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Inflammatory bowel disease (IBD), mainly including Crohn’s disease and

ulcerative colitis, seriously affects human health and causes substantial social

and economic burden. The pathogenesis of IBD is still not fully elucidated,

whereas recent studies have demonstrated that its development is associated

with the dysfunction of intestinal immune system. Accumulating evidence have

proven that inflammasomes such as NLRP3 and NLRP6 play a prominent role in

the pathogenesis of IBD. Thus, regulating the activation of inflammasomes

have been considered to be a promising strategy in IBD treatment. A number of

recent studies have provided evidence that blocking inflammasome related

cytokine IL-1b can benefit a group of IBD patients with overactivation of NLRP3

inflammasome. However, therapies for targeting inflammasomes with high

efficacy and safety are rare. Traditional medical practice provides numerous

medical compounds that may have a role in treatment of various human

diseases including IBD. Recent studies demonstrated that numerous

medicinal herb derived compounds can efficiently prevent colon

inflammation in animal models by targeting inflammasomes. Herein, we

summarize the main findings of these studies focusing on the effects of

traditional medicine derived compounds on colitis treatment and the

underlying mechanisms in regulating the inflammasomes. On this basis, we

provide a perspective for future studies regarding strategies to improve the

efficacy, specificity and safety of available herbal compounds, and to discover

new compounds using the emerging new technologies, which will improve our

understanding about the roles and mechanisms of herbal compounds in the

regulation of inflammasomes and treatment of IBD.
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Introduction

Inflammatory bowel disease (IBD), mainly including

Crohn’s disease and ulcerative colitis, is a term to describe a

group of chronic relapsing inflammatory disorders occurred in

the gastrointestinal (GI) tract (1–3). These diseases are

associated with high risks to develop colorectal cancer, thus

extremely affect people’s health and cause serious social and

economic burden (4–6). Recent advances have shown that the

development of IBD is owing to an aberrant and persistent

immune responses to the commensal microflora in the intestine

and colon of genetically susceptible individuals (3), whereas the

exact pathogenesis of these diseases is still not fully elucidated.

The entry of luminal organisms or their products to the lamina

propria can be sensed by the tissue resident immune cells such as

macrophages and dendritic cells, which process and present

antigens to facilitate the activation of adaptive immunity.

Meanwhile, the activation of these cells may produce various

inflammatory mediators, such as pro-inflammatory cytokines

and chemokines, contributing to the amplification of immune

responses in the lamina propria of the GI tract.

As prominent mediators of inflammatory response, the

inflammasomes are considered to be critical regulators in the

development of IBD. Recent studies have demonstrated that the

activation of inflammasomes play an essential role in the

pathogenesis of IBD (7). The aberrant activation of
Frontiers in Immunology 02
inflammasomes and the resultant production of pro-

inflammatory cytokines in colonic macrophages may lead to

an imbalanced inflammatory response and cause tissue damage

in the colon, which may trigger the onset of IBD (see Diagram in

Figure 1). Therefore, targeting inflammasomes may be a

promising strategy for treatment of IBD. A growing body of

studies have shown that targeting IL-1b, a downstream cytokine

activated by inflammasomes, using neutralizing antibodies is

effective in ameliorating colonic inflammation in both animal

models of colitis and IBD patients (8), whereas the high cost of

antibody based therapy may limit its application (9). Some

emerging natural compounds derived from traditional

medicine may provide new options for IBD intervention via

modulating inflammasomes and have been shown to be effective

in an increasing number of studies (10–13). This review aims at

summarizing these studies regarding the role of ingredients or

natural compounds from traditional medicinal herbs in colitis

and related mechanisms, and providing an outlook for future

studies on investigation of IBD targeting therapies.
Inflammasomes are critical
regulators of IBD

Inflammasomes are a group of large molecular weight

multiprotein complexes formed by a sensor protein of the
FIGURE 1

The NLRP3 Inflammasome is an Essential Regulator in the Pathogenesis of Inflammatory Bowel Disease. Some environmental factors cause
epithelial damage, which allows the entry of luminal organisms or their products to the lamina propria, the latter then induces activation of
inflammasomes and production of pro-inflammatory cytokines such as IL-1b and IL-18 in colon macrophages. These cytokines regulate the
adaptive immunity and cause an imbalanced inflammatory response and tissue damage in genetically susceptible individuals (Left). The
activation of NLRP3 inflammasome needs two signals: A stimulation to TLRs or TNF receptors induces transcription and appropriate post-
translational modification of NLRP3 inflammasome components (signal 1). Some extracellular stimulants such as ATP induce inflammasome
assembly (signal 2) and cause autocleavage of caspase-1, which then catalyzes the maturation of precursor of IL-1b, IL-18 and GSDMD, the
latter then regulate the adaptive immunity and cause pyroptosis.
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NOD-like receptor family or HIN-200 family, the adaptor

protein ASC and the effector caspase-1 in response to

stimulation of microbial or damage associated molecular

patterns (14, 15). Upon activation, inflammasome formation

allows autocatalytic cleavage of caspase-1, which then processes

precursors of IL-1b and IL-18 to allow the release of mature

cytokines from cells, which may regulate Th17 and Th1 cells,

respectively, and amplify the immune responses in the tissue.

Meanwhile, the activation of caspase-1 induces a form of

programmed cell death, pyroptosis (16–18), which regulates

the progression of a variety of inflammatory diseases,

including IBD.

To date, a number of PRR sensor proteins, including NLRP3,

NLRP1, NLRC4, AIM2 and Pyrin, have been confirmed to form

inflammasomes and regulate the activation of caspase-1 by many

studies. Moreover, many other PRR sensors, mainly including

NLRP2, NLRP6, NLRP7, NLRP9 (19, 20), NLRP12 and IFI16,

have also been reported to have inflammasome-forming ability,

although these findings need to be further confirmed by

other researchers.

NLRP3 is one of the most studied NOD-like receptors that

can form an inflammasome. The activation of NLRP3 needs two

kinds of stimuli (see Diagram in Figure 1): The first one may

derive from extracellular or intracellular receptors, such as TLRs

or TNF receptors. This stimulus triggers the transcription of

inflammasome associated genes and also induces appropriate

post-translational modifications of the translated proteins,

which facilitate the activation of inflammasome and

subsequent cleavage of cytokine precursors. The second

stimulus may come from the formation of mitochondrial

reactive oxygen species (ROS), K+ efflux, membrane

perturbations, or extracellular ATP, which induces

oligomerization of NLRP3 and triggers assembly of the

inflammasome (18, 21).

A number of recent reports demonstrate that the

overactivation of NLRP3 inflammasome caused by various

genetic abnormalities lead to development of colitis (22–24),

whereas some other studies provide evidence that deficiency of

NLRP3 and inflammasome related genes may induce more

severe colitis in mice (25). Thus, the NLRP3 inflammasome

may play a role in regulating a delicate immune balance in the

colon, loss or overactivation of NLRP3 may both break down the

balance and thus lead to the onset of colonic inflammation (14).

Regulation of NLRP3 inflammasome activation or its

downstream cytokines may be a promising strategy for

treating the IBD. A number of studies have shown that

blockade of IL-1b or IL-1R signaling using antibodies can

effectively ameliorate colon inflammation in Crohn’s disease

and mouse model of colitis (7). However, antibody-based

therapies are challenged by their high cost due to the high

biologic dosage used in treatment and maintenance of diseases,

which lead to a high economic burden to the patients (9).

Moreover, the side effects of antibody-based therapies in
Frontiers in Immunology 03
treatment of IBD, such as serious infection and malignancy

after administration of anti-TNF antibody, has long been

observed and are still significant concerns of current IBD

clinicians, which may limit the application of this type of

therapies (26, 27). Thus, other alternative therapeutic strategies

need to be developed for the intervention of IBD.

Previous studies have reported a number of small molecule

inhibitors of NLRP3 inflammasome, such as MCC950 and CY-

09 (28, 29), while their roles in IBD have not been evaluated.

Studies in recent literature identified numerous new compounds

derived from natural herbs may have a role in suppressing colitis

in animal models through inhibiting inflammasomes. Here, we

summarized the main findings of these studies and discussed the

roles of these compounds in IBD models and the underlying

mechanisms in inhibiting inflammasomes. This work may

contribute to further mechanistical studies of these inhibitors

in suppressing the activation of inflammasomes and may also be

of benefit to future translational investigations.
Traditional medicine derived
compounds affect IBD
via modulating the
NLRP3 inflammasome

Traditional medicine has long been used globally to treat a

variety of human diseases, including infectious diseases,

autoimmune diseases, cancers and IBD (30–34). Although the

effects and exact mechanisms of traditional medicine are not yet

fully validated and clearly addressed, it provides large numbers

of compounds that may play a role in intervention of IBD. A

variety of bioactive components derived from medicinal herbs

have been found to play an inhibitory role in colitis via multiple

mechanisms, and a few of them can prevent colitis at least

partially by regulating the activation of inflammasomes via

various mechanisms such as regulating NF-kB and ROS.

Herein, we give an overview of these studies, discuss the

cellular targets of compounds and their mechanisms, and

provide an outlook for future studies (Summarized in Figure 2

and Table 1).
NF-kB

NF-kB is a transcription factor that plays a prominent role in

diverse physiological processes including inflammatory

responses. The activation of NF-kB promotes the production

of pro-inflammatory cytokines in innate cells and regulates the

activation and differentiation of lymphocytes. In the process of

inflammasome activation, NF-kB provides the priming signal

and promotes the transcription of inflammasome components,

such as NLRP3 and Pro-IL-1b.
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Recent studies found that a number of herbal compounds

can affect the priming of inflammasome via regulating the

activation of NF-kB. A good example for this type of

compounds is oroxindin, a bioactive extract with anti-

inflammatory activity derived from Astragalus membranaceus

(AM), which is a medicinal plant wildly used in Chinese

medicine for treatment of many human diseases (53, 54). Liu

et al (11) found that oroxindin can suppress the activation of

NF-kB signaling via inducing the expression of thioredoxin-

interacting protein (TXNIP), an inhibitory regulator of NF-kB

pathway (55). Considering the previously reported role of

TXNIP in interacting and activating NLRP3 (56), this

regulatory molecule may regulate inflammasome activation in

both priming and activating steps. This may also explain the

observation in Liu et al. study showing that the formation of

NLRP3 inflammasome was also suppressed by oroxindin. The

authors used a colitis model induced by dextran sulfate sodium

(DSS), a sulfated polysaccharide that is toxic to colon epithelium

and causes epithelial cell injury, the entry of luminal organisms

or their products induce inflammatory responses in the lamina

propria (57, 58). Their data showed that oroxindin can suppress

macrophage infiltration to the colon and attenuated colon

pathological changes. On this basis, the role of oroxindin in

suppressing NLRP3 inflammasome function may mainly

dependent on its inhibition on TXNIP associated NF-kB
signaling. It should be noted that another compound extracted

from AM, Astagalus Polysaccharide (AP), also showed anti-

inflammatory effects (59, 60) and anti-colitis role via regulating
Frontiers in Immunology 04
the NLRP3 inflammasome. Its impact on inflammasome may be

mediated by inhibiting the NF-kB pathway, since treatment with

AP suppressed the expression of NLRP3, ASC, caspase-1, IL-18,

and IL-1b (35). Interestingly, polysaccharide from Scutellaria

Baicalensis Georgi (SBG) (37) also has anti-NF-kB effects,

through which it inhibits NLRP3 inflammasome activation

and mitigates DSS induced colitis.

Another compound that may play anti-colitis role through

regulating NF-kB and the NLRP3 inflammasome is Evodiamine

(EVO), a bioactive component with anti-inflammatory role (61)

derived from Evodia Rutaecarpa (ER), which is a herbal plant

that has been used clinically in treating some human

inflammatory diseases, especially for headache and abdominal

pain (62). To study the role of EVO in colitis, Shen et al (36) used

murine DSS colitis model and found that treatment of EVO

ameliorated DSS induced colonic symptoms, inhibited the

production of pro-inflammatory cytokines such as TNF-a, IL-
1b and IL-6, and restrain the activation of NLRP3

inflammasome. Regarding the mechanisms, they found that

EVO can suppress activation of NF-kB and thus suppress the

expression of inflammasome components.
b-arrestin1

b-arrestin1 is a ubiquitously expressed protein that is

identified initially as an inhibitor and adaptor of the G

protein-coupled receptors with the purpose of regulating many
FIGURE 2

Natural compounds regulate NLRP3 inflammasome activation and progression of colitis via modulating various mechanisms. A number of
natural compounds such as Baicalein suppress colitis by regulating priming of the NLRP3 inflammasome through modulating NF-kB activation,
mainly via blocking MD-2 binding to TLR4 or inducing TXNIP expression. Blockade of IL-17R signaling by Luteolin or Wedelolactone may
contribute to suppression of the priming signal of NLRP3 inflammasome. A handful of compounds including Curcumin can ameliorate colitis by
suppressing the NLRP3 inflammasome via regulating ROS production, K+ efflux or cathepsin B release. Polysaccharides from DO may suppress
b-arrestin-1 and thus inhibit the activation of NLRP3 inflammasome. A number of compounds such as Norisoboldine can promote activation of
AhR and then activate NRF2 or SIRT1 signaling, which contribute the suppression of the NLRP3 inflammasome and amelioration of colitis. DO,
Dendrobium officinale..
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TABLE 1 Summary of Natural Compounds that Regulates Inflammasomes in Colitis Models.

Bioactive
Compound

Source Target Mechanism Disease
model

Impact to host Toxicity Data References

Astagalus
Polysaccharide

Astragalus
membranaceus

NF-kB Inhibit NF-kB
activation and
expression of
inflammasome
components

DSS-
colitis

Reduce DAI and histological injury scores Not available Tian et al.
(35)

Oroxindin Astragalus
membranaceus

TXNIP,
NF-kB

Promote expression
of TXNIP and
suppress NF-kB
activation

DSS-
colitis

Suppress macrophages infiltration and
attenuate pathological changes in colonic
tissue

Not available Liu et al. (11)

Evodiamine Evodia
rutaecarpa

NF-kB Inhibit NF-kB
activation

DSS-
colitis

Ameliorate mice body weight loss, DAI,
colon length shortening, colonic
pathological damage

Not available Shen et al.
(36)

SBG
Polysaccharide

Scutellaria
Baicalensis
Georgi

NF-kB Inhibit activation of
NF-kB

DSS-
colitis

Decrease DAI, colonic pathological
damage, and reduce MPO activity

No observed
toxicity (500 mg/
ml, 0.4 ml/10 g
p.o., 7 days in
mouse)

Cui et al. (37)

DO
polysaccharides

Dendrobium
officinale
(DO)

b-arrestin1 Inhibit b-arrestin1
expression

DSS-colitis Decrease mortality, alleviate colonic
pathological damage

No observed
toxicity (200 mg/
kg/day p.o. for 7
days in mouse)

Liang et al.
(10)

Arctigenin Fructus Arctii
(Great
Burdock
Achene)

SIRT1 Suppress SIRT1
activation

DSS-
colitis

Suppressed colon inflammation Not available Pu et al. (38)

Baicalein Scutellaria
baicalensis
Georgi

MD-2 Suppress MD-2
binding to TLR4
and block TLR4/
MyD88 Signaling

TNBS
colitis

Decrease the activity of MPO and the
expression of pro-inflammatory
mediators.

Not toxic to
RAW264.7 cells
(200mM within
48h)

Luo et al.
(12)

Cinnamaldehyde Cinnamon ROS Prevent the
production of ROS

DSS-
colitis

Reduce loss of body weight, DAI, colon
shortening and infiltration of
inflammatory cells

Not toxic to
RAW264.7 cells
(100mM within
24h)

Qu et al. (39)

Flavonoid VI-16 Fruit and
vegetable

mitochondria
ROS

Reduce the
mitochondrial ROS

DSS-
colitis

Reduce colitis severity Not available Zhao et al.
(40)

Curcumin Curcuma
longa species

K+ efflux,
ROS and
cathepsin B

Suppress K+ efflux,
intracellular ROS
formation and
cathepsin B release

DSS-
colitis

Suppress the colitis severity Not available Gong et al.
(41)

Titanium dioxide Food additive ROS Induce ROS
production

DSS-
colitis

Increase the severity of colitis Not available Ruiz et al.
(42)

Luteolin and
wedelolactone

Wedelia
chinensis

IL-17
signaling
pathway

Suppress genes in
IL-17 signaling
pathway

DSS-
colitis

Suppress the colitis severity Not available Lin et al. (43)

Brusatol Brucea
javanica

NRF2 Activate NRF2 TNBS
colitis

Attenuate diarrhea, colonic shortening,
macroscopic damage and histological
injury

Not toxic to
RAW264.7 cells
(200nM within
24h)

Zhou et al.
(44)

Toosendanin Melia
toosendan
Sieb et Zucc

NRF2/HO-1 Upregulate NRF2/
HO-1 expression

DSS-
colitis

Ameliaorate DAI, shortened colon length,
pathological damage of the colon tissues

Not available Fan et al. (45)

Hydrogen sulfide Diet NRF2 Upregulate NRF2
and Reduce ROS
generation

DSS-
colitis

Attenuate colitis severity, reduce colon
shortening and colonic pathological
damages

Not available Qin et al.
(46)

Norisoboldine Radix
Linderae

AhR Activate AhR,
elevated NRF2 and
reduce level of ROS

TNBS
colitis

Alleviate colitis related symptoms Not toxic to THP-
1 cells (30mM
within 24h)

Lv et al. (13)

(Continued)
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immunological pathways and cell death (63, 64). It can also bind

with a number of signaling molecules in MAPK pathways and

thus regulate their activities in macrophages (64). Regarding its

role in inflammasome activation, b-arrestin1 is required for full

activation of NLRP3 and NLRC4 inflammasomes (65).

Regulating b-arrestin1 may affect the development of colitis, in

Liang et al.’s study (10), the authors studied the impact of

polysaccharides extracts from Dendrobium officinale (DO) on

colonic inflammation induced by DSS. DO is a widely used herb

in traditional Chinese medical practice to treat gastrointestinal

disorders. The data showed that polysaccharides from DO

(DOPS) can inhibit b-arrestin1 expression and suppress

activation of the NLRP3 inflammasome in both in vivo and in

vitro experiments.
Sirtuin 1 (SIRT1)

SIRT1 is a transcription factor that regulates various

biological pathways. It can function as a histone deacetylase in

the presence of nicotinamide adenine dinucleotide (NAD) (66).

SIRT1 can suppress the production of pro-inflammatory

cytokines by regulating deacetylation of NF-kB p65, thus it

also affects the priming of NLRP3 inflammasome components.

Moreover, SIRT1 may inhibit NLRP3 inflammasome activation

by decreasing expression of CD40/CD40L (67) or suppressing
Frontiers in Immunology 06
oxidative stress (68). A recent study found that (38) SIRT1 may

be inhibited by Arctigenin, one of the major bioactive

components of Fructus Arctii (Great Burdock Achene), which

is a herbal plant widely used in traditional Chinese medicine. It

has been reported that Arctigenin has extensive pharmacological

effects in a variety of diseases such as diabetes (69). Regarding its

impact on colitis, Pu et al (38) found that Arctigenin can

mitigate DSS induced colon inflammation via suppressing

NLRP3 inflammasome. This effect was mediated by SIRT1,

since knock-downing of SIRT1 decreased anti-inflammasome

activity of Arctigenin.
Myeloid differentiation protein-2 (MD-2)

MD-2 is a critical protein that assists the TLR4 receptor in

sensing LPS (70). Thus, it may regulate the priming step of

NLRP3 inflammasome activation. A study by Luo et al (12)

found that Baicalein (5,6,7-trihydroxyflavone), a bioactive

ingredient isolated from the root of SBG with potent anti-

inflammatory and anti-cancer effects via multiple mechanisms

(71, 72), may regulate the progression of colitis by targeting MD-

2. The researchers employed a mouse model of colitis induced by

intrarectally administration of 2,4,6-trinitrobenzene sulfonic

acid (TNBS), a haptenic agent that renders colonic proteins

immunogenic to the host immune system and drives an
TABLE 1 Continued

Bioactive
Compound

Source Target Mechanism Disease
model

Impact to host Toxicity Data References

Cardamonin Cardamom AhR Activate AhR/
NRF2/NQO1
pathway

DSS-
colitis,
TNBS-
colitis

Reduce colitis severity Not toxic to THP-
1 and BMDM
cells (100mM
within 24h)

Wang et al.
(47)

Palmatine A number of
herbs

PINK1/
Parkin

Enhance the
expression of
PINK1 and parkin

DSS-
colitis

Attenuate body weight loss and colon
shortening, reduced DAI and
histopathologic score

No observed
toxicity (521 mg/
kg/day, p.o.,90
days in mouse)

Mai et al.
(48)

alpha-mangostin A number of
herbs

Not clear Reduce NLRP3,
caspase 1, IL-18,
and IL-1b
expression

LPS-
colitis

Reduce severity of intestinal villi
detachment, reduce congestion and
hemorrhage, reduce epithelial cell nuclei
deformation and the mitochondria
swelling.

Not available Yin et al. (49)

Secoisolariciresinol
diglucoside

Lignans NF-kB Disruption of NF-
kB activation and
suppression of
NLRP1
inflammasome

DSS-
colitis

Attenuate the severity of colon
inflammation and macrophage infiltration
to the colon

Not toxic to
RAW264.7 cells
(25mM within
24h)

Wang et al.
(50)

Apigenin Plant and fruit NLRP6 Reshape gut
microbiota

DSS-
colitis

Protect mice from colon damage Not available Radulovic
et al. (51)

Panaxynol Ginseng NRF2 Activate NRF2 and
reduce ROS

DSS-
colitis

Reduce colitis severity No observed
toxicity (1mg/kg/
day, p.o., 7 days in
mouse)

Chaparala
et al. (52)
fr
DAI, Disease activity index; AhR, Aryl hydrocarbon receptor
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inflammatory response in the lamina propria. Baicalein can

alleviate colitis severity induced by TNBS by inhibiting the

activation of NLRP3 inflammasome and production of IL-1b
in the colon. Further studies showed that the effect of baicalein

may be associated with its role in blocking MD-2 binding with

TLR4 and thus suppressing down-stream pathways, such as NF-

kB and p38 MAPK. Thus, the impact of baicalein on the

activation of the NLRP3 may be through regulating the

priming signal, whereas if baicalein affects the activating signal

of NLRP3 inflammasome need to be studied in future.
K+ efflux, ROS production and
cathepsin B release

K+ efflux, ROS production and cathepsin B release are the

three major upstream signals that stimulate the activation step of

the NLRP3 inflammasome formation. ROS is a term to describe

a group of unstable molecules that contains oxygen and easily

react with other molecules. The accumulation of ROS in cells

may result in damage of DNA, RNA and protein, and ultimately

cause cell death. The aberrant production of ROS is associated

with pathogenesis of diverse inflammatory diseases and cancers.

Regulating these signals may affect inflammasome activation

and colitis. For instance, Gong et al. (41) showed that curcumin,

the principal curcuminoid of Curcuma longa species with anti-

oxidative activity (73), can suppress K+ efflux, intracellular ROS

formation and cathepsin B release, and thus inhibit NLRP3

inflammasome activation. Regarding the role of curcumin in

development of colitis, it can attenuate DSS induced colitis

symptoms. In addition, some clinical trials have demonstrated

that curcumin is efficient and safe chemical for management of

IBD (74).

Regulating the level of ROS may contribute to the progression

of colitis. Qu et al (39) found that Cinnamaldehyde (CA) can inhibit

colitis development by suppressing the NLRP3 inflammasome via

regulating ROS. CA is a major bioactive ingredient with impressive

antibacterial and anti-inflammatory activity derived from

cinnamon (75, 76). The researchers showed that CA was effective

in preventing DSS induced colitis associated conditions, it

prevented activation of the NLRP3 inflammasome and

production of pro-inflammatory cytokines in the colon. For the

mechanisms, the authors found that CA can decrease the

production of ROS and additionally suppress the phosphorylation

of AKT, mTOR and COX2 in macrophages. Previous reports have

demonstrated that ROS is an important regulator of the NLRP3

inflammasome (77–79), thus the anti-colitis and anti-

inflammasome effects of CA may exert via down-regulating ROS.

Another example on this direction is provided by the study of Zhao

et al. (40). They studied the role of VI-16, a synthetic flavonoid

compound, in colitis. Flavonoids are a group of bioactive

polyphenols abundant in fruits and vegetables (80, 81). Previous

studies have reported that a number of flavonoids affect the
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activation of inflammasome (82), but the mechanism is not fully

clarified. Using DSS induced colitis model, Zhao et al. (40) showed

that VI-16 administration protectedmice from colon inflammation,

and this protection was dependent on NLRP3 expression in

hematopoietic cells. Regarding the mechanisms, VI-16 was able to

reduce the level of mitochondrial ROS and thus block TXNIP-

NLRP3 interaction.

An opposite example regarding the role of ROS in colitis is

provided by the study of Ruiz et al (42), they studied the possible

role of Titanium dioxide (TiO2) in colonic inflammation. TiO2 is

a natural oxide of titanium that widely used in food products as

additives or in pharmaceutical formulations, although a minor

human health risk of TiO2 nanoparticles has been proposed (83).

A number of recent studies have shown that TiO2 play a role in

regulating autophagy, oxidative stress and apoptosis (84, 85). In

Ruiz et al.’s study, the researchers found that oral administration

of TiO2 nanoparticles increased the severity of colitis induced by

DSS, TiO2 particles were taken up by intestinal epithelial cells

and macrophages, and induced production of ROS, which then

triggered the formation of the NLRP3 inflammasome. Hence,

intake of food with TiO2 particles may worsen the disease for

patients with colitis.
IL-17 pathway

A number of recent studies showed that IL-17 pathway may

act as a priming signal to promote expression of NLRP3 and IL-

1b (86, 87). Thus, targeting IL-17 signaling may also affect the

activation of NLRP3 inflammasome and contribute to

progression of colitis. For instance, a study conducted by Lin

et al (43) identified two compounds, wedelolactone and luteolin,

from the bioactive fraction of Wedelia chinensis (WC) extracts,

which has been proven to be effective in murine colitis model

(88), and found that both compounds can suppress DSS induced

colitis, and suppress the expression of NLRP3 and NLRP1 in the

colon. Additionally, the inhibitory effects of luteolin on NLRP3

expression is mediated by suppressing genes in IL-17 signaling

pathway, while the exact targets of luteolin and related

mechanisms need to be identified in future.
Nuclear factor erythroid 2-related factor
2 (Nrf2)/heme oxygenase-1 (HO-1)

Nrf2 is an important transcription factor that regulates an

array of genes in modulating antioxidant and detoxifying

systems. A number of previous studies showed that Nrf2 can

suppress NLPR3 inflammasome activation by promoting

expression of antioxidant genes, such as HO-1 (89), or

inhibiting the expression of TXNIP (90). Studies by Zhou et al.

(44, 91) found that colonic pathological changes induced by DSS

or TNBS can be inhibited by Brusatol, a bioactive ingredient with
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anti-inflammatory effect (92) extracted from Brucea javanica

(BJ), which is a medicinal plant used for treatment of ulcerative

colitis (UC) in Chinese medicine (93). For the mechanisms, the

authors showed that the compound can activate Nrf2 and

suppress the NLRP3 inflammasome activation illustrated by

decreased expression of IL-1b and IL-18 in the colon. Thus,

Brusatol may exert its anti-inflammasome role by up-regulating

Nrf2 mediated antioxidant activity.

Another compound that may suppress colitis and NLRP3

inflammasome through Nrf2/HO-1 pathway is Toosendanin

(TSN), a triterpenoid and natural insecticide with anti-

inflammatory activity derived from Melia toosendan Sieb et

Zucc (MTSZ), which is traditional herbal medicine used as

parasiticide of digestive tract and agricultural insecticide in

China (94). For its role in colitis, Fan et al. (45) reported that

TSN can attenuate DSS induced colonic inflammation via

regulating the activation of NLRP3 inflammasome, the

compound can also inhibit M1 macrophage polarization and

production of pro-inflammatory cytokines and mediators in

oxidative stress. These effects of TSN may be associated with

its role in upregulating Nrf2/HO-1 expression in the colon and

thus preventing M1 macrophage polarization and NLRP3

inflammasome activation.

Recent studies have provided evidence that high fat or high

glucose diet may change the level of intracellular compounds

such as Hydrogen sulfide (H2S) (95, 96)and alter the colonic

homeostasis by regulating ROS production. H2S is a gaseous

intracellular signal transducer that plays an anti-inflammatory

effect in various diseases (97, 98). The role of H2S in IBD was

evaluated by Qin et al (46) showing that H2S attenuated DSS

induced colitis, H2S treated mice manifested reduced colon

shortening and colonic pathological damages. H2S treatment

inhibited expression of NLRP3 and cleavage of caspase-1 in the

colon of mice. In in vitro studies, H2S can significantly inhibit

NLRP3 inflammasome activation in bone marrow macrophages.

For the mechanisms, the authors showed that H2S can disrupt

Nrf2 activation, which may then affect intracellular

ROS generation.
Aryl hydrocarbon receptor (AhR)

AhR is a universally expressed transcription factor that can

bind to a variety of structurally diverse ligands and regulates a

range of biological processes such as metabolism of xenobiotic

chemicals, immunity and stem cell differentiation (99). It has

been shown that AhR can suppress NLRP3 inflammasome

activation by inhibiting NLRP3 transcription (100). A study

conducted by Lv et al (13) found that a herbal compound,

Norisoboldine (NOR) can alleviate colon inflammation induced

by TNBS by targeting AhR. NOR is a bioactive alkaloid purified

from Radix Linderae (RL), which is the root of Lindera

strychnifolia, traditional Chinese medicine used in treating
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various diseases. The researchers showed that NOR alleviated

colitis and reduced the levels of NLRP3, cleaved caspase-1 and

IL-1b in colons of the mice. In in vitro studies, NOR was shown

to activate AhR, which then enhanced Nrf2 level and reduced

production of ROS. Thus, the anti-colitis role of NOR is

mediated by inhibiting the NLRP3 inflammasome activation

via modulating AhR/Nrf2/ROS pathway.

Cardamonin is a chalcone derived from cardamon with anti-

cancer activity, it also plays a role in anti-infection immunity and

the development of inflammatory diseases. A recent study has

shown that cardamonin can inhibit the NLRP3 inflammasome

activation and thus attenuate experimental colitis induced by

both DSS and TNBS (47). In this study, the researchers found

that cardamonin can activate the AhR/Nrf2/NQO1 pathway,

blocking this pathway can abolish the effect of cardamonin on

NLRP3 inflammasome.
Mitophagy

Mitophagy is an autophagic pathway that keeps the cell healthy

by promoting the mitochondria turnover and preventing the

accumulation of damaged mitochondria (101). It regulates the

production of ROS and the release of mitochondria DNA. In

mammals, mitophagy can be regulated by many factors such as

PINK1 and parkin, whose deletion or mutation may cause impaired

mitophagy and thereby leading to a variety of inflammatory diseases

and cancers (102, 103). Previous studies have demonstrated that

mitophagy is a negative regulator of NLRP3 inflammasome

activation (104) and an important regulator of gut homeostasis

(105). In a study conducted by Mai et al (48) showed that targeting

mitophagy by palmatine, an isoquinoline alkaloid with potent anti-

inflammatory and anti-bacteria effects purified from herbal plants

(106), can protect the host from colitis. The authors showed that

palmatine attenuated DSS induced colon pathology and reduced the

level of MPO, IL-1b, TNF-a, and macrophage infiltration to the

colon. In mechanistical studies, they found that palmatine suppressed

NLRP3 inflammasome activation, an impact that can be blocked by

mitophagy inhibitor Cyclosporin A or PINK1 siRNA. On this basis,

the suppression of palmatine on colon inflammation was mediated

by inhibiting the NLRP3 inflammasome via modulating PINK1/

Parkin regulated mitophagy.
Unknown targets

As described above, studies have identified the targets of

many natural compounds in regulating the progression of colitis

and the activation of the NLRP3 inflammasome, whereas, for

some other compounds, the investigation that identifying their

intracellular targets is still in progress. One of these compounds

is Alpha-mangostin (alpha-MG), a natural xanthonoid derived

from the fruit hull of mangosteen (Garcinia mangostana L.) that
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has anti-cancer activity (107, 108). Being a potent antioxidant, a

previous study proved that alpha-MG can reduce LPS induced

inflammatory responses in IEC-6 cells (109). Using a high

throughput sequencing method, Yin et al (49) found that the

genes regulated by alpha-MG were mainly related to

inflammation and oxidative stress. Using an LPS induced IBD

model in rat, they found that pretreatment of alpha-MG

significantly reduced all the pathological changes caused by

LPS including detachment of intestinal villi, deformation of

intestinal epithelial cell nuclei and swelling of mitochondria,

and these effects of alpha-MG was exerted by suppressing the

expression of NLRP3, caspase 1, IL-18, and IL-1b.
Herbal medicine that affects IBD via
other inflammasomes

As described above, regulation of the NLRP3 inflammasome

using herbal compounds can affect the development of colitis via

multiple mechanisms, whereas previous studies have shown that

other inflammasome forming NLRs such as NLRP1, NLRP6,

NLRC4 and AIM2 are also involved in the pathogenesis of

colonic inflammation (110–113). Thus, we searched the

literature and found that several compounds affect the

development of colitis by targeting NLRP1 and NLRP6.

Secoisolariciresinol diglucoside (SDG), a bioactive compound

derived from lignans, plays anti-inflammatory and antioxidant

roles in various diseases (114, 115). A study performed by Wang

et al (50) showed that SDG can attenuated colon inflammation

and macrophage infiltration to the colon in a mouse model

induced by DSS. Meanwhile, SDG can inhibit the activation of

NLRP1 inflammasome and the production of pro-inflammatory

cytokines including IL-1b, IL-18 and TNF-a in both colon tissue

of DSS treated mice and RAW264.7 macrophages. The effect of

SDG on NLRP1 inflammasome was partly dependent on

disruption of NF-kB activation.

A previous study showed that apigenin, a flavone that has

antioxidant effect and is involved in development of various

diseases (116), can suppress DSS induced colitis via regulating

the activation of NLRP6 inflammasome. In this study, Radulovic

et al (51) found that found that mice were protected from DSS

induced colitis after cohousing with apigenin treated animals. In

contrast, deficiency of NLRP6 disrupted the protective effect of

apigenin on the mice. Data of 16S rRNA sequencing showed that

apigenin induced a composition change in gut microbiota,

which was absent in NLRP6 deficient mice. In addition, the

impact of apigenin on colitis was not affected by the absence of

caspase-1/11 or ASC. Thus, these studies indicated an

inflammasome independent mechanism of NLRP6 whereby

apigenin reshaped gut microbiota through NLRP6 and thus

protected mice against colitis.
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Herbal compounds that
possibly affect colitis via
regulating inflammasomes

Ginseng has been wildly used in treatment of a variety of

human diseases including IBD. Studies have shown that the

beneficial activities of ginseng are associated with its metabolites

such as compound K (CK), 2-(S)-protopanaxatriol, Rh1, F1, and

20(S)-protopanaxadiol. Seong et al (117) showed that fermented

wild ginseng (FWG) alleviated the severity of colitis induced by

DSS and reduced the infiltration of macrophages in colonic

tissue. FWG also inhibited the expression of IL-1b in LPS treated

macrophages. In another study, researchers found that

American ginseng extracts and the bioactive component,

panaxynol, ameliorated colitis by activating Nrf2 pathway and

thus reducing ROS production (52, 118). These evidences

suggest that panaxynol may affect colitis by regulating the

activation of an inflammasome. Ginsenoside Rf is another

bioactive compound extracted from ginseng. A study by Ahn

et al (119) reported that ginsenoside Rf can decrease the

production of IL-1b, IL-6, TNF-a, NO, and ROS, mediators

that are highly activated in IBD, in TNF-a stimulated intestinal

epithelial cells and macrophages. Additionally, ginsenoside Rf

suppressed TNF-a/LPS-induced NF-kB activity. Hence,

ginsenoside Rf has potent intestinal anti-inflammatory effects

and may have potential to treat IBD. The effect of ginseng

extracts on IL-1b expression and ROS indicated a possible

involvement of inflammasomes in the anti-colitis function.

Indigo naturalis (IN) is herbal medicine extracted from

leaves and stems of plants and is a component of crude drugs

used in treating many diseases including IBD (120). However,

studies have shown that inappropriate application of IN can also

aggravate colitis and pulmonary arterial hypertension, thus,

using it topically has been suggested by researchers in

application of IN in treatment of IBD (120). Another way that

may reduce the side effects of IN is to identify the effective

components in IN, since the effects of IN may be associated with

the bioactive ingredients it contains. For instance, IN derived

indigo, indirubin, 6-formylindolo [3,2-b] carbazole (FICZ), and

indole-3-carboxaldehyde (IAId) can act as ligands and activate

aryl hydrocarbon receptor (AhR), a pathway that can promote

mucosal healing by regulating the IL-22 production from type-3

innate lymphocytes cells (120). Considering the inhibitory effect

of AhR signaling on NLRP3 inflammasome activation (100),

AhR ligands derived from IN may also have an impact on the

NLRP3 inflammasome. Thus, the compounds affecting

inflammasome regulators may modulate the progression of

colitis via altering activation of inflammasomes. It is

worthwhile to examine the roles of these compounds in a

colitis model, which may contribute to the design of new anti-

colitis strategies.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.963291
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.963291
Limitations and possible solutions

Traditional or alternative medicine has been used globally

for centuries, the efficacy and safety of a variety of decoctions

have been evaluated in large amounts of clinical cases. While the

application of traditional medicine, especially the decoctions, is

largely dependent on physician’s judgement to patients’

particular conditions, which to a great extent rely on

physician’s knowledge and experience, and thus limits the

wide application of traditional medicine. A decoction usually

contains a number of different herbals or mineral materials for

disease treatment, thus it may contain thousands of compounds

with various effects. However, the compound composition of a

particular herbal plant may largely rely on its growing

environment such as soil conditions. Hence it is hard to

exactly predict the integrated function of the compounds in a

herbal decoction, some adverse events may occur in hospitals

using traditional medicine (121). To overcome this problem,

integrated analysis of the patients’ physiological condition and

the functional compounds in an effective herbal decoction is

necessary in future studies.

As mentioned previously, most of the herbal derived

compounds, such as curcumin and some ginseng products, are

water insoluble, unstable and inefficient in transiting across the

physiological barriers, hence it is challenging to reach a

concentration in the plasma or the affected tissues that is

effective to treat a disease. A reported way that can improve

the bioavailability of herbal compounds is combined

administration with particular adjuvant compounds. For

instance, studies decades ago had found that concomitant

administration of piperine can largely improve the plasma

concentration of curcumin (122). Similarly, a recent study

showed that curcumin solubilized in essential turmeric oils

showed substantially enhanced anti-inflammatory effects

compared with curcumin alone in DSS-induced colitis (123).

Further studies showed that some components contain in

turmeric oils such as turmerones have anti-inflammatory role

(124) and may the therapeutic benefits of curcumin in

colitis model.

Another way that can effectively improve the bioavailability

of herbal compounds is by using delivery-aid carriers.

Accumulating evidences have shown that nanocarriers, such as

lipid nanoparticles and liposomes, can efficiently increase the

blood concentration of insoluble herbal compounds. For

instance, Yang et al. (125) showed that polymer-based

nanoparticles can significantly enhance curcumin delivery to

the brain of mice. In another study, researchers found that

nanoparticle encapsulation can increase the curcumin oral

bioavailability for at least 9-fold compared with concomitant

administration of curcumin with piperine (126). Therefore,

application of nanoparticle-based carriers may be a promising

approach for improving herbal compound bioavailability.

Liposomes are vesicles formed by phospholipid bilayers (127),
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these compounds into cells by membrane fusion. Many

liposome-based drug delivery systems have been developed

and showed enhanced bioavailability for delivery of a great

number of water-insoluble herbal compounds in recent studies

(128). For instance, a study by Telange et al. (129) showed that

the formation of apigenin-phospholipid complex remarkably

enhanced water solubility of apigenin for over 36-fold compared

to pure apigenin.

Traditional medicine can be considered as a summary of

experience from hundreds of ancient physicians in their medical

practice, and it has been proven to be effective in many cases.

Thus, it at least gives us a hint to discover compounds that are

possibly effective to a particular disease. As discussed above,

many compounds that prevent inflammation in colitis models

described in this review are discovered in this way. According to

the findings mentioned here, natural compounds purified from

medicinal herbs or dietary materials are promising agents in

attenuating colitis severity in animal models. However, their

potential side effects on other organs and tissues, their

physiological impacts on human cells have not been fully

evaluated. Furthermore, the functional ingredients of some

decoctions are not identified and the specificity of compounds

on inflammasomes or other inflammatory signaling pathways

are not clear. Additionally, the exact mechanisms whereby

medicinal compounds regulate inflammasome activity are not

fully addressed. On this basis, further studies are needed to

address these questions focusing on evaluating or reducing side

effects, determining drug specificity and working mechanisms,

altering compound dosage or combination may be helpful to

optimize the efficacy and safety of the compounds. With a

satisfied answer of these questions, a clinical trial in IBD

patients is a must before recommending the use of these

compounds in clinical practice.

As mentioned above, compounds that are effective in studies

of animal models for diseases may meet other challenges when

applied in translational studies, especially the doses on an mg/kg

basis proven to be safe and effective in animal studies sometimes

do not display satisfactory outcomes after scaling of the doses

based on body weight and applying in human clinical trials. This

condition is primarily due to the varied pharmacokinetics in

species with different biochemical systems (130, 131). To

overcome this problem, U.S. Food and Drug Administration

has developed a guidance in estimating the human equivalent

dose (HED) for a compound that can act as maximum

recommended starting dose (MRSD) in its initial clinical trial

based on data derived from animal studies (https://www.fda.gov/

regulatory-information/search-fda-guidance-documents/

estimating-maximum-safe-sta). According to this guidance, the

estimation of HED requires studies to determine the No

Observed Adverse Effect Level (NOAEL) of a compound in

multiple tested animal species. This requires data on systemic

toxicology and others, such as bioavailability, metabolite profile
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and plasma level of the compound. With the availability of all

these data, the conversion of NOAEL to HED needs to employ a

scaling system based on body weight (mg/kg) or body surface

area (mg/m2), a process that needs to consider multiple factors,

such as the method of compound administration and NOAELs

in different animal species. However, the in vivo data in majority

of studies mentioned in this review did not provide sufficient

details to estimate the MRSD of the tested compounds. Only

four out of twenty-two studies provided in vivo toxicity data that

obtained from IBD model induced in one species of animal

(Table 1). Some of other studies did in vitro toxicity tests in a

number of cell lines, such as RAW264.7 and THP-1. Thus, the

current available data are not enough for the estimation of

MRSDs for the compounds mentioned here. More extensive

animal studies with multiple species that determine the

NOAELs, toxicology, tolerability and pharmacokinetic profiles

are necessary for the estimation of its MRSD in future

investigation for compounds with potential clinical applications.
Conclusion

This review summarized recent studies reporting the role

and mechanisms of traditional herbal medicine or diet derived

compounds in modulating colitis via regulating inflammasome

activity in IBD models. These studies support a point of view

that herbal or diet derived compounds may inactivate

inflammasomes in the colon and thus attenuate colonic

inflammation in animal models, or IBD patients in some

cases, by targeting various inflammasome regulators as

described above. Whereas the role of inflammasomes in the

progression of colon inflammation is complicated since a

number of previous studies using animals deficient in

inflammasome components such as NLRP3 and caspase-1

proved that inflammasome function is also required in the

maintenance of gut homeostasis (7). Thus, the activation of

inflammasomes needs an appropriate regulation to keep a

balanced immune response in the colon. Modulating

inflammasome activity using bioactive compounds purified

from traditional medicine or diet might be a promising

strategy for treatment of IBD. Establishment of a cellular

screening model using new identification technologies might
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be helpful to discover new compounds specifically targeting

inflammasomes for treatment of IBD. A deep understanding

of the pharmacological characters of the compounds in

preventing inflammasomes may expediting the development of

new strategies with higher efficiency for treatment of IBD and

many other inflammatory diseases.
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