanded pediatric/young-adult
patient population at MSK (Supplementary Fig. 3a, b).

We first assessed whether mutations captured by MSK-
IMPACT were also detected by WGS. For all discordant samples,
we performed MSK-IMPACT on the same DNA aliquots used to
generate the WGS libraries. This allowed us to ascertain whether
discrepant calls were owing to differences in assay sensitivity
(MSK-IMPACT and WGS) or a consequence of intratumor
heterogeneity (ITH)2C.

Of 221 somatic mutations reported by MSK-IMPACT, 174
(79%) were called in WGS (Fig. 2d, e). This includes 68/83 (82%)
mutations reported by MSK-IMPACT as oncogenic2® (Supple-
mentary Fig. 3c). Variants called by both assays ranged from 5%
to 97% variant allele frequency (VAF) with high concordance
(r>=0.75) in VAF estimates (Fig. 2d). The majority of discordant
mutations (46/47) were subclonal in MSK-IMPACT (<90% of
cancer cell fraction) and 15 were classified as oncogenic
(Supplementary Table 4, Supplementary Fig. 3c). Discordant
mutations presented with a broad range of VAF (range: 2.2-39%,
median = 8.5%) (Fig. 2d) and showed no systematic bias in
effective coverage (Supplementary Fig. 3d). The 47 discordant
mutations were confined to 26 samples (range 1-7 mutations per
patient). Targeted resequencing of the WGS libraries by MSK-
IMPACT was performed for 44 discordant variants and none
were called, despite a median local depth of sequencing at 469x,
supporting ITH as the basis of the discrepancies (Supplementary
Fig. 3e). Further corroborating ITH, WGS and targeted
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Fig. 1 End-to-end c(WGTS workflow. a Schematic representation of the
end-to-end cWGTS workflow, with information on median-time duration
(in hours) for each step, as determined by a time trial over four consecutive
batches containing n =16 tumors and representation of dedicated
resources necessary to execute the workflow. b Comparison of best-
reported turnaround times in literature, from sample collection to results
ready for tumor board review. For our study, we show an orange bar
denoting median time for n =16 samples with minimum and maximum
times denoted with the error bar. These samples were processed post
optimization.

resequencing data of the same FF DNA aliquots identified 10
mutations (VAF: 6-31%), which were not reported by MSK-
IMPACT from the patient-matched FFPE sample. Three of the 10
additional calls were cancer-associated variants (TP53
L265Yfs*81, PPM1D S468*, and HLA-A L102Hfs*73) (Supple-
mentary Fig. 3e).

These validation studies demonstrated that discordant calls
were due to stochastic sampling of heterogeneous tumors2®
(Supplementary Table 4) and concordance between WGS and
MSK-IMPACT is at least 94% (43/47 total discordant) and up to
100% for all 43 mutations in evaluable samples when the same
DNA aliquot was used in both assays.

Germline assessment by MSK-IMPACT?’ identified predisposi-
tion variants in 13 patients and panel RNA assessment with MSK-
Fusion?® identified oncogenic fusion genes in 18 (Supplementary
Tables 5, 6, Fig. 2f). (WGTS captured all 13 germline-predisposition
variants and 18 fusions. Importantly, fusion genes were supported
by data in both WGS and RNA-seq, which offers the opportunity to
orthogonally validate findings within a single workflow (Fig. 2f).
These findings demonstrate that c(WGTS as an integrative assay
allows for the detection of germline, somatic mutations and fusion
genes captured by an array of standard-of-care diagnostic tests.

Technical considerations: optimal depth of coverage for clin-
ical sequencing. Sensitivity for somatic variant detection is
directly dependent on the tumor cellularity of the biopsy and
depth of sequencing coverage. The median cWGS depth was 95x
(range 67-181) and tumor purity ranged from 21% to 100%,
resulting in a median effective coverage of 64x (median depth *
purity estimate). To evaluate optimal depth of sequencing, for
each of 97 tumors with WGS coverage >60x, we generated 298
derivative subsampled BAM files in the range of 100x, 80%, 60x,
and 30-40x (Supplementary Fig. 4a, Supplementary Table 7). De
novo variant calling was performed to assess sensitivity of
detection for clinically relevant findings by MSK-IMPACT and
WGS (n =220), genome-wide mutations across variant classes,
and TMB (Fig. 3a, Supplementary Fig. 4b, c). Detection sensitivity
correlated with effective coverage and was affected by variant
class with slightly less sensitivity for SVs (Fig. 3a). Of the onco-
genic findings, >91% were captured at 30-40x and >98% were
recalled at 60-100x (Fig. 3a). With lower sequencing coverage,
the power to detect subclones is limited (VAF range: 4.3-31%,
median = 9.5%) (Fig. 3b, c). Optimal sensitivity for genome-wide
mutation calling across variant classes was attained at >80x and
increased with coverage. Figure 3c provides an overview of
variant-detection sensitivity by depth of sequencing coverage,
tumor purity, and variant clonal representation.

Findings of biological and clinical relevance detected by
cWGTS only. The clinical relevance of c(WGTS findings that were
not identified by clinical panel sequencing (MSK-IMPACT#, MSK-
fusion?8 and panel testing of 88 cancer-predisposition genes?’) was
determined by a multidisciplinary molecular tumor board. Con-
sistent with recent studies”-!1-16, (cWGTS analyses identified at least
one additional cancer-associated oncogenic variant in 54% of
patients (n=62). Of these, 33 patients had one or more findings
that were of direct clinical relevance, including 7 diagnostic (21%),
15 prognostic (45%), 5 therapy-informing (15%), 5 previously
undescribed oncofusions (15%), and 6 germline (18%) biomarkers
(Fig. 4a, Supplementary Table 3). Most additional relevant findings
were explained by the detection of SVs and fusions and genome-
wide mutation signatures (Fig. 4b).

We further inferred the portion of additional findings that
would be captured by WES by masking results to the coding
regions of genes. Of the 62 patients with incremental findings by
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Fig. 2 Analytical validity of cWGTS for clinical biomarkers. a The left barplot depicts the proportion of patients with therapy-informing, oncogenic, or no
relevant findings reported by MSK-IMPACT as defined by OncoKb (Levels 1-4). The right barplot shows the breakdown (0,1,2) of the highest level of
OncoKb annotation in the study cohort. b Barplot demonstrating breakdown of the highest OncoKb level by the number of informative biomarkers in study
cohort. ¢ Barplot demonstrating breakdown of the highest OncoKb level by disease class. d Scatterplot shows the comparison of variant allele frequency
(VAF) of MSK-IMPACT variants as reported by MSK-IMPACT (x axis) and absolute VAF estimates by pileup in WGS data (y axis) (Pearson correlation).
Discrepant mutations are observed along the x axis. Mutations are color-coded by call status, where Both is called in both assays and ITH is mutations that
were not called in higher- depth resequencing and/or had proportion test p-value < 0.05. e Barplot demonstrating breakdown of MSK-IMPACT mutations,
observed in both WGS and MSK-IMPACT or only MSK-IMPACT (ITH). f Validation of oncogenic fusions reported by MSK-IMPACT/MSK-Fusion in
cWGTS. The asterisk indicates that the SS18-SSX1 that was reported by MSK-Fusion was reported as SS18-SSX2 by RNA-seq and supported by spanning
reads in WGS. Main oncotree disease code listed underneath for each patient (ARMS alveolar rhabdomyosarcoma, CHS chondrosarcoma, DLGT diffuse
leptomeningeal glioneural tumor, DSRCT desmoplastic small round-cell tumor, ES Ewing sarcoma, MBL medulloblastoma, MFH undifferentiated
pleomorphic sarcoma/malignant fibrous histiocytoma/high-grade spindle-cell sarcoma, RCSNOS round-cell sarcoma, NOS, SYNS synovial sarcoma, US
undifferentiated sarcoma, USPC undifferentiated sarcoma of the peritoneal cavity). Source data for panels a-e and f are provided in Supplementary Data 4
and 6.

cWGTS, RNA-seq and WES alone would only capture events in
10 (16%) and 8 (n = 13%) patients, respectively, or in 17 patients
when combined (Fig. 4a, Supplementary Table 3). Thus, only 27%
of the findings in c(WGTS could be captured by WES and RNA-
seq as the majority of additional findings were attributed to SVs.

Rare variants in established cancer genes. We identified seven
clinically relevant findings targeting known rare cancer genes
(Supplementary Tables 5, 8). Of these, three were somatically
acquired and included a disease-defining mutation of KBTBD4
(p-R313_M314insPRR) in a pineal parenchymal tumor of
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Fig. 3 Assessment of optimal coverage for WGS. a Barplots demonstrating sensitivity of variant detection and 95% confidence intervals (error bars) by
coverage depth (100x, 80x, 60x, and 30-40x) from left to right for: 1. clinically relevant events detected by MSK-IMPACT and WGS (n = 220), 2. genome-
wide SNVs, 3. genome-wide indels, and 4. genome-wide SVs. Only data from samples with original median coverage >100x (n = 32) are shown. Red dots
indicate overall sensitivity of all mutations across all BAMs at the same subsampling level. b Histograms of variant allele frequencies for each subsampling
level for a representative sample in the study cohort (H135973), showing loss in sensitivity to detect subclonal mutations at lower sequencing depth of
coverage. ¢ Scatterplot of effective local coverage vs VAF in subsampled BAMs for the clinically relevant calls from MSK-IMPACT. Variants called in
subsampled BAMs are shown with circles, while the missed variants are denoted with X's. Trendline shows the cumulative binomial distribution for
obtaining at least 2 variant reads, given the effective coverage and variant allele fraction. Source data for panels a, ¢ are provided at the data repository.

Raw data for panel b can be accessed at the dbGAP study.

intermediate differentiation23%, a SETBPI (p.D868N) mutation
in a germ cell tumor, and a SIXI mutation (p.Q177R) in a Wilms
tumor3!. Additionally, clinically relevant germline variants were
detected in four cancer-associated genes, including an SBDS
splice-site mutation (c.258 42T >C) in a rhabdomyosarcoma,
BARDI p.E652fs*69 in a neuroblastoma, EP300 p.A2259fs*20,
and EXT2 p.W414* in two osteosarcoma patients (Supplemen-
tary Table 5). These results demonstrate the utility of c(WGTS in
capturing somatic and germline variants in rare cancer genes not
routinely evaluated in targeted panels®*.

Fusion genes. Eight in-frame fusion genes were identified from
WGS and RNA-seq in patients with no prior findings on clinical
testing (Supplementary Fig. 5, Supplementary Table 6), 5 of
which were not described before. Of diagnostic relevance, we
identify: 1. a t(2;6) (PAX3-FOXO3) translocation changing

diagnosis to alveolar rhabdomyosarcoma (ARMS) in a patient
who was diagnosed with embryonal rhabdomyosarcoma (ERMS)
in the absence of the cardinal ARMS fusions (PAX3-FOXOI
and PAX7-FOXOI)3% (Fig. 5a, b), 2. a UACA-LTK fusion in
a metastatic papillary thyroid carcinoma33, and 3. a pathogno-
monic SH3PXD2A-HTRAI fusion establishing a diagnosis
of schwannoma in a patient evaluated for relapsed stage-IV
neuroblastoma34.

Of potential therapeutic relevance, we identified an NTRK3-
SLMAP fusion in a neuroblastoma patient. Activating NTRK3
fusions are promising therapeutic targets for TRK inhibitors, with
activity seen across pediatric and adult cancers®>. However,
screening for NTRK fusions is not routinely performed across all
disease indications. Additional undescribed fusions included
EPC2-AFF3 and MANIA2-ACBD6 identified in two patients
with undifferentiated sarcoma, and a CITED2-MGA fusion in a
round-cell sarcoma not otherwise specified.
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Fig. 4 Additional relevant findings detected by cWGTS as compared with standard of care. a Heatmap of additional relevant findings by cWGTS colored
by what technology (WES, WGS, and RNA-seq) may detect each event. Columns represent patients, while rows are clinical event types. The asterisks for
Germline indicate pathogenicity supported by mutational signatures. b (top) Stacked-bar breakdown of patients with clinically relevant findings by assay.
The blue areas (solid or meshed) represent patients with relevant findings from targeted sequencing (RNA and DNA), while the orange areas (solid or
meshed) are for patients with findings from cWGTS. The blue/orange mesh indicates patients that had relevant findings from both targeted sequencing
and WGTS. (bottom) Stacked-bar breakdown of findings specific to cWGTS from the patients in the orange section (solid or meshed) from top. The
relevant findings are colored by event type. SV, structural variant. TMB, tumor mutation burden. MSI, microsatellite instability. Small Mut, small mutations,
including substitutions and insertion/deletions. Viral, viral integration. Source data for panels a, b are provided in Supplementary Data 3.

Structural variants targeting tumor suppressor genes. Struc-
tural variations of established prognostic relevance3® were
observed in our cohort providing insights of clinical relevance.
cWGTS mapped events in TERT and ATRX in 8 (28%) and 5
(17%) neuroblastoma patients, respectively. Both TERT and
ATRX are increasingly considered as therapy-defining risk-
stratification biomarkers for neuroblastoma3’. The TERT SVs
could only be identified by cWGTS, and only % of the ATRX
deletions were reported by MSK-IMPACT*.

We also observed recurrent SVs targeting the tumor suppressor
gene DLG2 in 15/29 OS patients3® and 3/29 neuroblastoma, of
which 6 had homozygous deletions (Supplementary Table 9).
While DLG2 has been characterized in osteosarcoma$, our
findings demonstrate that DLG2 SVs are also recurrent in
neuroblastoma warranting further investigation in future studies.

Integration of RNA-seq and WGS for variant annotation.
Interpretation of complex SVs in noncoding regions of the gen-
ome presents a major challenge for reporting of WGS findings.
cWGTS enables the concomitant detection of SVs and assessment
of the transcriptomic consequences of the affected loci. For
example, a chromoplexy event resulting in overexpression of the
MYB oncogene®® through “hijacking” of an NFIB enhancer
(Fig. 5¢, d) was detected in an adenoid cystic carcinoma without
informative clinical sequencing findings. While MYB over-
expression is a cardinal feature of adenoid cystic carcinomas,
MYB fusions are identified in only 30% of cases using conven-
tional diagnostic assays®®. Integration of gene expression data was

critical to the annotation and reporting of this complex non-
coding SV as the disease defining diagnostic biomarker.

Similarly, among 29 osteosarcoma patients, we identified TP53
mutations in 12 and mapped noncoding SVs targeting the TP53
locus in 13. Of these, only 3 were reported by MSK-IMPACT
(Fig. 5e). Integration with RNA-seq demonstrated that TP53 SVs
correlated with loss of TP53 expression, validating their
functional relevance (Fig. 5f). Wild-type TP53 represents an
inclusion criterion for p53 pathway modulating drug trials#0.
Here, we show that in the absence of c(WGTS, patients with loss
of TP53 by SVs, which have been described in diverse cancers,
could be erroneously diagnosed as TP53 wildtype with implica-
tions for assessment of treatment options*’. We did not identify
germline SVs targeting the TP53 locus.

Taken together, our findings illustrate the necessity to combine
RNA and DNA analyses in variant detection, annotation, and
prioritization for clinical c(WGTS reporting. In our automated
workflow, we interrogate DNA mutations for corroborating
evidence in the RNA. All recurrent fusion genes reported by panel
RNA-seq assays as well as the 8 additional driver fusion genes
were orthogonally detected by both WGS and RNA-seq
(Supplementary Fig. 5). Furthermore, integration of gene
expression data to SV findings resolved functional consequences
of SVs targeting noncoding regions on the genome (e.g., MYB
enhancer hijacking and TP53 inactivation).

Global gene expression signatures were further used to cluster
samples by tumor type, providing further opportunity to resolve a
patient’s diagnosis (Supplementary Fig. 6a). Last, in the 101 patients
with RNA-seq data, we identified on average 18 gene expression
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Fig. 5 Integration of DNA and RNA findings for variant annotation. a Top panel shows absolute copy number on the y axis and the structural variants
(SVs) that result in PAX3-FOXO3 fusion in patient H134768. Lower panel displays RNA fusion product created by the corresponding genomic SVs. b tSNE
clustering of methylation data from rhabdomyosarcoma samples color-coded by disease subtype (ARMS: alveolar, ERMS: embryonal, SCRMS: spindle cell,
and SRMS: sclerosing). The patient harboring the PAX3-FOXO3 fusion clusters with the ARMS samples. ¢ Top panel shows the chromoplexy event among
chromosomes 6, 9, and 18, resulting in the localization of NFIB enhancer to the MYB locus in patient H133676. Lower panel displays H3K27me3 chromatin
marks from Drier et al., Nature Genetics 2016. d Boxplot shows the MYB expression in transcripts per million (TPM) across the cohort. Center line
indicates the median and whiskers extend within +/—1.5x the interquartile range (IQR) from the box. The patient with MYB-NFIB event (H133676) is
highlighted in orange, demonstrating that the SV event in panels ¢ associates with overexpression of MYB, validating the SV as an enhancer-hijacking
event. e Diagram of SV events targeting TP53 gene body in osteosarcoma patients (n =12, the 13th patient’s event breakpoints fall outside of the gene
body). SVs are shown as arrows with absolute copy number on the y axis (gray dots) overlaid over the exonic structure of TP53 (TRA: translocation, DUP:
duplication, DEL: deletion, INV: inversion). f Boxplot shows the comparison of TP53 expression in RNA between TP53-rearranged samples and those
without any rearrangement with a center line indicating the median and whiskers extending within +/—1.5 x the IQR (two-sided Mann-Whitney U test,
p =1.645e-03). Raw data for panel a-c can be accessed at the dbGAP study. Source data for panel e are provided in Supplementary Data 9. Source data for

panels d, f are provided at the data repository.

biomarkers per sample (range = 1-99)16 (Supplementary Table 10).
However, the evidence with regard to the clinical utility of such
expression biomarkers remains to be validated. To this end, we
performed a systematic interrogation of genes with aberrant
expression with known tissue-specific expression patterns and SV
or fusions detected from cWGTS. Overall, only 8% of the expression
biomarkers were associated with an acquired SV or fusion gene,
demarcating a subset of high-confidence expression biomarkers
(average per patient = 1, range = 0-10). This limits the number of
patients in our cohort with an expression biomarker supported by
an SV to 54% (n = 55) (Supplementary Fig. 6b). Demonstrating the
utility of this integrative analysis, we identified a concomitant KRAS
amplification and overexpression in two patients with no clinically
relevant biomarkers (H135462 and H195916) by clinical testing. Of
note, in both patients, the amplification was not reported by MSK-
IMPACT pointing to the lower sensitivity to detect copy number
changes by panel-based assays.

Integration of germline mutations to somatic mutation sig-
natures for variant annotation. Annotation of germline variants
is restricted to recurrent events in population databases, thus
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limiting interpretation for rare founder events. For each genome in
our cohort, we quantified the proportion of mutations attributed to
each of 73 reference mutation signatures!?. Two of three patients
with a germline mutation in DNA repair genes further harbored
mutation profiles suggestive of DNA repair deficiency. Patient
H135421 had a pathogenic variant in MUTYH and somatic loss of
the second allele. About 42% of the mutations were attributed to
the MUTYH signature SBS3610 (Fig. 6a). Patient H135466 had a
pathogenic variant in PMS2 (c.538-1G > C) with loss of the wild-
type allele by LOH. The tumor was MSI high with hypermutation
(TMB =11.23, indels =90,246, SNVs =17,840, and SVs=44),
enrichment of T > C mutations, and repeat-mediated indels char-
acteristic of PMS2 deficiency!? (Fig. 6b). In contrast, patient
H135073 harbored a variant of unknown significance (VUS) in
PMS2, a medium MSI score (7.23), and low mutation burden (1.30
Muts/Mb) without evidence of a PMS2 signature (Fig. 6¢). These
findings demonstrate the utility of mutation signatures in the
assessment of germline mutations in DNA repair genes.

To illustrate this point, in a 12-year-old osteosarcoma patient
outside the study cohort, cWGTS characterized a hypermutated
genome (TMB=16.7, indel=89,588, SNVs=31,520, and
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Fig. 6 Genome-wide distribution and patterns of somatic mutations for four different patients. a Neuroblastoma patient (H135421) harboring a

pathogenic germline MUTYH variant (c.924 + 3A > C). b Immature teratoma

patient (H135466) with a pathogenic germline PMS2 mutation (c.538-

1G > C). ¢ Malignant peripheral nerve sheath tumor patient (H135073) harboring a germline PMS2 variant of unknown significance (VUS) (p.W841*).
For each patient, the top panel is a Circos plot showing the different types of somatic mutations along the genome. The outermost ring shows the
intermutation distance for all SNVs color-coded by the pyrimidine partner of the mutated base. The middle ring shows small insertions (green) and
deletions (red). The innermost ring shows copy number changes, and the arcs show SVs. Middle panel is a barplot showing the absolute number of
mutations attributed to the five mutational signatures with the highest exposure in the tumor. Bottom panel is a barplot showing the 96 trinucleotide
contexts of SNVs. d Genome-wide distribution and patterns of somatic mutations identified in the patient outside the cohort with recurrent osteosarcoma

(H201472). WGS results show the sample is hypermutated, with enrichment

in SBS26, T > C mutations, repeat-mediated deletions, and MSI unstable.

The patient was found to be harboring a pathogenic PMS2 variant (p.D699H) (repeat deletion: repeat-mediated deletion, m-homology: microhomology-
mediated deletion, deletion other: all other deletions, TRA translocation, DUP duplication, DEL deletion, INV inversion). Raw data for this figure can be

accessed at the dbGAP study.

SVs = 568) enriched in repeat-mediated deletions consistent with
MSTI high status (Fig. 6d). This observation prompted consent for
germline testing, resulting in identification of a PMS2 mutation
(p.D699H) annotated as likely pathogenic/VUS*! and a somatic
loss of the wild-type allele. MSK-IMPACT reported an indeter-
minate MSI status (7.5) yet upon testing validated that the
germline mutation is pathogenic.

These results demonstrate the utility of integrating composite
readouts from ¢cWGTS (germline mutation, allele-specific copy
number, and genome-wide TMB) to deliver corroborating
evidence for the assessment and reporting of germline-
predisposition mutations with implications for family screening,
diagnosis, and treatment.

Genomic alterations of emerging biological and clinical rele-
vance. Recent studies propose telomere length as prognostic
indicators in neuroblastoma among other cancers*>-%. We
recapitulated the established associations between ATRX and
TERT mutations to telomere length®4” (Supplementary
Fig. 7a-c). ATRX mutations were also observed in 8 osteosarco-
mas, with similar associations to telomere length (Supplementary
Fig. 7c). Given the association between adverse risk mutations
and telomere length, delineation of the independent prognostic
value warrants analyses of data that concomitantly map these
mutations, SVs, and telomere length alongside established pre-
dictors of outcomes.

We detect chromothripsis2? in 40% of patients, most recurrently
observed in sarcomas (35/58), germ cell tumors (2/4), and less
frequently in neuroblastoma (6/29) (Supplementary Fig. 7d).
Chromothripsis frequently led to TP53 loss (10/29)2%48, amplifica-
tion of MYC, VEGFA, and MDM?2. Additionally, in 2 patients,
chromothripsis resulted in oncogenic fusions (MANIA2-ACBD6
and PAX3-FOXO3) (Supplementary Fig. 7e). Previous studies have
proposed an association between whole-genome duplication
(WGD) and poor outcomes in cancer?!. WGD was seen in 42/
114 patients with an enrichment in sarcoma (24/54), carcinomas
(3/7), and neuroblastoma (11/30) (Supplementary Fig. 7).

Biological and clinical implications of tumor mutation burden
across variant classes. Panel-based approaches derive estimates
of TMB, MSI scores, and mutation signatures*, whereas WGS
directly quantifies genome-wide mutation burden across all
variant classes (Fig. 7a, b and Supplementary Fig. 8a). We
observed higher overall (8.3-fold) TMB estimates in our cohort,
relative to reports in pediatric cancer (Fig. 7a)!048:50, TMB was
higher in therapy-exposed compared with treatment-naive
patient samples (0.1-11.2 in treated vs 0-2.7 treatment-naive,
Mann-Whitney test, p = 1.892e-04) and correlated with evidence
of treatment-related signatures (i.e., temozolomide, platinum)
(Supplementary Fig. 8b)!101, observed in 45/114 patients point-
ing to persistence of clones that were exposed to and survived
cancer therapy>2.
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Fig. 7 Genome-wide mutational burden in the context of immunotherapy. a Distribution of coding tumor mutational burden (TMB) as assessed by WGS
across the cohort (n=114), colored by treatment status of the patient at the time of sampling. Dotted line indicates median-coding TMB (SNVs and indels)
as previously reported by the Zero Childhood Cancer study. Patients are grouped by disease category (NB: neuroblastoma, CNS: central nervous system, C:
carcinoma, WT: Wilms tumor, Germ: germ cell tumor, H: hepatoblastoma, O: other). Carcinoma patients C1 and C2 who responded to immunotherapy are
labeled. b Distribution of structural variant (SV) (right) and gene fusion (left) burden across the samples with both WGS and RNA-seq available (n =101).
Patient C2 had a poor-quality RNA sample, so clonal fusions from another time point from the same patient are shown. ¢ (top) Genome-wide distribution
and patterns of somatic mutations for tumor C1 (H135022), patient with metastatic adrenocortical carcinoma, depicting high SV burden. Circos plots are
shown as described in Fig. 6. PET imaging shows resolution of a large pulmonary metastatic lesion (red arrow) following treatment with nivolumab and
ipilimumab. d Genome-wide distribution and patterns of somatic mutations for H135462, a 14-year-old with relapsed refractory poorly differentiated clear-
cell carcinoma with high TMB and SV burden. Circos plots are shown as described in Fig. 5. PET imaging shows resolution of multiple metastatic lesions
(red arrows) following treatment with pembrolizumab. Source data for panels a and b are provided at the data repository. Raw data for panel ¢, d can be
accessed at the dbGAP study.

Patients H135022 (adrenocortical carcinoma) and H135462
(clear-cell carcinoma) had progressive on-treatment metastatic
disease and in the absence of therapy-informing biomarkers by
clinical testing were at the end of their therapeutic options. c(WGTS
analyses revealed a profoundly rearranged genome scoring these
two patients as the highest in fusion burden and SV burden in the
cohort (Fig. 7b-d). H135022 was treated with checkpoint blockade

(nivolumab/ipilimumab), resulting in complete response after three
cycles of therapy, and is disease-free 26 months after therapy
cessation (Fig. 7c), whereas patient H135462 was treated with
pembrolizumab, achieved a complete response after 6 cycles, and
remains disease-free 10 months after therapy (Fig. 7d).

These findings demonstrate the value of cWGTS to fully assess
the level of genomic instability across variant classes and
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highlight the need to further evaluate SV and fusion gene burden
as biomarkers of response to immune checkpoint blockade
therapies.

Derivation of comprehensive WGS profiling in cell-free DNA.
Our study evaluated key technical considerations of c(WGTS in FF
biopsies, as an optimal source of tumor DNA. However, limited
biopsies may restrict access to cWGTS for all patients. Cell-free
DNA (cfDNA) from blood plasma represents an alternative source
of DNA for tumor profiling®3. Recently, cfDNA NGS profiling
including WGS has been used to detect tumor-specific CNAs and
fragmentation patterns in pediatric tumors®*—%. However, the
potential of high-depth WGS in tissue-naive identification of the
genetic changes (SNVs, indels, and SVs) in a patient’s cancer
genome from cfDNA has been largely unexplored.

In an exploratory analysis, we performed WGS from matched
FF samples and cfDNA from seven patients collected at the time
of tumor biopsy (Supplementary Table 11). cfDNA genome-wide
coverage ranged from 94 to 102x (Fig. 8a) with a wide range of
tumor content in ¢fDNA ~10-83% (Fig. 8b). To assess the
suitability of cfDNA for unbiased genome-wide mutation
detection, we performed de novo mutation calling in cfDNA
for all variant classes (SNVs, indels, SVs, and CNA) and
compared the results to FF analyses.

WGS from cfDNA did not present technical limitations in data
generation or false-positive variant calling across mutation
classes. Derivation of high-quality variant calls was contingent
upon the quantity of circulating tumor DNA (ctDNA). In four
patients with ctDNA content sufficient for CNA detection, we
establish good concordance between the FF and ¢fDNA CNA
profiles (Fig. 8¢, Supplementary Fig. 9a-g). Strikingly, for patients
with high c¢tDNA content (i.e., IH158182), we derived a near-
complete picture of the genome-wide mutation patterns demon-
strating that cancer genomic landscape can be fully recapitulated
by ¢fDNA WGS (Fig. 8d). Importantly, for patient H135967, we
showcase that even with an estimated ctDNA content of 20%, the
same threshold used for analyses of FF material, we can detect all
the known oncogenic events in the FF sample across variant
classes, which include a TP53 substitution, MYC and CCNEI
amplifications, and SVs targeting ARID1A and ATRX (Supple-
mentary Fig. 9¢).

We further demonstrate the potential of cfDNA to capture a
comprehensive representation of different types of variants across
the tumor phylogeny compared with solid biopsies (Supplemen-
tary Table 11) through the detection of cfDNA-specific subclones
(Fig. 8e, Supplementary Fig. 9a-g). These results provide the
proof-of-concept for the feasibility of deriving tumor-agnostic
comprehensive WGS profiling from a liquid biopsy.

Discussion

We present a comprehensive technical assessment for cWGTS
implementation in clinical care practice in oncology. We
demonstrate that using a single integrated workflow, c(WGTS
captures the full spectrum of cancer-associated genomic altera-
tions that are assessed using a diversity of standard-of-care
diagnostic assays. With implementation of best laboratory and
computational practices, we execute an end-to-end sample-to-
report turnaround time within 9 days, which is aligned to clinical
needs for diagnosis and care decisions, and is comparable to
infrastructures of scale!8. Despite 5-10-fold lower sequencing
coverage compared with panel-based assays, we demonstrate that
in matched biopsies, cWGTS recovered all clinically reported
variants by high-depth targeted profiling assays. We establish
>80x coverage and tumor purity of at least 20% to attain this
sensitivity. However, this sets a stringent quality threshold on

fresh frozen tumor specimens that are not as broadly available as
FFPE. However, a major limitation of WGS in FFPE is a high
error rate in genome-wide calls®’. To this end, we provide proof-
of-concept feasibility data demonstrating that comprehensive
WGS profiling can also be leveraged in patients who have high
cfDNA content in circulation at the time of diagnosis or relapse.
Our findings pave the way for future studies focused on analytical
validation and optimizations of comprehensive tumor-agnostic
WGS profiling from ¢fDNA for diagnostic purposes.

To support cWGTS variant annotation and prioritization, we
implemented an analytical workflow that learns from variant
annotation databases and integrates signals from germline
mutations, somatic DNA, and RNA-seq findings. This allows us
to annotate, validate, and prioritize SVs of diagnostic (e.g., MYB
enhancer hijacking), prognostic (e.g., ATRX/TERT), and ther-
apeutic relevance (e.g., TP53 loss-of- function SVs). Consistent
with recent literature for pediatric and rare cancers”>1>16>8, >50%
of patients had additional findings of established biological or
clinical significance. The majority of these findings were SVs in
cancer genes, fusion genes, and genome-wide mutation signatures
that targeted panels are not optimally designed to identify.
Importantly, we demonstrate that only a minority of such addi-
tional findings would be captured by WES and RNAseq alone or
in combination. Larger cohort studies are warranted to determine
the incidence and prevalence of clinically relevant biomarkers
captured by c(WGTS.

The clinical relevance of c(WGTS extends beyond that of rare
cancers®®. We show that by cWGTS, we detect the full spectrum
of cancer-associated mutations in 99% of patients. The vision of
patient-tailored medicine warrants the delivery of clinical deci-
sions that extend beyond a single druggable biomarker and rather
consider the composite readouts from a patient’s cancer genome
that inform on a patient’s a priori risk of developing cancer,
diagnosis, likelihood of treatment response, risk of progression,
and therapeutic vulnerabilities. With increasing implementation
of ¢WGTS on well-annotated clinical specimens!>16%8, our
ability to interpret cWGTS findings will improve, and by exten-
sion, the clinical utility of cWGTS will expand. As the economic
barriers to c(WGTS are mitigated in time, a single comprehensive
assessment of the cancer genome is positioned to replace multiple
targeted diagnostic tests in prospective clinical sequencing®.

Methods

Study participants. Patients who were seen within the Department of Pediatrics at
Memorial Sloan Kettering Cancer Center with presumed or established solid tumor
malignancies (including CNS tumors) were eligible to enroll on an institutional
prospective tumor/germline-sequencing protocol (ClinicalTrials.gov number,
NCT01775072) with informed consent from the patients or their guardians. This
study was approved by the MSKCC Institutional Review Board/Privacy Board.
Patients with newly diagnosed as well as relapsed/refractory disease were eligible.
Adults with pediatric-type malignancies or rare cancers up to the age of 39 were
also eligible to enroll.

Clinical profiling. DNA extracted from formalin-fixed paraffin-embedded (FFPE)
tumor and blood samples (as a matched normal) was sequenced using MSK-
IMPACT, an FDA-approved targeted panel used to sequence patients’ tumors at
MSKCC. MSK-IMPACT captures protein-coding exons of 468 cancer-associated
genes, introns of frequently rearranged genes, and genome-wide copy number
(CN) probes?. Tumor and normal samples were sequenced at 800x and 600x,
respectively. Established pipelines followed by manual review were used to char-
acterize germline and somatic mutations, CN variants, and if targeted, genomic
rearrangements as previously described!. Germline data for alterations in cancer-
predisposition genes were analyzed in 88 genes as previously described?. For select
tumor indication MSK-Fusion?, a New York State-approved RNA-capture assay
that targets common RNA fusion genes in solid tumors was also performed.
Clinically relevant findings were annotated using OncoKb tiers 1-4%.

Research-sequencing approaches
DNA extraction. For 114 subjects enrolled in the study, tumor DNA was extracted
from fresh frozen (FF) or OCT tissue biopsies and matched normal DNA from
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H158182. (left) Scatterplot of cancer cell fraction (CCF) values for all substitutions color-coded by the estimated cluster. (middle) Phylogenetic tree
representation of clusters annotated with clinically relevant variants. (right) Clone-level mutational signature analysis showing the proportion of mutations
attributed to each mutational signature with total numbers of mutations in each cluster shown on the right. Whereas drivers associated with these clones
could not be determined, cfDNA-specific SNV calls recapitulated mutation signatures in the FF sample, and were enriched for platinum-associated
mutational signatures pointing to the existence of therapy-exposed tumor subclones in circulation. (repeat deletion: repeat-mediated deletion, m-
homology: microhomology-mediated deletion, deletion other: all other deletions, TRA: translocation, DUP: duplication, DEL: deletion, INV: inversion).
Source data for panels a, b are provided in Supplementary Data 11. Source data for panel ¢ are provided at the data repository. Raw data for panels d, e can
be accessed at the dbGAP study.

buffy coat using the DNeasy Blood & Tissue Kit (Qiagen catalog # 69504) ml) in 360 pl of Buffer ATL at 55 °C. DNA isolation proceeded with the DNeasy
according to the manufacturer’s protocol. FFPE tissue was deparaffinized using Blood & Tissue Kit (QIAGEN catalog # 69504) according to the manufacturer’s
heat treatment (90 °C for 10" in 480 uL PBS and 20 pL 10% Tween-20), cen- protocol modified by replacing AW2 buffer with 80% ethanol. All DNA was eluted
trifugation (10,000 x g for 15’), and ice chill. Paraffin and supernatant were in 0.5X Buffer AE.

removed, and the pellet was washed with 1 mL of 100% EtOH followed by an

incubation overnight in 400 ul of 1 M NaSCN for rehydration and impurity Whole-genome sequencing. After PicoGreen quantification and quality control by

removal. Tissues were subsequently digested with 40 pl of Proteinase K (600 mAU/  Agilent BioAnalyzer, 500 ng of genomic DNA were sheared using a LE220-plus
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Focused-ultrasonicator (Covaris catalog # 500569) and sequencing libraries were
prepared using the KAPA Hyper Prep Kit (Kapa Biosystems KK8504) with
modifications. Briefly, libraries were subjected to a 0.5X size select using aMPure
XP beads (Beckman Coulter catalog # A63882) after post-ligation cleanup.

PCR-free libraries were pooled equivolume for sequencing. Samples were run
on a NovaSeq 6000 in a 150-bp/150-bp paired-end run, using the NovaSeq 6000
SP, S1, S2, or S4 Reagent Kit (300 cycles) (Illumina). Tumors were covered to an
average of 95X (range = 67-181) and normals at 50X (range = 32-159).

RNA extraction. Tumor tissue from FF biopsies was homogenized in 1 mL TRIzol
Reagent (ThermoFisher catalog # 15596018) followed by phase separation with
200 pL chloroform. RNA was extracted from the aqueous phase using the miR-
Neasy Micro Kit (Qiagen catalog # 217084) on the QIAcube Connect (Qiagen)
according to the manufacturer’s protocol with 350 pL input. Samples were eluted in
15 uL of RNase-free water.

Whole-transcriptome RNA sequencing. After RiboGreen quantification and quality
control by Agilent BioAnalyzer, 18ng-1ug of total RNA with an RNA integrity
number varying from 1 to 9.9 underwent ribosomal depletion and library pre-
paration using the TruSeq Stranded Total RNA LT Kit (Illumina catalog # RS-122-
1202) according to instructions provided by the manufacturer with 8 cycles of
PCR. Samples were barcoded and run on a HiSeq 2500 in Rapid Mode or
HiSeq4000 at PE100 or on a NovaSeq 6000 at PE150, using the HiSeq Rapid SBS
Kit v2, HiSeq 3000/4000 SBS Kit, or NovaSeq 6000 SP, S1, S2, or S4 Reagent Kit
(300 cycles) (Illumina). Sequencing was performed to achieve a median of 83
million paired reads per sample.

¢fDNA extraction and whole-genome sequencing. Cell-free DNA (cfDNA) was
extracted from plasma using MagMAX cfDNA isolation kit. After PicoGreen
quantification, 47-500 ng of cfDNA were used to make sequencing libraries using
the KAPA Hyper Prep Kit (Kapa Biosystems KK8504) with 4 cycles of PCR and
pooled equimolar. One sample with sufficient input was prepared PCR-free.
Samples were run on a NovaSeq 6000 in a PE150 run, using the NovaSeq 6000 SBS
vl Kit and an $4 flow cell (Illumina). The average coverage per sample was 91X.

Workflow optimization. In order to achieve stable turnaround times of 9 days,
dedicated resources and optimizations were needed, such as to minimize human
steps in the process. In the sequencing core, lab technicians along with sequencers
were needed to process and quality-control the incoming samples. A high-
throughput connection was used to transfer sequencing data to the bioinformatics
core with automatic notifications. An ETL cron job was developed to synchronize
relevant deidentified metadata regularly from clinical systems. The data and
bioinformatics analyses were tracked and automated using the Isabl platform®. In
order to achieve stable algorithm turnaround times, parallelization was often split
by the estimated amount of work (i.e., number of reads; https://github.com/
papaemmelab/split_bed_by_reads) rather than genomic length. Processing was
performed within a heavily shared internal high-performance computing (HPC)
cluster with around 4000 cores. The results were automatically curated and
prioritized using both cached databases and live APIs in order to reduce
interpretation time.

Bioinformatic analysis. Analysis of (WGTS data was executed using Isabl platform®
and included: 1. data QC; 2. ensemble variant calling for germline and somatically
acquired mutations from at least two out of three algorithms run for each variant
class; 3. signature extraction (i.e., mutation signatures, microsatellite-instability
score, and gene expression); 4. variant classification; and, 5. the generation of a
clinical prototype summary report. Briefly, upon completion of each sequencing
run, Isabl imports paired tumor-normal FASTQ files, executes alignment, quality-
control algorithms, and generates tumor purity and ploidy estimates. For samples
with sufficient coverage (>60x) and tumor purity (>20%), ensembl variant calling
for each variant class (substitutions, insertions and deletions, and structural var-
iations) is performed. High-confidence somatic mutations were classified with
regard to their putative role in cancer pathogenesis and statistical post-processing
enables the derivation of microsatellite-instability scores and mutation signatures®.
RNA-seq data were independently analyzed for acquired fusions and gene
expression metrics in a subset (1= 101). For a subset of patients with consent
(n=100) for germline analyses, the normal genome was also independently
analyzed.

Clinical relevance of mutations in common cancer genes was annotated using
OncoKb, COSMIC, Ensembl Variant Effect Predictor, VAGIENT, gnomAD, and
ClinVar databases’?® (refs. 0-63). Additionally, integration of signals across data
modalities (germline, somatic mutations, somatic signatures, CN segments, and
gene expression profiles) was executed to further determine the significance of
observed events. Population filtering, database comparison, and somatic data
integration were performed using methods in accordance with the American
College of Medical Genetics and ClinGen Somatic/Germline Data Integration
subcommittee®-%, Last, the findings were automatically embedded into a single-
page summary (html) report containing high-level clinical data, quality-control
metrics, genetic findings, and relevant data-visualization plots (i.e., CIRCOS plots,
mutation signatures, and gene expression clustering by tSNE). Putative findings of

clinical relevance identified by WGS and RNA-seq were reviewed by an
interdisciplinary team of clinical oncologists, molecular pathologists, and cancer
genomics experts. Typically 8-10 cases were reviewed in an hour-long tumor board
meeting that was held biweekly. The findings were categorized with regard to their
relevance in clinical practice as 1. diagnostic, 2. risk predisposition for germline
variants, 3. prognostic, 4. therapy-informing, 5. pathogenic, 6. likely pathogenic, or
7. variant of unknown significance (VUS).

Pipeline overview

Whole-genome/transcriptome alignment and quality control. Whole-genome
paired-end reads were aligned to human reference genome (GRCh37d5) using
BWA-mem (v0.7.17) as a part of the pcap-core v2.18.2 wrapper (https://github.com/
cancerit/PCAP-core)®”. The wrapper includes marking of duplicates using Picard.
Whole-transcriptome sequencing reads were aligned using Spliced Transcripts
Alignment to a Reference, STAR (v2.5.4b, https://github.com/alexdobin/STAR) with
Ensembl 75 for transcript information®®. Upon alignment, BAM files for tumor/
normal WGS and tumor RNA-seq data for each individual were compared using
Conpair® in order to detect potential sample swaps and cross-individual con-
tamination. Genome-wide median coverage was calculated using Mosdepth’ with
minimum mapping quality of 20. Tumor purity and ploidy was estimated using
Battenberg (https://github.com/cancerit/cgpBattenberg) and somatic substitution
calls. Additionally, a quality-control report is generated per sample using MultiQC
(v1.9) (https://github.com/ewels/MultiQC) to aggregate alignment and read
statistics from FastQC (v0.11.5) (https://github.com/s-andrews/FastQC), Picard
(v2.25.6) (https://github.com/broadinstitute/picard), and RNA-SeQC (v1.1.8.1)
(https://software.broadinstitute.org/cancer/cga/rna-seqc)”%2°.

Identification of somatic mutations in whole-genome sequences. Somatic alterations
were detected comparing the tumor against the matched normal for each variant
type. All bioinformatic tools were launched using an in-house wrapper. Allele-
specific subclonal CN changes were detected using Battenberg (cgpBattenberg
v1.4.0) (https://github.com/cancerit/cgpBattenberg)’!. Single-nucleotide variants
(SNVs) were identified using Strelka2 (v2.9.1 with manta v1.3.1), (https://github.
com/Illumina/strelka), MuTect2 (gatk:v4.0.1.2),(https://github.com/broadinstitute/
gatk), and CaVEMan (cgpCavemanWrapper v1.7.5) (https://github.com/cancerit/
cgpCaVEManWrapper)”2-74 Variant post-processing was done using default flags
for Strelka2 and MuTect2, while for CaVEMan, cgpCavemanPostprocessing
(v1.5.2) was used filtering for sequencing artifacts with > =3 mutant alleles in at
least 1% of samples within a panel of 100 unmatched blood normal (https://github.
com/cancerit/cgpCaVEManPostProcessing). Small insertions and deletions (indels)
were detected using Strelka2, MuTect2, and Pindel (cgpPindel v1.5.4) (https:/
github.com/cancerit/cgpPindel) and filtered against a panel of 100 unmatched
normals”>. Structural genomic variants (SVs) were identified using SVABA (~v1.0.0
commit 47c7a88) (https://github.com/walaj/svaba), GRIDSS (v2.2.2) (https://
github.com/PapenfussLab/gridss), and BRASS (v4.0.5 with GRASS v1.1.6) (https://
github.com/cancerit/BRASS) using a panel of 100 in-house unmatched
normals’%77.

Finally, microsatellite-instability status was assessed using MSISensor (v0.5)
(https://github.com/ding-lab/msisensor)8.

Variant consolidation and annotation. VCEF files for SNVs and indels were merged
with an in-house wrapper using chromosome, position, reference allele, and
alternative allele. The merged VCFs were annotated with VAGIENT (v3.3.0,
https://github.com/cancerit/VAGrENT) and VEP (v92, https://github.com/
Ensembl/ensembl-vep)®379 VCF files for SVs were merged using MergeSVvcfs
(v1.0.2, https://github.com/papaemmelab/mergeSVvcf). High-confidence muta-
tions were designated as those that were passed by at least 2 callers.

Designation of putative oncogenic mutations. We define a variant as oncogenic if it
represents an established “driver” mutation on the basis of prior literature and
recurrence in cancer genome. For SNVs, indels, and fusion genes, these annota-
tions are derived from OncoKb. For SVs, we annotate events that target known
oncogenes and tumor suppressor genes and use prior literature as reference (e.g.,
for TERT, ATRX, and TP53 SVs).

Identification of germline mutations. Germline single-nucleotide polymorphisms
(SNPs) and indels were detected using Stelka2 and Freebayes (v1.2.0, https://github.
com/ekg/freebayes) with an in-house wrapper. VCF files were merged and anno-
tated using the same procedure used for the somatic variants®). Germline variants
called by both callers were considered high-confidence. Germline variants were
prioritized for review by filtering for recurrence in the current cohort, frequency in
any population of 1000 genomes/Gnomad and ClinVar.

Characterization of gene fusions. Gene fusions were identified using three different
callers: FusionCatcher (v1.0.0, https://github.com/ndaniel/fusioncatcher), STAR-
Fusion (v1.3.1, https://github.com/STAR-Fusion/STAR-Fusion), and FuSeq (v1.1.1,
https://github.com/nghiavtr/FuSeq)81-83. Calls were merged by gene pair and
annotated using FusionCatcher’s databases. Fusions were considered confident if
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called by at least 2 callers. Events were visualized with the plotting functionality by
Arriba (https://github.com/suhrig/arriba)$4.

Gene expression analysis. Gene expression profiles were ascertained in transcripts
per million (TPM) using SALMON (v0.10.0, https://github.com/COMBINE-lab/
salmon)®. tSNE was performed on RNA-seq data from 101 tumors from the
cohort and an in-house reference consisting of 155 pediatric tumors using python
scikit-learn (v0.21.1, https:/scikit-learn.org/) and visualized interactively using
python bokeh (v1.2.0, https://docs.bokeh.org/)3°.

Identification of gene expression biomarkers. Expression biomarkers were assessed
using the methodology outlined by Horak et al.!%. Only actionable genes outlined
in the publication supplementary as assessed by severe overexpression, over-
expression, severe underexpression, or underexpression, were evaluated. An
internal reference cohort of 274 tumor RNA samples was used as a baseline. A gene
was considered over-/underexpressed if expression was in the top or bottom ten
percent of the reference cohort, while severe over-/underexpression was categorized
as expression in the top or bottom five percent.

Calculation of tumor mutational burden. Tumor mutational burden (TMB) was
calculated using high-confidence, somatic substitutions and indels that fall within
coding regions. The totals for these variant classes were combined and then con-
verted to coding TMB using a divisor of 30 to approximate the length of the human
exome in Mb. Values greater than 2 coding mutations per Mb were considered
pediatric high and values greater than 10 coding mutations per Mb were con-
sidered hypermutators, thresholds set by the study in Grobner et al.!e.

Identification of mutation signatures of point mutations. Mutational signature
analysis was performed with the MutationalPatterns package (v1.6.1, https://
bioconductor.org/packages/release/bioc/html/MutationalPatterns.html) and using
the COSMIC Mutational Signatures (v3.1) with the addition of Temozolomide
signature from Kucab et al.57:88,

Assessment of ITH between matched MSK-IMPACT and WGS samples. ITH
between the matched FFPE and FF samples that underwent MSK-IMPACT and
WGS sequencing was assessed by comparing CN changes and substitutions/indels
falling within 468 genes included in MSK-IMPACT. For substitutions/indels, the
clonal representation in the two assays was compared by performing a proportion
test comparing the VAFs reported and adjusting for assay-specific local depth and
purity. Mutations with a p-value <0.05 have a statistically significant difference in
clonal presentation suggesting ITH. CN profiles from MSK-IMPACT generated
using FACETS® were compared with the Battenberg output from WGS. In
patients where DNA was available, resequencing of discordant mutations was
performed using the MSK-IMPACT panel on the same DNA that underwent WGS
sequencing at a median depth of 438X%’. Tumor purity of both assays was taken
into account to mitigate the effects of technical issues on mutation calling.

Inference of clonal structure. Clonal structure was analyzed using high-confidence
SNVs called in each biopsy or the union of SNVs whenever multiple biopsies were
available for a patient. DPClust (v0.2.2, https://github.com/Wedge-Oxford/dpclust)
was used for calculation of cancer cell fraction corrected for purity and local CN, as
well as clustering and assignment of mutations across samples with the exception
of the Gibbs Sampling Dirichlet Process step that was optimized internally”!.
Clonal ordering was deduced using clonevol (v0.99.11, https://github.com/hdng/
clonevol)®!. Mutational signatures were computed in each cluster independently.
Figures were generated with matplotlib (v3.1.0, https://matplotlib.org/).

Estimates of telomere length. The ratio of telomere length in tumor vs normal was
estimated using Telseq (v0.0.2, https://github.com/zd1/telseq)®2.

Derivation of subsampled BAM files and sensitivity assessment. A total of 298 sub-
sampled BAMs were generated using samtools (v1.11, https://github.com/samtools/
samtools) view command with the subsampling option®>. Median coverages were
calculated for the original BAMs using Mosdepth (v0.2.5, https://github.com/
brentp/mosdepth) with mapping quality >20 and then used to calculate fractions to
downsample to approximately 100x, 80x, 60x, and 30x-40x where original cov-
erage was allowed”’. Mosdepth was used to verify that the median coverage of the
subsampled BAM fell within +/—5x of the desired coverage. De novo variant
calling and annotation was then performed independently on the subsampled BAM
files using the same procedure as cWGTS as described above.

¢fDNA tumor content and variant comparison. Tumor content in cfDNA speci-
mens was estimated using Battenberg and manual inspection with the help of SNV
VAF density plots. De novo variant calling was performed independently using the
methods described for identification of somatic mutations in WGS. Further ana-
lysis was done to compare specific clinical variants identified by MSK-IMPACT
using hileup (v1.0.0, https://github.com/brentp/hileup). Clonal structure across
tissue and cfDNA samples was inferred using the same methods as described before
followed by analysis of clone-specific mutational signatures. All mutations across

the clonal structures were then piled up across corresponding FF WGS data to look
for evidence of mutations in both specimens.

Variant curation and characterization of incremental findings from cWGTS. Var-
iant curation of targeted NGS assays was performed as previously described®28. To
assess variants identified by cWGTS, a multidisciplinary team of disease experts,
clinical geneticists, molecular pathologists, and genomics experts assembled reg-
ularly to classify molecular alterations (somatic and germline), mutation signatures,
and gene expression data. Incremental findings of c(WGTS were defined as estab-
lished oncogenic alterations or signatures not identified by matched MSK-
IMPACT somatic or germline NGS (DNA) or ArcherDx targeted NGS (RNA).
Incremental findings were further classified as clinically relevant if they met one of
the following criteria: (1) diagnostic finding—defined as an alteration that provided
justification or an alteration in cancer diagnosis or cancer-subtype diagnosis, (2)
established prognostic finding—defined as an alteration with established prognostic
relevance with robust support from scientific literature, (3) likely pathogenic or
known pathogenic germline- predisposition event, (4) treatment-informing finding
—defined as an alteration that provides direct justification of a therapeutic mod-
ality, or (5) a driver oncogenic fusion.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw data for WGS and RNA-seq data generated in this study have been deposited in
the dbGAP database under accession code phs002620.v1.p. These data are available
under restricted access due to individual privacy concerns. Permanent employees of an
institution at a level equivalent to a tenure-track professor or senior scientist with
laboratory administration and oversight responsibilities may request access through
dbGAP. The requests, which are managed by NCI's Data Access Committee, take less
than 2 days for approval and access is permitted for 12 months. The processed MSK-
IMPACT data are available in a study-specific dataset at cbioPortal [https://www.
cbioportal.org/study/summary?id=mixed_kunga_msk_2022]. Summary and processed
data for the figures are available in the source data file as well as the data repository at
https://github.com/papaemmelab/Shukla_Levine_Gundem. Annotation databases
included public resources such as Cancer Gene Census, OncoKb, ClinVar, 1000genomes,
gnomAD, and Ensembl Variant Effect Predictor (VEP) databases. The remaining data
are available within the article and Supplementary Information file.

Code availability
Scripts for generating the figures are provided at https://github.com/papaemmelab/
Shukla_Levine_Gundem.
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