
Chapter 4
Social Dilemma Analysis of the Spread
of Infectious Disease

Understanding and controlling the spread of infectious disease is a pressing issue for
our society. Contemporary globally connected civilization is more at risk from
various modern infectious diseases than classical ones such as pests, cholera, and
tuberculosis. Over the last few years, pandemic outbreaks of highly virulent influ-
enza, possibly related to avian flu, severe acute respiratory syndrome (SARS), and
middle-eastern respiratory syndrome coronavirus (MARSE) have been a threat.
Beyond this, the intentional spread of infectious disease, e.g., “bioterrorism”, has
come to be recognized as being just as dangerous as nuclear weapons. An infectious
disease spreads on human social networks. Each individual can protect himself
through several measures. Pre-emptive vaccination is thought to be most effective,
although it incurs a partial cost to each individual. This brings about a social
dilemma, because an individual may be able to rely on so-called “herd immunity”
to avoid his own infection without himself being vaccinated. Also, besides vaccina-
tion, there may be several practical ways to protect against contagion, such as
wearing a mask, keeping away from crowds, and self-isolation by leaving the
home less often, which may be less costly and less effective than vaccination. In
any case, there is a human-decision-making process regarding what steps should be
taken, while the dynamics of infectious-disease spread can themselves be evaluated
as a diffusion problem that has been well-studied in physics for many years. Thus,
based on the concept of human–environment–social interaction, a basic-physics
model for this diffusion problem that considers evolutionary game theory (EGT)
may lead us to obtain some meaningful solutions that can be proposed to our society.
Following the previous chapter explaining how EGT can be applied to traffic-flow
analysis, this chapter describes this practical problem.

Human social networks are a central application of evolutionary game theory
because the complexity of the underlying network serves as a key factor determining
game equilibrium. The spread of an epidemic throughout such a network is math-
ematically described by percolation theory (see Fig. 4.1, which provides a schematic
image of a 2D percolation model applied to the spreading dynamics of an infectious
disease), which is an archetype of the physics of a diffusion processes. Vaccination,
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which is driven by individual decision making, inhibits the spread of infectious
diseases. In addition, if so-called herd immunity is established, a free-rider, who pays
no cost for vaccination, can escape infection. Here, when we refer to vaccination
“cost”, we imply not only a direct cost, but also the potential risk of by-effects and
psychological negative-costs brought about by vaccination. Obviously, there is a
conflict between individual and social benefits; in short, a conflict between individ-
ual rational choices: trying to avoid vaccination, or everyone taking the vaccine to
achieve the fair Pareto optimum, i.e., the best solution where everyone equally bears
the cost to maintain public goods, namely the herd immunity in this context (see
Fig. 4.2). This conflict is why we introduce evolutionary game theory into epidemi-
ology; vaccination can be viewed as a game on a complex social network. This
specific structure of the social dilemma has been called a vaccination dilemma and
has been modeled in the framework of the vaccination game, explained later.
However, vaccination is not an ultimate solution. In some cases, perhaps stochasti-
cally, the injection of a vaccine into a human body is not always able to establish
immunity because of the imperfectness of the vaccination. Even in such an unwilling
case, the vaccine may work to reduce the probability of being infected brought about
by physical contact with people around the focal agent in his social network. An
expected mathematical model should consider this kind of situation.

4.1 Epidemiological Model and Vaccination Game

Pre-emptive vaccination is one of the best public-health measures for preventing
epidemics of infectious diseases and reducing morbidity and mortality.1 However,
most societies entrust vaccination to the autonomy of the individual: vaccination is

Fig. 4.1 The modeling
concept of infectious-
disease spread comes from
the so-called “2D
percolation model”,
commonly applied to
2D-diffusion problems such
as wildfire. In this metaphor,
firing is spreading a disease,
and a perfectly vaccinated
agent is represented by the
tree in the box

1Anderson and May (1991).
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usually voluntary, despite some national or local governments providing subsidies
for it. Therefore, decision making at the individual level may be the result of a trade-
off between protection and the perceived risks and costs of vaccination and infection.
Furthermore, an individual’s decision may be influenced by the vaccination behav-
iors of others.2 The only example of a vaccination campaign that has completely
eradicated a vaccine-preventable disease is smallpox, while cyclic (seasonal) epi-
demics of other infectious diseases, such as flu-like pathogens and influenza, remain
a serious threat to humanity.

One major reason for the difficulty in eradicating vaccine-preventable diseases is
related to an inherent vaccination dilemma, sometimes called the “paradox in
epidemiology”. As vaccination coverage increases over a population, the proportion
of immunized individuals finally exceeds a critical level above which the disease can
no longer persist; this point is called herd immunity, as mentioned above. Once herd
immunity is attained, the remaining unvaccinated individuals are quite unlikely to
become infected since they are indirectly protected by vaccinated individuals. Thus,
unvaccinated individuals obtain benefits from the herd immunity without consider-
ing the perceived risks associated with vaccination, such as complications, side
effects, and financial costs. There is less incentive for them to get vaccinated, and

Fig. 4.2 Scheme of the social dilemma working behind the vaccination dilemma

2As representative works, we cite Chapman and Coups (1999, 2006), Basu et al. (2008).
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then, the so-called first-order free-rider problem3 arises. Some reports suggest that
the welfare of a society can be threatened if too many individuals perceive the herd
immunity as a public good.4 As a result, too much self-interest destabilizes the herd-
immunity state, and the disease resurges. This paradox makes complete eradication
of the disease difficult under a voluntary vaccination policy, and causes a conflict
between the optimal vaccination behavior for each individual and the sufficient level
of vaccination needed to protect the whole society via the herd immunity.5 In
addition, the number of vaccinated individuals may be reduced by underestimates
of infection risk due to lack of knowledge about the disease and/or by overestimation
of vaccine risk based on scientifically groundless information.6

Interrelations among vaccination coverage, disease prevalence, and the vaccina-
tion behaviors of individuals are complicated, and we should duplicate and dynam-
ically as well as quantitatively predict the consequences of these interrelations if we
intend to develop effective public-health measures for preventing epidemics of
infectious diseases. In this regard, many studies of the vaccination dilemma have
applied a game-theoretic framework to a population wherein each individual tries to
maximize his or her own payoff. These studies have provided highly fruitful results.7

Let us call this framework the “vaccination game”, where both the epidemiological
dynamics and the dynamics of the human decision-making process are simulta-
neously and interdependently considered.

Some of the previous game-theoretic analyses of vaccination behavior have
assumed a static game wherein individuals always act with perfect information
about their probability of becoming infected. In reality, individuals cannot precisely
know this probability. Moreover, the game should allow individuals to update their
strategies through learning by imitating others who appear to have adopted more
successful strategies. In this context, imitating others means adapting one’s strategy
based on one’s own personal experience and information from media (the former
and latter can be called active and passive information, respectively). Also, it is very
likely that would be someone who acts opposite to what surrounding people do,
because non-vaccination would cost a player nothing if his all neighbors were
vaccinating.8 As those, concerning how an individual updates his own decision,

3In 2 � 2 games, a defector who is harmful to cooperators is called a first-order free-rider. When a
costly punishment scheme for defectors exists, there can be defined a strategy called the “masked
good guy”, who cooperates with others but never punishes defectors; such an individual is called a
second-order free-rider. There is much literature on the second-order free-rider problem. For
example, Olson (1965), Axelrod (1986), Yamagishi (1986).
4Asch et al. (1994).
5Although there are many good references on this issue, several representative ones are cited here.
Cullen and West (1979), Fine and Clarkson (1986), Geoffard and Philipson (1997), Bauch et al.
(2003), Bauch and Earn (2004).
6Jansen et al. (2003).
7There are many related references, but due to space limitations, we only cite the most represen-
tative here. Bauch (2005).
8Such behavior might be meaningful in the context of the minority game. See the following report.
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not only imitating others; either his neighbors or media, but also drawing his specific
decision based on the observation around him, there might be diverse ways in a real
world. To describe this process explicitly, we should construct an appropriate model
that combines mathematical epidemiological dynamics with game-theoretic dynam-
ics, taking account of the various rules for strategy adapting. For example, Bauch
constructed and analyzed a model that combines epidemiological dynamics with
replicator dynamics of evolutionary game theory to capture the imitative behavior of
individuals during outbreaks of diseases; he found that imitative behavior provokes
periodic outbreaks of such diseases7. Vardavas et al. proposed an individual-level
adaptive decision-making model that was inspired by a minority-game methodol-
ogy.9 By solving the model numerically and analytically, they showed that
incentive-based vaccination programs are indispensable for controlling epidemics
of infectious disease but that misuse of these programs may lead to a severe
epidemic. These studies assumed that the population is homogeneously mixed and
that individuals are fully rational in the sense that they make decisions to pursue
maximum personal utility based on their perceived risks. Yet, in reality, there are
always spatial structures for networks of both disease transmission and an individ-
ual’s contacts, and any individual’s behavior is not completely rational. Accord-
ingly, Fu et al., for example, elevated a model to that of evolutionary game theory to
explore the effects of individual adaptation behavior and population structure upon
vaccination when a population is faced with an epidemic of an infectious disease.10

Let us revisit the term paradox in epidemiology in the context of a game-
theoretical application. Any rational individual has a strong incentive to exploit the
public good by free-riding on herd immunity. However, this incentive, wherein the
individual pays nothing but still obtains a benefit, only works as long as the majority
of the community spontaneously receive the vaccination. By contrast, if the majority
disregards vaccination, then doing nothing is no longer a better option because
infection is likely. In this case, spontaneous vaccination becomes the rational option.
This difference implies that the best choice for an individual is to always adopt the
strategy of the social minority; either free-ride when the herd immunity is well
established or take the vaccination when most people neglect to do so. This situation
obviously contains the structure of a minority game, as Vardavas pointed out8. A
minority game,11 originally defined as the El Farol Bar problem,12 is a typical social
dilemma that can be observed in many real situations. The most heavily concentrated
applications are in financial markets. In a minority game, any individual has an
incentive to adopt the strategy of the minority under any circumstance. This duality
might be interpreted as a Chicken-type dilemma wherein the fair Pareto optimum is
realized when two strategies coexist, as discussed in Chap. 2.

9Vardavas et al. (2007).
10Fu et al. (2011).
11A reader can consult with, for example; Challet et al. (2005).
12Brian Arthur (1994).
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Based upon the abovementioned review, this section gives the fundamental
frameworks of both the epidemiological model and the vaccination game.

4.1.1 SIR/V (SVIR) Model for an Infinite & Well-Mixed
Population13

We start our discussion with the simple situation, for which dynamics can be
formulated by a set of ordinary differential equations (ODEs). Before the discussion,
let us introduce one assumption that is substantially important in relation to vacci-
nation. So far, we have implicitly presumed that a vaccination brings an idealized
perfect immunity whenever performed. In reality, for infectious diseases such as flu,
measles, malaria, and HIV, vaccination does not work perfectly, giving rise to the
concept of the “effectiveness” of a vaccination. This presumes a situation in which
some vaccinated agents acquire immunity with effectiveness probability14 e; mean-
while, the remaining agents fail to acquire immunity with probability 1� e. This can
be likened to a lottery that pays out either 100% or 0% of the prize fund according to
the probability of winning. Meanwhile, there are protective measures other than
vaccination whose efficacy can also be expressed probabilistically. In particular, we
are interested in intermediate measures such as wearing masks, gargling, and hand
washing that offer partial protection against infection while costing less than vacci-
nation. Some kinds of vaccination rather work to reduce the contagious probability,
rather than offering a perfect immunity with a certain probability. Such a mechanism
including intermediate measures is called “defense against contagion” in the follow-
ing text. Some recent studies15,16,17 have proposed representing a measure of defense
against contagion by reducing the risk of infection (denoted as η). Iwamura et al.16

assumed a lower infection risk in their spatial version of the vaccination game, which
they implemented by introducing a reduced infection rate per day per person into the
SIR dynamics on an underlying network by means of the Gillespie algorithm.18

Those two concepts, shown schematically in Fig. 4.3, seem analogous in the sense
that one can avoid an infection stochastically, but they definitely differ in how they
actually work.

We take the SIR model19 as the baseline and extend it to consider either SIR/V or
SVIR dynamics including vaccinators as SIR variants. We modify the SIR model to
reproduce two different scenarios, namely imperfect vaccination (hereinafter the

13Kuga and Tanimoto (2018).
14Wu et al. (2011).
15Iwamura et al. (2016).
16Bai (2016).
17Cardillo et al. (2013).
18Gillespie (1977).
19Kermack and McKendrick (1927).
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effectiveness model) and intermediate-defense measures (hereinafter the efficiency
model according to Ref [13]). We also assume a population that is infinite and
ideally well mixed.

Let us presume that immunity, once acquired, works perfectly. The population is
divided into three groups: susceptible individuals (S), who are currently healthy but
may or may not be infected with the disease, infectious individuals (I), who are
currently infected and will recover, and recovered individuals (R), who are never
infected again. Immunity is acquired by either recovering from the disease or by
pre-emptive vaccination. The immunity is presumed to be effective over an individ-
ual’s life span. The SIR model is expressed as

dS tð Þ
dt
¼ �β � S tð Þ � I tð Þ,

dI tð Þ
dt
¼ β � S tð Þ � I tð Þ � γ � I tð Þ,

dR tð Þ
dt
¼ γ � I tð Þ,

8>>>>><
>>>>>:

ð4:1Þ

and,

S tð Þ þ I tð Þ þ R tð Þ ¼ 1, ð4:2Þ

where β and γ indicate the disease-transmission rate per capita and the rate of
recovery, respectively. Obviously, the SIR process always takes place in the unilat-
eral direction, S! I! R, unlike the SIS model20 wherein immunization efficacy is

Fig. 4.3 Schematic of two concepts for avoiding infection: (a) effectiveness model; (b) efficiency
model

20Hethcote and van den Driessche (1995).
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neglected. Therefore, we can deduce the final epidemic size at the equilibrium of the
dynamics. R(1) is the fraction of individuals who were once infected with the
disease. According to Eqs. (4.1) and (4.2) with initial conditions S(0)� 1, R(0)¼ 0, I
(1) ¼ 0, and S(1) ¼ 1 � R(1), we derive

R 1ð Þ ¼ 1� exp �R0 � R 1ð Þ½ �: ð4:3Þ

Here, R0 � β/γ is called the basic reproduction ratio, which is the number of
secondary infections caused by a single infected individual. Let x be the fraction of
the total population that is vaccinated, such that the remaining fraction 1 – x is not.
Then, we can rewrite the final epidemic size at the equilibrium of the dynamics when
the pre-emptive-vaccination fraction is x, R(x,1), by solving the following
equation:

R x;1ð Þ ¼ 1� xð Þ � 1� exp �R0 � R x;1ð Þ½ �ð Þ: ð4:4Þ

This equation is obviously nonlinear and transcendental.

4.1.1.1 Effectiveness Model

A vaccinated population is separated into two classes: immune individuals obtaining
perfect immunity and non-immune ones who fail to obtain immunity. Let the
effectiveness of the vaccine and the vaccination coverage be e (0 � e � 1) and x,
respectively. The fraction of vaccinated individuals with immunity must be ex, while
the fraction of non-immune individuals is (1 � ex). We can express the final
epidemic size R in relation to both x and time t at equilibrium (t ¼ 1) as

R x;1ð Þ ¼ 1� exð Þ 1� exp �R0R x;1ð Þ½ �ð Þ: ð4:5Þ

R(x,1) gives the respective fractions of four different types of individuals
depending on whether they are vaccinated or non-vaccinated and whether they are
healthy or infected, as summarized in Table 4.1.

4.1.1.2 Efficiency Model

Let the efficiency of an intermediate defense measure for avoiding infection be η
(0 � η � 1), describing how the defense measure can decrease the probability of
being infected. In the following formulation of the efficiency model, we temporarily
regard the vaccinated state as the state prepared with an intermediate defense
measure, making it convenient to compare it with the aforementioned effectiveness
model. We describe the epidemic-spreading dynamics using the compartment model
whereby individuals in a population can be classified into susceptible (S), infected
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(I), recovered (R), and vaccinated (V) states. A non-vaccinated (more precisely,
non-prepared with intermediate defense measures) susceptible individual may
become infected if they are exposed to infectious individuals at the disease-
transmission rate β [per day per person]. An S individual prepared with intermediate
defense measures may also become infectious at a rate (1 � η)β. An infected
individual recovers at the recovery rate γ [per day].

The SVIR model we use to describe such a condition is

dS x; tð Þ
dt

¼ �βS x; tð ÞI x; tð Þ,
dV x; tð Þ

dt
¼ � 1� ηð ÞβV x; tð ÞI x; tð Þ,

dI x; tð Þ
dt

¼ βS x; tð ÞI x; tð Þ þ 1� ηð ÞβV x; tð ÞI x; tð Þ � γI x; tð Þ,
dR x; tð Þ

dt
¼ γI x; tð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð4:6Þ

with the presumed set of initial values S(x, 0) ¼ 1 � x, V(x, 0) ¼ x, and I(x, 0) ¼ 0.
The following constraint is requisite:

S x; tð Þ þ V x; tð Þ þ I x; tð Þ þ R x; tð Þ ¼ 1: ð4:7Þ

Because the population is not completely susceptible, it is accurate to use a control
reproduction number, Rc, instead of the basic reproduction number, R0. In this case,
Rc can be estimated as

Rc ¼ β

γ
S x; 0ð Þ þ 1� ηð ÞV x; 0ð Þ½ � ¼ R0 S x; 0ð Þ þ 1� ηð ÞV x; 0ð Þ½ �: ð4:8Þ

The final epidemic size and other fractions can be expressed as;

S x;1ð Þ ¼ 1� xð Þexp �R0R x;1ð Þ½ �, ð4:9Þ
V x;1ð Þ ¼ xexp � 1� ηð ÞR0R x;1ð Þ½ �, ð4:10Þ

R x;1ð Þ ¼ 1� 1� xð Þexp �R0R x;1ð Þ½ � � xexp � 1� ηð ÞR0R x;1ð Þ½ �: ð4:11Þ

In the limit of this process, the respective fractions of the four different types of
individual at equilibrium are as summarized in Table 4.2.

Table 4.1 Fractions of four types of individual using the effectiveness model

Strategy/state Healthy Infected

Vaccinated x(e + (1 � e) exp [�R0R(x,1)]) x(1 � e)(1 � exp [�R0R(x,1)])

Non-vaccinated (1 � x) exp [�R0R(x,1)] (1 � x)(1 � exp [�R0R(x,1)])
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Comparing Tables 4.1 and 4.2, it is worth noting that the “success probability of
free-riding” is always given by exp[�R0R(x,1)], regardless of whether we presume
perfect or imperfect vaccination, or even intermediate defense measures.

Figure 4.4 shows the final epidemic size (FES) for different levels of vaccination
coverage using the effectiveness and efficiency models. From Fig. 4.4, the so-called
critical-vaccination coverage that eradicates an epidemic spread can be read from the
border of the extinct phase at which FES ¼ 0. This border suggests the critical
vaccination coverage for suppressing the spread of an infection, which can be
determined analytically as xc ¼ (1 � 1/R0)/(1 � ε) for the efficiency model and
xc ¼ (1 � 1/R0)/e for the effectiveness model. Clearly, as long as a less-reliable
defense measure is provided, say η < 0.6, we cannot prevent an epidemic from
breaking out, even if all individuals use that particular defense measure.

4.1.1.3 Relationship Between Effectiveness and Efficiency Models

Let us establish an explicit relationship between the effectiveness and efficiency
models. Eqs. (4.3) and (4.11) give

R x;1ð Þ ¼ 1� exð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
¼ 1� 1� xð Þexp �R0R x;1ð Þ½ � � xexp � 1� ηð ÞR0R x;1ð Þ½ �: ð4:12Þ

Equation (4.8) gives the relationship between e and η as

e ¼ exp � 1� ηð ÞR0R x;1ð Þ½ � � exp �R0R x;1ð Þ½ �
1� exp �R0R x;1ð Þ½ � : ð4:13Þ

Figure 4.5 shows the relationship between e and η indirectly. The vacant region
for x� 1 and η� 1 is due to the fact that a multivalued e–η relationship is inevitable.
It is worth noting that, for smaller values of η, e appears insensitive to x, implying
that e constantly relates to η irrespective of x. By contrast, for larger η (i.e., η > 0.6),
the colored contours appear slanted, suggesting that the e–η relationship becomes
fully dependent on x. In other words, epidemic dynamics that assume a higher
effectiveness of vaccination (close to perfect immunity) work differently from
those that assume an equivalent efficiency of the intermediate defense measure,
which is influenced strongly by how many individuals use that particular vaccination
or defense measure.

Table 4.2 Fractions of four types of individual using the efficiency model

Strategy/state Healthy Infected

Vaccinated x exp [�(1 � η)R0R(x,1)] x(1 � exp [�(1 � η)R0R(x,1)])

Non-vaccinate (1 � x) exp [�R0R(x,1)] (1 � x)(1 � exp [�R0R(x,1)])
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Fig. 4.5 Effectiveness
e plotted on (x, η) plane

Fig. 4.4 Final epidemic size according to vaccination coverage and (a) effectiveness
e (effectiveness of a vaccination) or (b) efficiency η (efficiency of an intermediate defense measure).
We presume that R0 ¼ 2.5, which is applied consistently in this study
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4.1.2 Vaccination Game

In this subsection, let us define the vaccination game. Without loss of the generality,
let us presume a certain spatial structure among agents, defining a social network. A
well-mixed population, presumed in the previous subsection, should be recognized
as a specific situation wherein a complete graph is presumed as an underlying social
network.

As Fig. 4.6 suggests, in a world, the vaccination game is a model that integrates
the mathematical framework of epidemiology supported by SIR/V with the evolu-
tionary game. The former part predicts how an infectious disease spreads on a
complex human social network, while the latter emulates people’s decision-making
process for whether to commit to a costly provision or to try to free-ride on the public
good that is herd immunity.

Consider a population in which each individual on a social network decides
whether to be vaccinated. Seasonal and periodic infectious diseases, such as flu, are
assumed to spread through such a population. For example, the protective efficacy
of a flu vaccine persists for less than a year because of waning antibodies and year-
to-year changes in the circulating virus. Therefore, under a voluntary vaccination
program, individuals must decide every year whether to be vaccinated. Thus, the
dynamics of our model consists of two stages: the first stage is a vaccination
campaign and the second is an epidemic season.

Vaccination
or 

Non-Vaccination

Each individual chooses her strategy 

Game theory
SIR/V model

V
Vaccinated

(immunized)
Susceptible

Infectious

Recovered
(immunized)

S

I

R

infection

Recovery

Vaccination Non-Vaccination

Mathematical epidemiology

Decision whether or not 
to be vaccinated

Cost of
Vaccination

Cost of
Infection

Fig. 4.6 Vaccination game
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4.1.2.1 The First Stage: The Vaccination Campaign

Here, in this stage, each individual makes a decision whether to get vaccinated
before the beginning of the seasonal epidemic, i.e., before any individuals are
exposed to the epidemic strain. Vaccination imposes a cost, Cv, on each individual
who decides to be vaccinated. The cost of vaccination includes the monetary cost
and other perceived risks, such as adverse side effects. If an individual is infected, he
incurs the cost, Ci, of infection.

In real, as we discussed already, the vaccination does not provide perfect immu-
nity. Individuals who unfortunately are infected despite taking either the vaccination
or the intermediate defense measure against contagion are assigned the cost Cv + Ci

of vaccination and infection. Needless to say, an individual neither vaccinated nor
taking any intermediate defense measure against contagion faces the risk of being
exposed to infection during a season.

To simplify the evaluation of each individual’s payoff, without loss of generality,
we rescale the cost by defining a relative cost of vaccination, namely Cr ¼ Cv/Ci

(0 � Cr � 1; Ci ¼ 1). Consequently, the payoff of each individual at the end of an
epidemic season depends on his/her final state. Table 4.3 summarizes the payoff
whether committing to a provision (either vaccination or intermediate defense
measure against contagion) or not and whether having been healthy or infected.

4.1.2.2 The Second Stage: The Epidemic Season

Here, at the beginning of this stage, the epidemic strain enters the population, and a
number I0 (sufficiently small compared with the total population) of randomly
selected susceptible individuals are identified as the initially infected ones. Then,
the epidemic spreads according to SIR/V dynamics. At the end of one epidemic
season, we can observe the final epidemic size, previously discussed in Eq. (4.4).

It is likely that, after one epidemic season, an individual would reevaluate their
decision of whether or not to commit to a provision based on whether or not they
were infected during the season. For instance, they may shift to non-vaccination if
quite a few of their neighbors successfully avoided infection during the season, or if
media claims that the current infection rate is not as serious as expected. Depending
on how each individual adjusts their strategy, as defined in the later sub-section, the
fractions committing or not committing to a provision in the next season evolve.
Although what we seek is not the annual dynamics in terms of the final epidemic size
and vaccination coverage over long epidemic seasons, we repeat the set of one
vaccination campaign and one epidemic season many times until its time evolution

Table 4.3 Payoff structure
determined at the end of an
epidemic season

Strategy/state Healthy Infected

Vaccinated �Cr �Cr � 1

Non-vaccinated 0 �1
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reaches a certain equilibrium. We then evaluate the social equilibrium where the final
epidemic size, vaccination coverage, and social-average payoff are measured. The
vaccination-game concept is explained in Fig. 4.7.

4.1.3 Multiagent Simulation (MAS) Approach

The classic SIR or SIR/V model, discussed in Sect. 4.1.1, is given by coupled
(integro-) differential equations and does not assume any spatial structure for the
population. Such an analytical approach can be applied to cases presuming spatial
structure amid individuals. However, a more convenient and powerful multiagent
simulation (MAS) approach can be applied to various cases presuming a spatial
structure of finite population size.

Suppose that the whole population has a spatial structure, represented by a
network consisting of nodes and links. The dynamics of SIR/V on a spatially
structured population are not captured by a system of differential equations; thus,
we numerically simulate an epidemic spreading on a network using the Gillespie
algorithm18 in the extended SIR/V model. For social networks, we can account for
any topology in the MAS model. Many interesting toplogies have been discussed;
rings (representing 1D regular graphs), lattices (representing 2D regular graphs),
random regular networks (RRGs), Barabási-Albert scale-free (BA-SF) networks,21

Fig. 4.7 Time sequence in a vaccination game. T denotes the number of epidemic seasons

21Barabási and Albert (1999).

168 4 Social Dilemma Analysis of the Spread of Infectious Disease



Erdős–Rényi random (E-R random) graphs,22 and small-world (SW) network.23

Figure 4.8 gives some such models. Meanwhile, a couple of network properties
have been defined to evaluate its topology and complexity; such as average degree,
<k>, degree distribution, P(k), average path length, average cluster coefficient, and
assortative coefficient. In rings, lattices, and RRGs, each vertex has the same degree
k, i.e., the same number of links, and so these are called homogenous degree-
distributed networks. The degree distribution of a scale-free graph obeys a scale-
free distribution, and that of the E-R random graph obeys a Poisson distribution.
These are classified as heterogeneous degree-distributed networks. A scale-free
network has a small number of agents (called “hubs”) with a huge number of
links, while the vast majority of agents have a small number of links. It is why its
degree-distribution is scale-free. And it is the substance of scale-free network. A
small-world network can be constructed from a regular graph such as a ring or a
lattice. Starting from such a regular graph, severing links with “short-cut” probabil-
ities (usually presumed to be a small value), and re-connecting them randomly, the
graph would become a small-world. One of the most important characteristics is that
an SW network has a quite small average path length compared with the original

Fig. 4.8 Representative topologies

22Bollobás (1985).
23Watts and Strogatz (1998).
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regular graph. Some complex networks observed in real human social systems can
feature scale-free and small-world characteristics.

In the model, the whole population N is divided S, I, R, and V individuals. The
disease parameters are β, which is the transmission rate per day per person, and γ,
which is the recovery rate per day (i.e., the inverse of the mean number of days
required to recover from the infection).

For the sake of explanation, let us be concerned with the square lattice, RRG, and
B-A SF network. An epidemic spreads much more easily on the RRG and the BA-SF
network, even when the transmission rate is lower than that on the square lattice.24 In
the following text, we set the disease-transmission rate β to ensure that the risk of
infection in a population with only the unvaccinated individuals is equivalent for all
different network structures. This requires us to calibrate the value of β such that the
final proportion of infected individuals across the respective networks will be 0.9 as
a reference value. We should set β ¼ 0.46 day�1 person�1 for the square lattice,
β ¼ 0.37 day�1 person�1 for the RRG, and β ¼ 0.55 day�1 person�1 for the BA-SF
network (see Fig. 4.9).25 Also, we should necessarily set the recovery rate. Through-
out the following text, we presume γ ¼ 1/3 day�1. A typical flu is assumed to
determine these disease parameters.

Fig. 4.9 Final proportion of infected individuals as a function of transmission rate β when no
individuals are vaccinated on each network: square lattice (circles), random regular graph (RRG)
(triangles), Barabási-Albert scale-free (BA-SF) network (squares). For the lattice (circles): popula-
tion size N ¼ 70 � 70 with von a Neumann neighborhood, recovery rate γ ¼ 1/3 day�1, seeds of
epidemic spread I0¼ 5. For RRG (triangles): population size N¼ 4900, degree k¼ 4, recovery rate
γ ¼ 1/3 day�1, seeds of epidemic spread I0 ¼ 5. For BA-SF network (squares): population size
N ¼ 4900, average degree <k> ¼ 4, recovery rate γ ¼ 1/3 day�1, seeds of epidemic spread I0 ¼ 5.
Each plotted point represents an average over 100 runs

24Keeling and Eames (2005), Pastor-Satorras and Vespignani (2001).
25Fukuda et al. (2014).
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At the beginning of each epidemic season, we randomly place a number I0 of
initially infected agents. According to the Gillespie algorithm,19 we exactly follow
the epidemiological dynamics of the SIR/V model. This is analogous to a simulation
based on the percolation theory.26 The epidemic season lasts until no infection exists
in the population. Each individual who gets infected during the epidemic incurs the
cost of infection, Ci. However, the cost paid by a “free-rider” who does not vaccinate
and still is free from infection is zero.

As shown in Fig. 4.7, right after one epidemic season, another vaccination
campaign begins, during which each agent in the network refreshes their strategy.
We repeat the set of one vaccination campaign and one epidemic season many times
until its time evolution reaches a certain equilibrium to obtain the final epidemic size.
The vaccination coverage and the social average payoff are measured.

4.1.4 Decision-Making Process Concerning Vaccination

In this sub-section, we describe how each agent adapts their strategy, regardless of
whether they commit to a provision in a vaccination campaign; this is the first stage
in the vaccination game, schematically shown in Fig. 4.7. One’s motivation in
adjusting their strategy over time is to maximize their own payoff as long as each
individual is presumed to behave in a rational way. According to what has been
suggested by evolutionary game theory, even if one behaves in an altruistic manner,
there must be compensation in the long run. If not, such cooperative behavior cannot
be evolutionary stable. Roughly speaking, one can update their strategy through
social imitation or self-estimation.

Social imitation is “copying” from others. The information source, from which a
focal agent copies, might be an acquaintance, whether a neighbor, relative, friend, or
someone sharing common benefits with the focal agent; or they might be on the
media. In the latter case, the information is global, unlike in the former case relying
on local information.

The second idea, self-estimation, differs from copying. In many real situations
concerning decision making, it is conceivable that an agent will engage not in social
imitation but drawing a personality-independent decision that directly suggests that
one of the alternative strategies to be taken in the next time-step is conceivable. In
this case, a focal agent quantitatively estimates the given situation based on the
observation of what currently happens to his neighbors including himself. That
quantitative estimation teaches him which strategy is stochastically best for the
next time-step. One commonly shared idea concerning the strategy-update rule in
evolutionary game theory, the “aspiration model”,27 belongs to this second idea.

26Sahimi (1994).
27There have been many previous studies on the aspirational model; let us suggest some represen-
tative literature below; Macy and Flache (2002), Chen and Wang (2008).
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4.1.4.1 Social Imitation

As mentioned above, this concept comes from how one copies others. We note two
ideas.

Individual-Based Risk Assessment (IB-RA)
Fu et al. pioneered a model10 in which agents, spatially distributed on an underlying
network and exposed to infectious risk, learn whether or not to vaccinate from one of
their neighbors. This idea exactly reflects the assumption of the vast majority of
studies dealing with spatial prisoner’s dilemma (SPD) games, namely pairwise
comparison based on a Fermi function (as described by PW-Fermi). Agent
i randomly selects agent j from his neighbors. Let us assume that their payoffs are
πi and πj, respectively. The probability of agent i copying agent j’s strategy, sj, either
vaccination or non-vaccination, instead of his own strategy, si, is P (si sj), which is
defined as

P si  s j
� � ¼ 1

1þ exp πi�π j

κ

� � , ð4:14Þ

where κ indicates the sensitivity to the gain difference. For κ !1 (weak-selection
pressure), an individual i is insensitive to the payoff difference πi � πj against
another individual j and the probability P(si  sj) approaches 1/2 asymptotically,
regardless of the payoff difference. For κ! 0 (strong selection pressure), individuals
are sensitive to the payoff difference, and they definitely copy the successful strategy
that earns the higher payoff, even if the difference in the payoff is very small. We
assume that κ ¼ 0.1.

Strategy-Based Risk Assessment (SB-RA)28

Equation (4.14) indicates that as the negative-payoff difference increases, the prob-
ability that an individual will change their strategy to that of their successful
neighbor increases. Observing Eq. (4.14) from a different viewpoint, this rule of
strategy adaptation can be interpreted as follows: each individual evaluates both the
risk of maintaining their own strategy and imitating that of their opponent and then
selects the one with the smaller risk. In this method, each individual i assesses the
risk based only on one certain individual j because Eq. (4.14) uses only the payoff of
i’s opponent (individual j). Thus, we call the updating rule, described by Eq. (4.14)
an individual-based risk-assessment updating rule (IB-RA).

However, when we assume that the information regarding the consequences of
adopting a certain strategy are disclosed to the society and everyone in the popula-
tion has access to this information, then individuals no longer rely heavily on the
payoff of any one neighbor. Instead, in adapting their strategy, they tend to assess the
risk based on a socially averaged payoff that results from adopting a certain strategy.

To reflect the above situation, we propose the following modified imitation
probability:
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P si  s j
� � ¼ 1

1þ exp
πi�<πs j>

κ

h i , ð4:15Þ

where < πs j > is an average payoff obtained from a collective payoff over individ-
uals who adopt the same strategy as that of a randomly selected neighbor j of the
individual i. The sampling number is a control parameter that ranges from only one
individual (i.e., only one of i’s neighbors, j) to all individuals among the whole
population who adopt the same strategy as j. That is, if sj is the strategy of
vaccination (cooperation, C), then < πs j >¼ �Cr (since the payoff of a vaccinated
individual is uniquely determined28); whereas, if sj is the strategy of no-vaccination
(defection, D), then < πs j > takes a value between 0 and 1, depending on the
fractions of infected and healthy individuals (free-riders) with the strategy sj in the
population at the end of the epidemic. Moreover, if sampling is impossible because
the population size of individuals with the strategy sj is too small, the individual
i uses the payoff of one randomly selected neighbor instead of< πs j > in Eq. (4.15),
leading to an expression that is the same as Eq. (4.14). Thus, when the sampling rate
is set to zero, Eq. (4.15) reduces to Eq. (4.14).

Equation (4.15) implies that an individual i assesses the risk of changing their
strategy based on the payoff attained by adopting a certain strategy, and not the
payoff attained by a certain other individual. Thus, we call the updating rule (4.15) a
“strategy-based risk assessment updating rule” (SB-RA). Note that, risk assessment
based on the consequences of a vaccination strategy is the same as that based on a
unique individual because the immune effect of vaccination is perfect during an
epidemic season. However, for the no-vaccination strategy, the risk may differ from
season to season because the degree of the epidemic may differ.

Figure 4.10 schematically summarizes IB-RA and SB-RA.

4.1.4.2 Self-Estimation15

Instead of “copying probability from one of the neighbors,” we directly assign an
agent a “probability of vaccinating,” PC, triggered by his consciousness of how
dangerous it is to ignore vaccination. Namely,

PC ¼ 1
1þ exp Cr� < CD >ð Þ=κ½ � , ð4:16Þ

28This is true only when a vaccination brings perfect immunity. When we presume a general
provision, we have either imperfect vaccination dealt by the effectiveness model or an intermediate
protection measure for contagion by the efficiency model (see Fig. 4.3). The cooperator’s payoff is
stochastically variable. In this case, we must evaluate < πs j > fairly, as in the defector’s case.
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< CD >¼ Ci � niþiC f � n f

nD,
ð4:17Þ

where Ci(¼ 1)is the cost of being infected, Cf is the cost of free riding, which is zero,
and nD, ni, and nf are the numbers of non-vaccinators, infected agents, and free
riders, respectively, in the agent’s neighborhood. Therefore, nD ¼ ni + nf. <CD>
indicates the average payoff of non-vaccinators in agent i’s neighborhood. In the
following text, let us call this model “direct commitment (DC)”.

One problem that arises is how to evaluate Eq. (4.17) if there are no
non-vaccinators in agent i’s neighborhood. We establish the following four cases
as our sub-model.

Case 1: Agent i retains their strategy.
Case 2: As a substitute, we assume that PC ¼ 1-Cr.
Case 3: Agent i switches to the strategy opposite theirs.
Case 4: Substituting <CD > ¼ 0, we continue to rely on Eq. (4.16).

Case 1 expresses the fact that people tend to maintain the status quo. Case
2 assumes that an agent relies on the vaccination cost as alternative information.
Case 3 assumes that an agent tends to take an inverse strategy if they are stalemated
due to lack of information. Case 4 assumes that an agent behaves in an optimistic
manner by assuming that free riders can be successful.

In the following text, we show the result of comparing Cases 1 and 4 of the DC
model by means of MAS.

We assume that N¼ 4900 and I0¼ 5. We also assume that β ¼ 0.46 and γ ¼ 1/3
(the flu is assumed). In a simulation episode, one time-step consisting of the first
stage, a vaccination campaign and the second stage, and an epidemic season
continues until 3000 time-steps have passed. In a simulation study with varying
relative vaccination cost, Cr, we observe the average vaccination coverage and

Fig. 4.10 Strategy update based on the concept of social imitation; (a) IB-RA, (b) SB-RA
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final epidemic size in the last 1000 time-steps. The statistics shown below are
based on 100 independent simulation episodes.

In Fig. 4.11, we show (a) the vaccination coverage, (b) the final epidemic size,
and (c) the average social payoff versus the vaccination cost, Cr. Except at Cr ¼ 0,
our new adaptation model shows higher vaccination coverage, therefore leading to
smaller final epidemic sizes than seen in the default model. However, note that, as far
as the social payoff is concerned, Cases 3 and 4 show worse performance than either
Cases 1 or 2 for the range of reasonable vaccination cosst, although they seem better
than the default case.

To further examine the results, Fig. 4.12 shows a typical time evolution of
100 realizations for the last 100 time-steps prior to quasi-equilibrium in each case
(Fig. 4.12b–e) with the default model (Fig. 4.12a) assuming Cr ¼ 0.3. In the default
case, as a general tendency, we see that larger final epidemic sizes with small time-
fluctuations (compare Case 1 (Fig. 4.12b) and Case 2 (Fig. 4.12c)) result from lower
but more stable vaccination coverage. Conversely, in Case 2 and more clearly in
Case 1, relatively higher and stable vaccination coverage successfully results in
stably lower final epidemic sizes. Interestingly, the situation we observe in Cases

Fig. 4.11 Relationship between the vaccination cost and (a) the vaccination coverage, (b) the final
epidemic size, and (c) the average social payoff for each of the four cases. Different symbols
indicate the four cases, while the solid line indicates the result of the default setting according to Fu
et al. (2011)

Fig. 4.12 Time evolution of the vaccination coverage (blue) and the final epidemic size (red)
assuming Cr ¼ 0.3: (a) default case, (b) Case 1, (c) Case 2, (d) Case 3, and (e) Case 4
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3 (Fig. 4.12d) and 4 (Fig. 4.12e) is quite different. Significant time-fluctuations in
both the vaccination coverage and the final epidemic size occur. This time-
fluctuation seems to have two time-step-periodic dynamics, as confirmed below.
This fluctuation may unwillingly cause the “vaccination-effectiveness” result men-
tioned above, because it brings a lower social payoff than the default model despite
higher vaccination coverage and lower average final epidemic size for
0.3 � Cr � 0.6.

Figure 4.13 offers further insight by showing continuous snapshots after 2940
time-steps for each of the four cases. Obviously, Cases 3 (Fig. 4.13d) and
4 (Fig. 4.13e) show two-time-step-periodic flipping in which a situation with
vaccinators with a small number of infected agents who failed to free ride follows
a situation with infected agents with a small number of vaccinators. This inevitably
results in a pandemic-like situation in Cases 1 (Fig. 4.13b) and 2 (Fig. 4.13c) every
other time-step, because the majority of vaccinators form small vaccinator clusters
and are less spatially spread-out over the entire domain.

One plausible reason why these settings, especially those of Case 4, bring about
such acute two-time-step flipping can be formulated as follows. From the inherent
nature of its definition, Case 4 sees the non-vaccination strategy as being more
advantageous than the vaccination strategy if there are no infected neighbors. Our
model framework in not only Case 4 but also in other cases urges infected agents to
adopt a vaccination strategy in the next time-step. This implies that agents in Case
4 tend to adopt the defective strategy (non-vaccination) if the outcome of the current
time-step is good, whereas they adopt a cooperative strategy (vaccination) if the
outcome is bad. This specific feature consequently results in the time flipping that
was also observed in Win-Stay and Lose-Shift (WSLS)29 of PD games and is a

Fig. 4.13 Snapshots after 2940 time-steps assuming Cr¼ 0.3: (a) Default case, (b) Case 1, (c) Case
2, (d) Case 3, and (e) Case 4

29Imhof et al. (2007).
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typical self-reflecting strategy (taking either the same offer to the current one or its
opposite), unlike the copying-from-others’ strategy seen in tit-for-tat games. As
confirmed above, Cases 3 and 4 contain some fragments of a “self-reflecting
strategy.” One recent study30 reports that some strategic adaptations based on the
concept of WSLS can enhance cooperation for spatial-PD games. This is because
sparsely located cooperative agents showing time-flipping manners with time-
alternating defection are able to realize a reasonable amount of mutual reciprocity.
This is interesting because the mechanism appears to be very different from the usual
network reciprocity as previously understood, in which a situation of compactly
clustered cooperators would be more likely to result in efficient network reciprocity.
However, in the vaccination game, which has a different game structure than PD
games, Cases 3 and 4 somehow contain a “self-reflecting” feature that does not result
in any preferable consequences.

Unlike Cases 3 and 4, Cases 1 and 2 are able to achieve a preferable consequence,
whereby a higher social payoff is established than that in the case of the default
model. Figure 4.13b, c indicate that, in both cases, quite a few vaccinators are
sparsely located and, consequently, vaccinators can ubiquitously exist in any corner
of the domain. This is crucially important for suppressing the spread of epidemics.31

As discussed, we have established a new strategy-adaptation idea in the vaccina-
tion game. Our update rule does not provide a “copying probability” from a focal
agent’s neighbor, as in conventional models; rather, it directly gives a “vaccination
probability” derived from a stochastic comparison between the vaccination cost
commonly disclosed in public and the expected benefit resulting from adopting the
non-vaccination strategy observed in an agent’s neighborhood. We further define
four subordinate models depending on how an agent behaves if they do not encoun-
ter a non-vaccinator among their neighbors.

The simulation results show that our new adaptation model generally results in
higher vaccination coverage and smaller final epidemic sizes than those in the
conventional model, which assumes social imitation of one of the neighbors.

However, depending on the subordinate models, there were two final conse-
quences that either efficiently suppress epidemic spreading or do not. Specifically,
the case assuming that an agent that retains their strategy even if there are no
neighboring defectors (non-vaccinators) (Case 1) allows vaccinators to be sparsely
located in the domain, successfully hampering the spread of an epidemic in this
domain. Conversely, the case assuming that an agent takes the reverse strategy if
there are no defectors (Case 3) or assumes that a free ride will be successful if they
have no defectors among their neighbors (Case 4) results in an acute time-flipping
behavior, which allows huge pandemics every two time-steps.

30Amaral et al. (2016).
31Fukuda et al. (2015).
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4.1.4.3 Mean-Field Approximation (MFA) for the Three Updating
Rules; IB-RA, SB-RA, and DC

In Sect. 4.1.1, we discussed the analytic model of SIR/V presuming an infinite and
well-mixed population. Here, no spatial structure—i.e., no network that connects all
of the individuals—is considered. Hence, when we apply the vaccination game to
the analytic model, the strategy-update rule should be introduced. Since any spatial
structure is considered, we must rely on the so-called mean-field approximation to
evaluate a neighbor’s payoff.

Individual-Based Risk Assessment (IB-RA)
In the present framework, there are four classes of individual in relation to cost
burden: (i) a successful free-rider (SFR) who pays nothing; (ii) a failed free-rider
(FFR) who pays �1; (iii) an infected vaccinator (IV) who pays �Cr � 1; and (iv) a
healthy vaccinator (HV) who pays�Cr. Each individual can choose from one of two
strategies: vaccination (hereinafter V) or non-vaccination (hereinafter NV). Thus, the
transition probability that affects the time transition of x, which should be considered
in the IB-RA rule, is covered by one of the following eight cases:

P HV  SFRð Þ ¼ 1
1þ exp � 0� �Crð Þð Þ=κ½ � , ð4:18aÞ

P HV  FFRð Þ ¼ 1
1þ exp � �1� �Crð Þð Þ=κ½ � , ð4:18bÞ

P IV  SFRð Þ ¼ 1
1þ exp � 0� �Cr � 1ð Þð Þ=κ½ � , ð4:18cÞ

P IV  FFRð Þ ¼ 1
1þ exp � �1� �Cr � 1ð Þð Þ=κ½ � , ð4:18dÞ

P SFR HVð Þ ¼ 1
1þ exp � �Cr � 0ð Þ=κ½ � , ð4:18eÞ

P SFR IVð Þ ¼ 1
1þ exp � �Cr � 1� 0ð Þ=κ½ � , ð4:18fÞ

P FFR HVð Þ ¼ 1
1þ exp � �Cr � �1ð Þð Þ=κ½ � , ð4:18gÞ

P FFR IVð Þ ¼ 1
1þ exp � �Cr � 1� �1ð Þð Þ=κ½ � : ð4:18hÞ
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Strategy-Based Risk Assessment (SB-RA)
As discussed above, SB-RA modifies the imitation probability to reflect the situation
in which an individual tends to assess the risk based on a socially averaged payoff
because of the prevalence of information about epidemics (probably given by the
media). In the analytic framework, the transition probability that we must consider
now is one of the following:

P HV  NVð Þ ¼ 1
1þ exp � πDh i � �Crð Þð Þ=κ½ � , ð4:19aÞ

P IV  NVð Þ ¼ 1
1þ exp � πDh i � �Cr � 1ð Þð Þ=κ½ � , ð4:19bÞ

P SFR Vð Þ ¼ 1
1þ exp � πCh i � 0ð Þ=κ½ � , ð4:19cÞ

P FFR Vð Þ ¼ 1
1þ exp � πCh i � �1ð Þð Þ=κ½ � : ð4:19dÞ

Direct Commitment (DC)
Direct commitment is the representative framework of “self-estimation”, which
differs from “social-imitation” methods such as IB-RA and SB-RA. Applying
MFA, the transition probability that we must consider now is one of the following:

P V  NVð Þ ¼ 1
1þ exp � πDh i � πCh ið Þ=κ½ � , ð4:20aÞ

P NV  Vð Þ ¼ 1
1þ exp � πCh i � πDh ið Þ=κ½ � : ð4:20bÞ

4.1.5 Vaccination Game Through Analytic Approach

Here, let us revisit the analytical approach. Recall that x means the fraction of the
total population that either vaccinates or takes intermediate defensive measures.
Looking back at Fig. 4.7, strategy updating takes place after each epidemic season,
as defined above, thereby inevitably changing x. We have two different epidemic
models, namely the effectiveness model and the efficiency model, and three different
updating rules, namely IB-RA, SB-RA, and DC. Hence, we establish the following
six different types of dynamics:
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Effectiveness model + IB-RA:

dx

dt
¼ x 1� xð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P SFR HVð Þ � P HV  SFRð Þð Þ
þ x 1� xð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ

1� exp �R0R x;1ð Þ½ �ð Þ P FFR HVð Þ � P HV  FFRð Þð Þ
þ x 1� xð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P SFR IVð Þ � P IV  SFRð Þð Þ
þ x 1� xð Þ 1� eð Þ

1� exp �R0R x;1ð Þ½ �ð Þ2 P FFR IVð Þ � P IV  FFRð Þð Þ,

ð4:21Þ

Efficiency model + IB-RA:

dx

dt
¼ x 1� xð Þexp � 1� ηð ÞR0R x;1ð Þ½ �exp �R0R x;1ð Þ½ �

P SFR HVð Þ � P HV  SFRð Þð Þ
þ x 1� xð Þexp � 1� ηð ÞR0R x;1ð Þ½ �

1� exp �R0R x;1ð Þ½ �ð Þ P FFR HVð Þ � P HV  FFRð Þð Þ
þ x 1� xð Þ 1� exp � 1� ηð ÞR0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P SFR IVð Þ � P IV  SFRð Þð Þ
þ x 1� xð Þ 1� exp � 1� ηð ÞR0R x;1ð Þ½ �ð Þ

1� exp �R0R x;1ð Þ½ �ð Þ P FFR IVð Þ � P IV  FFRð Þð Þ,

ð4:22Þ

Effectiveness model + SB-RA:

dx

dt
¼ �x 1� xð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HV  NVð Þ
� x 1� xð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP IV  NVð Þ
þ x 1� xð Þexp �R0R x;1ð Þ½ �P SFR Vð Þ
þ x 1� xð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP FFR Vð Þ,

ð4:23Þ

Efficiency model + SB-RA:

dx

dt
¼ �x 1� xð Þexp � 1� ηð ÞR0R x;1ð Þ½ �P HV  NVð Þ
� x 1� xð Þ 1� exp � 1� ηð ÞR0R x;1ð Þ½ �ð ÞP IV  NVð Þ
þ x 1� xð Þexp �R0R x;1ð Þ½ �P SFR Vð Þ
þ x 1� xð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP FFR NVð Þ,

ð4:24Þ

Effectiveness or efficiency model + DC:

dx

dt
¼ �xP V  NVð Þ þ 1� xð ÞP NV  Vð Þ: ð4:25Þ

It is worthwhile to note that Eq. (4.25) is qualitatively consistent with what are
called replicator dynamics (see; Eq. (2.6) in Sect. 2.1.1), one of the most common
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concepts in evolutionary game theory for expressing a system’s dynamics. All of the
above dynamical ODEs can be solved numerically. We introduce a so-called explicit
scheme32 for the time-varying terms to obtain a numerical solution; namely, vacci-
nation coverage at equilibrium.

Figures 4.14 and 4.15 relating to the effectiveness and efficiency models, respec-
tively, give the final epidemic size (left-hand panels), vaccination coverage (central
panels), and average social payoff (right-hand panels) for various strategy-updating
rules, namely IB-RA (upper panels), SB-RA (middle panels), and DC (lower panels).

The regions colored uniformly in light red (final epidemic size), dark blue
(vaccination coverage), and light blue (average social payoff) indicate a pandemic
taking place, where most individuals do not use vaccination (precisely speaking, not
using either imperfect vaccination or an intermediate defense measure); thus, an
almost-full-scale spread of infection occurs. Roughly speaking, these regions
emerge when a smaller effectiveness (efficiency) is presumed or a larger cost is
imposed. This seems quite natural because most individuals tend to shy away from
vaccination if it is less reliable and/or too expensive. The border between each of
these monotone regions and the remaining region implies a combination of critical
effectiveness (efficiency) and critical vaccination cost to control the spread of an
epidemic, causing an obvious change between the pandemic and controlled phases.
As far as the controlled phase is concerned, interestingly, lower effectiveness
(efficiency) can realize a higher vaccination coverage, which is also helped by the
effect of lower cost. Even if a large fraction of individuals use vaccination, the
epidemic cannot be eradicated because of the lower reliability of vaccination.

The detailed tendencies of the three updating rules differ, although the overall
tendency is the same to some extent. Comparing the effectiveness model and the
efficiency model, the latter has a wider pandemic phase at first glance. This implies
that an intermediate defense measure with a certain η is less effective at suppressing
the spread of an epidemic than imperfect vaccination, with e being defined as having
the same numerical value as η.

To validate this theoretical framework, we conducted a series of numerical
simulations based on the MAS approach discussed previously. Because we assumed
a well-mixed population, we presumed a complete graph as the underlying network
connecting the agents. Following previous studies, we set β ¼ 0.00088, which was
determined as the minimum transition rate β for which the final epidemic size
exceeds the predefined threshold of 0.9 without vaccination. The results are shown
in Figs. 4.16 and 4.17. Generally, all those results are respectively consistent with
Figs. 4.14 and 4.15, although subtle discrepancies arise from the fact that the
simulation presumed a finite population size of N ¼ 1000.

32A reader can consult any standard textbooks on applied mathematics with numerical approaches.
One example is provided below: Tanimoto (2014).
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4.1.5.1 Summary

Presuming an infinite and well-mixed population, we established an analytical
framework for a vaccination game in which three different strategy-updating rules
were separately implemented. Our main concern was the extent to which the
evolutionary picture differed when either imperfect vaccination or an intermediate
defense measure was introduced to suppress the spread of an epidemic. We

Fig. 4.14 Final epidemic size (left-hand panels; *-A), vaccination coverage (central panels; *-B),
and average social payoff (right-hand panels; *-C) for strategy-updating rule IB-RA (upper panels;
1-*), SB-RA (middle panels; 2-*), and DC (lower panels; 3-*). The effectiveness model is applied
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successfully established the respective evolutionary formulas, showing numerical
results. We validated our framework by comparing its predictions with simulation
results. As long as the same coefficient values for effectiveness and efficiency are
presumed, an intermediate defense measure is marginally inferior to an imperfect
vaccination.

Fig. 4.15 Final epidemic size (left-hand panels; *-A), vaccination coverage (central panels; *-B),
and average social payoff (right-hand panels; *-C) for strategy-updating rules IB-RA (upper panels;
1-*), SB-RA (middle panels; 2-*), and DC (bottom panels; 3-*). The efficiency model is applied
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4.2 Optimal Subsidy-Policy Design for Vaccination

Many studies (called “vaccination games”) have been reported on reproducing the
vaccination dilemma. Meanwhile, returning to the social aspect of a voluntary
vaccination policy, it may be possible to either solve or relax the vaccination
dilemma. One provision is financial support from the central (or municipal) govern-
ments in the form of a subsidy. In fact, aged individuals and other people needing
support are subsidized for the vaccination of seasonal influenza in Japan. On the
other hand, the Japanese government is suffering from a huge budget deficit
resulting from the stably increasing cost of medical care as well as the welfare cost

Fig. 4.16 MAS result for the final epidemic size (left-hand panels; *-A), vaccination coverage
(central panels; *-B), and average social payoff (right-hand panels; *-C) for strategy-updating rules
IB-RA (upper panels; 1-*), SB-RA (middle panels; 2-*), and DC (lower panels; 3-*). Effectiveness
model is applied. We presumed a complete graph with N ¼ 1000, β ¼ 0.00088, and γ ¼ 1/3
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for an aged population. As long as a subsidy effectively reduces the entire social cost
including the additional tax burden, such a subsidy policy for vaccination can be
fully justified. Therefore, the question of what subsidy policy meeting this criterion
can minimize the social cost is quite an important subject.

There have been several previous studies approaching this subject from different
viewpoints. Gavious & Yamin33 pioneered this field. Based on a macro model
referring to SIR dynamics validated by field observations, they insisted that a

Fig. 4.17 MAS results for final epidemic size (left-hand panels; *-A), vaccination coverage
(central panels; *-B), and average social payoff (right-hand panels; *-C) for strategy-updating
rules IB-RA (upper panels; 1-*), SB-RA (middle panels; 2-*), and DC (lower panels; 3-*). The
efficiency model is applied. We presumed a complete graph with N ¼ 1000, β ¼ 0.00088, and
γ ¼ 1/3

33Gavious and Yamin (2013).
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sufficiently large subsidy is needed when an epidemic period becomes long, and
middle- and younger-aged people should be subsidized rather than the elderly.
Zhang et al.34 gave a holistic report by means of a multiagent-simulation (MAS)
approach. Their model presumed that epidemic dynamics and strategy dynamics
share with a same time scale unlike most of the previous vaccination games (e.g., Fu
et al. [10]) presuming. They compared two policies; distributing free-tickets as long
as the budget allows (hereafter, called free-ticket policy) and distributing a discount
ticket to all individuals (they called this a partial-offset policy; hereafter we call it a
discount policy). They defined the total social cost as the sum of the infection and
vaccination costs paid by each individual. In this sense, their subsidy was external-
ized as a “gift-of-nature”. As we discuss later, externalizing the effect from a subsidy
is justified if one evaluates the total social cost. Zhang et al.,35 relying on Fu’s
vaccination-game model as well as an analytic approach [10], comparing a free-
ticket policy with a discount policy for various cases. Zhang et al.36 also investigated
how random and targeted subsidization of individuals differently suppress disease
spread. Tang et al.37 explored an interesting subsidy system. They introduced a new
specific system in which only neighboring individuals are able to mutually support
each other, unlike the usual subsidy system in which the central government
comprehensively levies an additional tax upon all individuals. They concluded that
their system is more efficient than the conventional one in terms of increasing
vaccination coverage as a whole. Li et al.38 reported a well-designed theoretical
model considering a subsidy system assuming an SIRS model (which allows an
individual to be infected twice in a single season), rather than an SIR model. Ding
et al.39 highlighted how effectively a subsidy policy works to minimize disease
spread on a scale-free network when a free-ticket subsidy is preferentially distributed
to higher-degree agents (hub agents), rather than using random allocation.

Returning to the concept of a subsidy, we should note that a vaccinator given a
free ticket may induce some neighboring agents to become voluntary vaccinators.
Because of this positive effect, an appropriate subsidy policy may reduce the total
social payoff as a whole. This seems analogous to the effect of a “stubborn
vaccinator” investigated by Fukuda et al.40 or a “zealot cooperator” in a spatial
version of a 2 � 2 game, investigated Matsuzawa et al.,41 meaning an agent
insensitive to strategy updating. One important difference between a subsidized
vaccinator and a stubborn vaccinator is whether or not their spatial location in a
domain is frozen. Different people are given free tickets from one season to another.

34Zhang et al. (2013).
35Zhang et al. (2014).
36Zhang et al. (2017).
37Tang et al. (2017).
38Li et al. (2017).
39Ding et al. (2018).
40Fukuda and Tanimoto (2016).
41Matsuzawa et al. (2016).
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Motivated by all of the aforementioned background, this section quantitatively
answers the question of whether or not a vaccination-subsidy policy can really
reduce the total social cost, comprising vaccination cost, diseases cost, and the tax
burden needed to implement the subsidy. If this is possible, the question becomes
what subsidy policy (e.g., distributing free or discount tickets) can minimize the total
social cost. To do that, we, first off, establish a comprehensive vaccination-game
model taking account of various subsidy mechanisms, and shed some light on what
subsidy policy realizes the socially best solution. We use MAS as well as analytical
approaches.

4.2.1 How We Model Subsidy Policy

Regardless of whether we take an MAS approach (see Sect. 4.1.3) or an analytic
approach (See; Sect. 4.1.5), we follow the vaccination game depicted in the previous
Section.

The key point is how we model various vaccination policies taken by the
government.

From a policy-design point of view, we build four different subsidization pro-
cedures, which depend on whether a free-ticket or discount policy is presumed, and
what target individuals are presumed.

Model A-1: Free-ticket policy. The target is as many randomly selected individuals
as the subsidy budget will allow.

Model A-2: Free-ticket policy. The target is randomly selected individuals who did
not vaccinate in the previous time step. As many tickets are distributed as the
subsidy budget allows. Unlike Model A-1, this model targets potential
non-vaccinators with the intent of increasing social-vaccination coverage.

Model A-3: Free-ticket policy. The target is randomly selected individuals who
vaccinated in the previous time step. As many tickets are distributed as the
subsidy budget allows. Unlike the previous two models, Model A-3 only gives
the privilege of a free ticket to a cooperator (vaccinator) in the previous time step.

Model B: Discount policy. All individuals are given a discounting ticket to reduce
the individual cost burden, Cr, by as much as possible. But this premier makes
sense only when he decides committing vaccination.

Figure 4.18 illustrates the subsidy models above, where fC is the cooperation rate
(rate of vaccination) after each individual decides whether to vaccinate.

Let σ be the fraction of vaccinators to be subsidized out of the total population, N.
Hence, the additional tax burden per capita for subsidies, TAX, is given as

TAX ¼ Cr � σ � N
N

¼ Cr � σ: ð4:26Þ

Here, we define the total social payoff (TSP) as below:
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TSP ¼ �Cr ∙ VC � σð Þ � 1 ∙FES� TAX ¼ �Cr ∙VC � 1 ∙FES: ð4:27Þ

TSP must be negative, hence, |TSP| means the total social cost taking account of all
aspects including the budget for a subsidy policy. It is worthwhile to note that TSP is
independent of the size of a subsidy. This is quite natural, because governmental
expenditure should be consistent with revenue as a whole. Eq. (4.27) revels that the
subsidy works, in a sense, as a social “catalyst”, allowing us to evaluate how much a
subsidy (of a certain amount based on a certain policy) is able to enhance the number
of voluntary vaccinators (or vaccinators in general). Thus, TSP can be thought of as
an appropriate index for evaluating the social efficiency of a subsidy policy in the
present study. We do not consider the additional cost burden levied on each
individual, TAX, when evaluating each individual’s payoff, because, in the real
world, we cannot recognize exactly how much tax each individual has paid specif-
ically for subsidies, as tax is generally levied. Thus, the breakdown of expenditure is
not visible to us. However, a subsidy given as a free ticket or a discounting coupon
is, of course, manifestly visible to the subsidized individual. This is why such a
subsidy policy is generally favored and enthusiastically accepted by typical people in
the street, on which the politics of “populism” tends to ride.

Fig. 4.18 Four models for subsidy policies; (a) Model A-1, (b) Model A-2, (c) Model A-3, and (d)
Model-B
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4.2.2 Results and Discussion; MAS Approach

We measure the vaccination coverage (VC), final epidemic size (FES), and total
social payoff (TSP) with varying vaccination cost (Cr) and subsidy size (σ). To
highlight how the introduction of a subsidy affects a social equilibrium, we consider
the difference between cases with and without a subsidy. In the following visual
results throughout this section, we are concerned on those differences for VC, FES
and TSP. This, the three evaluation values respectively range from negative to
positive. Hereafter, let us call a case without subsidy “default”.

Figure 4.19 respectively shows the results for VC, FES, and TSP when presuming
Model A-1 as a subsidy setting, where a free ticket is distributed to randomly
selected individuals regardless of V or NV, using a lattice for an underlying network
and IB-RA for a strategy-updating rule. Red indicates a region where a subsidy
devastates social efficiency, leading to a smaller fraction of vaccinators, larger final
epidemic size, and smaller total social payoff than in the default case.

Let us consider the total social payoff (Fig. 4.19c), where there are two negative
regions. One occurs when a smaller vaccination cost and subsidy budget are
presumed. Another takes place when a larger vaccination cost and subsidy budget
are presumed. The former accords with regions of negative-VC difference
(Fig. 4.19a) and positive-FES difference (Fig. 4.19b); in this region, subsidies
going to defective individuals who have no intention of vaccinating eventually
reduce the number of voluntary vaccinators (e.g., self-financed vaccinators), leading
to a wider spread of disease and pushing up the total social cost due to a larger
number of infectious individuals. This is quite ironic from the viewpoint of social
context. The implication drawn from this particular case is that too small of a budget
for the subsidy policy in the case of a relatively smaller vaccination cost fails to
increase the number of voluntary vaccinators, but rather causes individuals to refrain
from cooperating in establishing a herd immunity. Unlike the first negative region

Fig. 4.19 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-1, lattice, and IB-RA are presumed
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with a smaller budget, the second negative region with too much of a subsidy in the
case of a relatively larger vaccination cost (Fig. 4.27c) successfully realizes a larger
VC (Fig. 4.19a) and smaller FES (Fig. 4.19b) vis-à-vis the default case. This fact
proves that overspending on the financial support brings too much vaccinators
including forcefully committing individuals. It is obviously over the socially
approved level whereat the cost of infection of society as a whole is balanced by
the cost of vaccination including a subsidy policy (which may be the social opti-
mum). Therefore, to ensure an optimal subsidy-policy design to pre-empt vaccina-
tion, an appropriate level (neither too large nor too small) of subsidy expenditure is
quite important. Hereafter, let us call the former region the “first negative region”
and the latter the “second negative region”.

Figures 4.20 and 4.21 illustrate how targeting subsidies at different groups affects
the total social cost in comparison to Fig. 4.19. Interestingly, Model A-3 (Fig. 4.21),
where financial support is given only to cooperative individuals, does not incur the
first negative region of TSP difference. This suggests that, to increase the number of
voluntary vaccinators, helping potential vaccinators rather than helping potential
social-defectors aiming to free-ride on herd immunity would be more beneficial.
Relating to this, comparison of Fig. 4.19 with Fig. 4.20 implies that the result of
helping potential social defectors brings almost no difference from that of targeting
any arbitrary people.

Figure 4.22 shows the result when the Model-B discount policy is presumed. This
should be compared with Fig. 4.21 on the grounds that target individuals are
potential cooperators (the discount becomes meaningful only when an individual
voluntarily vaccinates). The result shows no specific difference between those two
policies. As long as the intent is to increase the number of voluntary vaccinators in a
society, a “priority system” distributing free tickets to some potential vaccinators
does not differ in effect from an “egalitarian system” allowing a certain discount
(distributing discount coupons) to all potential vaccinators.

Figure 4.23 highlights the difference in strategy updating. This should be com-
pared with Fig. 4.19. With presuming SB-RA relying on global information when
updating strategy, the first negative region with a small budget is slightly extended
compared with IB-RA relying on local information (only referring to the neighbors’
payoff), whereas the second negative region with a too-high budget shrinks slightly
vis-à-vis IB-RA. Yet, as a whole, the difference between those two strategy-updating
rules looks small, which indicates whether an individual decision referring to global
or only local information makes a less-significant difference in the social cost.

Figures 4.24 and 4.25 compare the topological contributions. Figure 4.24 pre-
sumes RRG while Fig. 4.25 show the case of BA-SF, which should be also
compared with Fig. 4.19. The comparison between Fig. 4.19 and Fig. 4.24 confirms
that the effect of random links results in a quite large difference from the case of a
regular & homogeneous network (lattice; Fig. 4.19). The existence of random links
devastates the efficiency of subsidy policy, resulting from the significantly wider
negative regions compared with those observed in Fig. 4.19. In particular, the first
negative region with a smaller budget spreads to much larger Cr as well as larger σ.
Moreover, comparing RRG (Fig. 4.24) with BA-SF (Fig. 4.25), we should note that
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Fig. 4.20 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-2, lattice, and IB-RA are presumed

Fig. 4.21 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-3, lattice, and IB-RA are presumed

Fig. 4.22 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models B, lattice, and IB-RA are presumed
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the latter shows worse performance than the former. Thus, not only the existence of
random links but also the non-uniform degree distribution undermines to the subsidy
system. As is commonly recognized, human social networks can feature scale-free
degree distributions, unlike small-world characteristics.42 Recalling this fact, we
should note the important result observed in Fig. 4.25c that the subsidy works
inversely to reduce the total social cost when almost any vaccination-cost range
(Cr < 0.9) and feasibly realistic budget size (σ < 0.5) are presumed, which may be
meaningful from the standpoint of social applications.

Figure 4.26 provides the results when BA-SF and SB-RA are presumed. Com-
paring with Fig. 4.25, we should note that, unlike the lattice case (comparison

Fig. 4.24 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-1, RRG, and IB-RA are presumed

Fig. 4.23 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-1, lattice, and SB-RA are presumed

42Masuda (2017).
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between Figs. 4.19 and 4.23), BA-SF causes a relatively significant difference
between the two different update rules. Contrasting with the lattice case, the intro-
duction of global information (Fig. 4.26) somewhat relaxes the drawbacks of
subsidy introduction. In particular, the first negative region with a relatively smaller
budget is shrunken compared with the counterpart region in Fig. 4.25.

We show the free-ticket and discount-coupon cases with BA-SF being presumed as
an underlying network, as shown in Figs. 4.27 and 4.28 (where IB-RA is imposed).
Between those two, likewise the lattice case does (comparison between Figs. 4.21 and
4.22), there is no phenomenal difference. But more importantly, as the lattice showing
as well, the first negative region, where a relatively smaller budget size rather
devastating the social efficiency than the default case, does disappear. Although, as
mentioned above, a subsidy policy presuming a BA-SF network may work badly in
terms of social efficiency vis-a-vis the lattice case, it would be significantly improved

Fig. 4.25 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-1, BA-SF, and IB-RA are presumed

Fig. 4.26 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-1, BA-SF, and SB-RA are presumed
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if the government were to rely on the principle of “heaven helps those who help
themselves”; e.g., a policy distributing free tickets only to potential vaccinators or
distributing discount coupons that are only valid to those who actually vaccinate. This
seems quite important from a social-application point of view.

4.2.3 Results and Discussion: Analytic Approach

We utilize the modified SIR model, which can reproduce the epidemic dynamics
arising from imperfect vaccination, namely the effectiveness model introduced by
our previous work Ref [13]. In the present study, we further modify for the

Fig. 4.28 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models B, BA-SF, and IB-RA are presumed

Fig. 4.27 Color indicates the difference between subsidy (σ > 0) and non-subsidy (σ ¼ 0) cases.
Panel (a) vaccination coverage (VC), (b) final epidemic size (FES), (c) total social payoff (TSP).
Models A-3, BA-SF, and IB-RA are presumed
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vaccination game under a subsidy policy. We assume a population that is infinite and
ideally well mixed, implying that the total population of N in the MAS model is
normalized as N ¼ 1. This suggests that the individual tax burden for a subsidy
denoted by TAX in Eq. (4.26) is equivalent to the exact size of the subsidy budget
(hereafter denoted by SB) in the analytical model. Namely, to connect the MAS
model with the analytical model, we should note

TAX ¼ Cr � σ � N
N

¼ Cr � σ ¼ Cr � σ � 1 ¼ SB: ð4:28Þ

4.2.3.1 Epidemic Dynamics

A vaccinated population is separated into two classes: immune individuals obtaining
perfect immunity and non-immune ones failing to obtain immunity. Let the effec-
tiveness of the vaccine and the vaccination coverage be e (0 � e � 1) and x,
respectively. The effectiveness refers to a situation in which some vaccinated agents
acquire immunity with effectiveness probability e; meanwhile, the remaining agents
fail to acquire immunity with probability 1 � e. The fraction of vaccinated individ-
uals with immunity must be ex, while that of non-immune individuals is (1 � ex).
We can express the final epidemic size, R, in relation to both x and time t at
equilibrium (t ¼ 1) as

R x;1ð Þ ¼ 1� exð Þ 1� exp �R0R x;1ð Þ½ �ð Þ, ð4:29Þ

where R0 is the basic reproduction number. R(x,1) gives the respective fractions of
four different types of individual depending on whether they are vaccinated or
non-vaccinated and healthy or infected, as summarized in Table 4.4.

4.2.3.2 Payoff Structure

Again, an epidemic season continues until all infected individuals recover, meaning
that the number of infected individuals is zero. As discussed in Sect. 4.1., we put the
individual cost burden to support a subsidy system aside. If non-vaccinated individ-
uals are infected, they incur an infection cost of 1. By contrast, non-vaccinated
individuals who fortunately remain healthy can avoid the cost burden. Moreover,
individuals who unfortunately are infected despite committing vaccination must pay
the cost Cr + 1. Consequently, the payoff of each individual at the end of an epidemic
season depends upon their final state. Table 4.5 summarizes the payoff whether
committing to a provision (either vaccination or defense against contagion) or not
and whether remaining healthy or becoming infected.
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4.2.3.3 Subsidy Policies

As depicted in Sect. 4.2.1, we presume four different subsidy policies; Models A-1,
A-2, A-3, and B. In the former three models, the limited subsidy is randomly
distributed after each individual decides whether to vaccinate (see Fig. 4.18). In
Model A-2, the defectors who decided not to vaccinate randomly receive the subsidy
and vaccinate without vaccination cost. By contrast, in Model A-3, the cooperators
who decide to vaccinate with their own expense can cover the vaccination cost by a
subsidy. In Model A-1, the subsidy is randomly distributed to the population
irrespective of whether individuals are defectors or cooperators. In these frame-
works, a subsidized individual definitely vaccinates without a vaccination cost
irrespective of his decision because he is given a free ticket. Hence, the subsidy
refunds the voluntary vaccination cost for a cooperator, and a free ticket literally
works for a defector. In the discount policy, Model B, all vaccinators can receive a
certain amount of a subsidy, which reduces the vaccination cost. One point to note is
that the acting discount rate by the subsidy depends on the vaccination coverage at a
certain time-step.

Model A-1
In this scenario, the total subsidy is distributed to a certain fraction of individuals. Let
this fraction be σ

0
. In Model A-1, σ

0 ¼ SB/Cr indicates that σ
0
happens to be

consistent with σ if one refers to Eq. (4.27); σ ¼ SB/Cr. Let the cooperation
(defection) rate be fC ( fD ¼ 1 � fC). All subsidized cooperators σ

0
fC and all

subsidized defectors σ
0
(1 � fC) take vaccination without personal cost. Therefore,

the vaccination coverage is x ¼ fC + σ '(1 � fC). We can find the respective fractions
of eight different types of individual depending on whether they are vaccinated,
non-vaccinated, or subsidized and whether they are healthy or infected, as summa-
rized in Table 4.6. We also can present the payoff structure in Table 4.7 instead of
Table 4.5.

Table 4.5 Payoff structure
determined at the end of an
epidemic season

Strategy/state Healthy Infected

Vaccinated �Cr �Cr � 1

Non-vaccinated 0 �1

Table 4.4 Fractions of four types of individual using the effectiveness model without subsidy
policy

Strategy/state Healthy Infected

Vaccinated x(e + (1 � e) exp [�R0R(x,1)]) x(1 � e)(1 � exp [�R0R(x,1)])

Non-vaccinated (1 � x) exp [�R0R(x,1)] (1 � x)(1 � exp [�R0R(x,1)])
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Subsequently, we can evaluate the expected payoffs in the form of the average
social payoff hπi, the average corporative payoff hπCi, and the average defective
payoff hπDi for the imperfect vaccination:

πh i ¼ �Cr 1� σ0ð Þf C eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ
� Cr þ 1ð Þ 1� σ0ð Þf C 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
� σ0f C 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ � 1� σ0ð Þ 1� f Cð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
�σ0 1� f Cð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ � SB,

ð4:30Þ
πCh i ¼ �Cr 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ

� Cr þ 1ð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
�σ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ,

ð4:31Þ

πDh i ¼ � 1� σ0ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
� σ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ: ð4:32Þ

It is worth noting that hπi is not consistent with the fraction weighted sum of hπCi
and hπDi, because hπi accounts –SB. As mentioned in Sect. 4.2.1, the total social
payoff, TSP, which is consistent with hπimust consider the tax burden to support the
subsidy. Unlike Eq. (4.27), Eq. (4.30) explicitly contains the tax term –SB, which is
attributed to the fact that we did not account for the cost burden at an individual level,
as we assumed in Sect. 4.2.1.

Model A-2
In this scenario, the total amount of a subsidy is distributed to a certain fraction of
defectors. Let this fraction be σ

0
. In Model A-2, note that σ

0 ¼ SB/Cr(1 � fC). All
subsidized defectors σ

0
(1� fC) take vaccination without personal cost. Therefore, the

vaccination coverage is x¼ fC + σ
0
(1� fC). We can obtain the respective fractions of

Table 4.6 Fractions of eight types of individual using effectiveness model A-1

Healthy Infected

C Vaccinated (1 � σ
0
)fC(e + (1 � e) exp [�R0R

(x,1)])
(1 � σ

0
)fC(1 � e)(1 � exp [�R0R

(x,1)])

Subsidized σ 0 fC(e + (1 � e) exp [�R0R(x,1)]) σ 0 fC(1 � e)(1 � exp [�R0R(x,1)])

D Non-
vaccinated

(1 � σ
0
)(1 � fC) exp [�R0R(x,1)] (1 � σ

0
)(1 � fC)(1 � exp [�R0R

(x,1)])

Subsidized σ
0
(1 � fC)(e + (1 � e) exp [�R0R

(x,1)])
σ
0
(1 � fC)(1 � e)(1 � exp [�R0R

(x,1)])

Table 4.7 Payoff structure
presuming Model A-1

Healthy Infected

C Vaccinated �Cr �Cr � 1

Subsidized 0 �1
D Non-vaccinated 0 �1

Subsidized 0 �1
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six different types of individual depending on whether they are vaccinated,
non-vaccinated, or subsidized and whether they are healthy or infected, as summa-
rized in Table 4.8. We also can present the payoff structure in Table 4.9.

We can evaluate the expected payoffs in the form of the average social payoff hπi,
the average cooperative payoff hπCi, and the average defective payoff hπDi for
imperfect vaccination as

πh i ¼ �Crf C eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ
� Cr þ 1ð Þf C 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
� 1� σ0ð Þ 1� f Cð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
�σ0 1� f Cð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
�SB,

ð4:33Þ

πCh i ¼ �Cr eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ
� Cr þ 1ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ, ð4:34Þ

πDh i ¼ � 1� σ0ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
� σ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ: ð4:35Þ

Model A-3
In this scenario, the total subsidy amount is distributed to a certain fraction of
cooperators. Let this fraction be σ

0
. In Model A-3, note σ

0 ¼ SB/CrfC. All subsidized

Table 4.8 Fractions of six types of individual using the effectiveness model A-2

Healthy Infected

C Vaccinated fC(e + (1 � e) exp [�R0R(x,1)]) fC(1 � e)(1 � exp [�R0R(x,1)])

D Non-
vaccinated

(1 � σ
0
)(1 � fC) exp [�R0R(x,1)] (1 � σ

0
)(1 � fC)(1 � exp [�R0R

(x,1)])

Subsidized σ
0
(1 � fC)(e + (1 � e) exp [�R0R

(x,1)])
σ
0
(1 � fC)(1 � e)(1 � exp [�R0R

(x,1)])

Table 4.9 Payoff structure
with presuming Model A-2

Healthy Infected

C Vaccinated �Cr �Cr � 1

D Non-vaccinated 0 �1
Subsidized 0 �1

Table 4.10 Fractions of six types of individual using effectiveness model A-3

Healthy Infected

C Vaccinated (1 � σ
0
)fC(e + (1 � e) exp [�R0R

(x,1)])
(1 � σ

0
)fC(1 � e)(1 � exp [�R0R

(x,1)])

Subsidized σ 0 fC(e + (1 � e) exp [�R0R(x,1)]) σ 0 fC(1 � e)(1 � exp [�R0R(x,1)])

D Non-
vaccinated

(1 � fC) exp [�R0R(x,1)] (1 � fC)(1 � exp [�R0R(x,1)])
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cooperators σ
0
fC take vaccination without personal cost. We can obtain the fractions

of six different types of individual depending on whether they are vaccinated,
non-vaccinated, or subsidized and whether they are healthy or infected, as summa-
rized in Table 4.10. We also can present the payoff structure in Table 4.11.

We can evaluate the expected payoffs in the form of the average social payoff hπi,
the average cooperative payoff hπCi, and the average defective payoff hπDi for
imperfect vaccination as

πh i ¼ �Cr 1� σ0ð Þf C eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ
� Cr þ 1ð Þ 1� σ0ð Þf C 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
� σ0f C 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
� 1� f Cð Þ 1� exp �R0R x;1ð Þ½ �ð Þ � SB,

ð4:36Þ

πCh i ¼ �Cr 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ
� Cr þ 1ð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
� σ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ,

ð4:37Þ

πDh i ¼ � 1� exp �R0R x;1ð Þ½ �ð Þ: ð4:38Þ

Model B

Under the discount-subsidy policy, vaccination coverage is equal to the cooperation
rate because the subsidy is distributed to all vaccinated individuals. Hence, the fractions
of four types of individual are the same as in Table 4.4. The total amount of subsidy is
equally distributed to all vaccinators, and a vaccinator can reduce the vaccination cost
by SB/fC. Thus, we obtain Table 4.12 for the modified payoff structure.

We can evaluate the expected payoffs in the form of the average social payoff hπi,
the average cooperative payoff hπCi, and the average defective payoff hπDi for
imperfect vaccination as

πh i ¼ �Cr þ SB

f C

� �
f C eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ

þ �Cr � 1þ SB

f C

� �
f C 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

� 1� f CSð Þ 1� exp �R0R x;1ð Þ½ �ð Þ � SB,

ð4:39Þ

Table 4.11 Payoff structure
presuming Model A-3

Healthy Infected

C Vaccinated �Cr �Cr � 1

Subsidized 0 �1
D Non-vaccinated 0 �1
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πCh i ¼ �Cr þ SB

f C

� �
eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ

þ �Cr � 1þ SB

f C

� �
1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ, ð4:40Þ

πDh i ¼ � 1� exp �R0R x;1ð Þ½ �ð Þ: ð4:41Þ

4.2.3.4 Strategy Adaptation

Following Sect. 4.1.4, we specify how IB-RA and SB-RA are embedded in our
theoretical framework.

IB-RA

We refer to Eq. (4.14). In the present framework, there are eight possible classes of
individual state in relation to the cost burden: (i) a healthy defector (HD), who pays
nothing, (ii) an infected defector (ID), who pays�1, (iii) an infected cooperator (IC),
who pays �Cr � 1, (iv) a healthy cooperator (HC), who pays �Cr, (v) and (vi) a
healthy subsidized defector and cooperator (HSD, HSC), respectively, who pay
nothing due to a subsidy covering vaccination cost, and (vii) and (viii) an infected
subsidized defector and cooperator (ISD, ISC, respectively) who pay �1 due to
infection but pay nothing due to subsidy covering the vaccination cost. Each
individual has two strategies: vaccination (V) (i.e., cooperation, C) and
non-vaccination (NV) (i.e., defection, D). Thus, the transition probability that affects
the time transition of fC, which should be considered in the IB-RA rule, is covered by
one of the following 32 cases:

P HC  HDð Þ ¼ P HC  HSDð Þ ¼ 1
1þ exp � 0� �Crð Þð Þ=κ½ � , ð4:42aÞ

P HC  IDð Þ ¼ P HC  ISDð Þ ¼ 1
1þ exp � �1� �Crð Þð Þ=κ½ � , ð4:42bÞ

Table 4.12 Payoff structure
under the cooperator-
preferential subsidy policy

Healthy Infected

C Subsidized �Cr þ SB
f C

�Cr � 1þ SB
f C

D Non-vaccinated 0 �1
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P IC  HDð Þ ¼ P IC  HSDð Þ ¼ 1
1þ exp � 0� �Cr � 1ð Þð Þ=κ½ � , ð4:42cÞ

P IC  IDð Þ ¼ P IC  ISDð Þ ¼ 1
1þ exp � �1� �Cr � 1ð Þð Þ=κ½ � , ð4:42dÞ

P HCS HDð Þ ¼ P HCS HSDð Þ ¼ 1
1þ exp � 0� 0ð Þ=κ½ � , ð4:42eÞ

P HCS IDð Þ ¼ P HCS ISDð Þ ¼ 1
1þ exp � �1� 0ð Þ=κ½ � , ð4:42fÞ

P ICS HDð Þ ¼ P ICS HSDð Þ ¼ 1
1þ exp � 0� �1ð Þð Þ=κ½ � , ð4:42gÞ

P ICS IDð Þ ¼ P ICS ISDð Þ ¼ 1
1þ exp � �1� �1ð Þð Þ=κ½ � , ð4:42hÞ

P HD HCð Þ ¼ P HSD HCð Þ ¼ 1
1þ exp � �Cr � 0ð Þ=κ½ � , ð4:42iÞ

P HD ICð Þ ¼ P HSD ICð Þ ¼ 1
1þ exp � �Cr � 1ð Þ � 0ð Þ=κ½ � , ð4:42jÞ

P HD HCSð Þ ¼ P HSD HCSð Þ ¼ 1
1þ exp � 0� 0ð Þ=κ½ � , ð4:42kÞ

P HD ICSð Þ ¼ P HSD ICSð Þ ¼ 1
1þ exp � �1ð Þ � 0ð Þ=κ½ � , ð4:42lÞ

P ID HCð Þ ¼ P ISD HCð Þ ¼ 1
1þ exp � �Cr � �1ð Þð Þ=κ½ � , ð4:42mÞ

P ID ICð Þ ¼ P ISD ICð Þ ¼ 1
1þ exp � �Cr � 1ð Þ � �1ð Þð Þ=κ½ � , ð4:42nÞ

P ID HCSð Þ ¼ P ISD HCSð Þ ¼ 1
1þ exp � 0� �1ð Þð Þ=κ½ � , ð4:42oÞ

P ID ICSð Þ ¼ P ISD ICSð Þ ¼ 1
1þ exp � �1ð Þ � �1ð Þð Þ=κ½ � : ð4:42pÞ

When Model B is presumed, only the following probabilities are possible;

P HSC  HDð Þ ¼ 1
1þ exp � 0� �Cr þ SB=f Cð Þð Þ=κ½ � , ð4:43aÞ
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P HSC  IDð Þ ¼ 1
1þ exp � �1� �Cr þ SB=f Cð Þð Þ=κ½ � , ð4:43bÞ

P ISC  HDð Þ ¼ 1
1þ exp � 0� �Cr � 1þ SB=f Cð Þð Þ=κ½ � , ð4:43cÞ

P ISC  IDð Þ ¼ 1
1þ exp � �1� �Cr � 1þ SB=f Cð Þð Þ=κ½ � , ð4:43dÞ

P HD HSCð Þ ¼ 1
1þ exp � �Cr þ SB=f C � 0ð Þ=κ½ � , ð4:43eÞ

P HD ISCð Þ ¼ 1
1þ exp � �Cr � 1þ SB=f C � 0ð Þ=κ½ � , ð4:43fÞ

P ID HSCð Þ ¼ 1
1þ exp � �Cr þ SB=f C � �1ð Þð Þ=κ½ � , ð4:43gÞ

P ID ISCð Þ ¼ 1
1þ exp � �Cr � 1þ SB=f C � �1ð Þð Þ=κ½ � : ð4:43hÞ

SB-RA

We refer to Eq. (4.15). The transition probabilities that we must consider are as
follows:

P HC  Dð Þ ¼ 1
1þ exp � πDh i � �Crð Þð Þ=κ½ � , ð4:44aÞ

P IC  Dð Þ ¼ 1
1þ exp � πDh i � �Cr � 1ð Þð Þ=κ½ � , ð4:44bÞ

P HSC  Dð Þ ¼ 1
1þ exp � πDh i � 0ð Þ=κ½ � , ð4:44cÞ

P ISC  Dð Þ ¼ 1
1þ exp � πDh i � �1ð Þð Þ=κ½ � : ð4:44dÞ
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P HD Cð Þ ¼ 1
1þ exp � πCh i � 0ð Þ=κ½ � , ð4:44eÞ

P ID Cð Þ ¼ 1
1þ exp � πCh i � �1ð Þð Þ=κ½ � , ð4:44fÞ

P HSD Cð Þ ¼ 1
1þ exp � πCh i � 0ð Þ=κ½ � , ð4:44gÞ

P ISD Cð Þ ¼ 1
1þ exp � πCh i � �1ð Þð Þ=κ½ � : ð4:44hÞ

For Model B, we should consider

P HSC  Dð Þ ¼ 1
1þ exp � πDh i � �Cr þ SB=f Cð Þð Þ=κ½ � , ð4:45aÞ

P ISC  Dð Þ ¼ 1
1þ exp � πDh i � �Cr � 1þ SB=f Cð Þð Þ=κ½ � , ð4:45bÞ

P HD Cð Þ ¼ 1
1þ exp � πCh i � 0ð Þ=κ½ � , ð4:45cÞ

P ID Cð Þ ¼ 1
1þ exp � πCh i � �1ð Þð Þ=κ½ � : ð4:45dÞ

4.2.3.5 Global Time Evolution

Strategy updating takes place after each epidemic season as defined above (see
Fig. 4.18). This inevitably brings increasing or decreasing x via increasing or decreas-
ing fC. Since there are four subsidy models and two strategy-updating rules, we can
deduce eight different dynamical equations for predicting global FES as below.
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Model A-1 + IB-RA

df C
dt
¼ f C 1� f Cð Þ 1� σ0ð Þ2 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD HCð Þ � P HC  HDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ2 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P ID HCð Þ � P HC  IDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ2

P HSD HCð Þ � P HC  HSDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ 1� eð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ

1� exp �R0R x;1ð Þ½ �ð Þ P ISD HCð Þ � P HC  ISDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ2 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD ICð Þ � P IC  HDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ2 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ2

P ID ICð Þ � P IC  IDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ 1� eð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ

1� exp �R0R x;1ð Þ½ �ð Þ P HSD ICð Þ � P IC  HSDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ 1� eð Þ2 1� exp �R0R x;1ð Þ½ �ð Þ2

P ISD ICð Þ � P IC  ISDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD HSCð Þ � P HSC  HDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P ID HSCð Þ � P HSC  IDð Þð Þ
þ f C 1� f Cð Þσ02 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ2

P HSD HSCð Þ � P HCS HSDð Þð Þ
þ f C 1� f Cð Þσ02 1� eð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P IDS HSCð Þ � P HCS ISDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD ISCð Þ � P ISC  HDð Þð Þ
þ f C 1� f Cð Þσ0 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ2

P ID ISCð Þ � P ISC  IDð Þð Þ
þ f C 1� f Cð Þσ02 1� eð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P HDS ISCð Þ � P ICS HSDð Þð Þ
þ f C 1� f Cð Þσ02 1� eð Þ2 1� exp �R0R x;1ð Þ½ �ð Þ2

P ISD ISCð Þ � P ISC  ISDð Þð Þ:
ð4:46Þ
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Model A-1 + SB-RA

df C
dt
¼ �f C 1� f Cð Þ 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HC  Dð Þ
� f C 1� f Cð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP IC  Dð Þ
� f C 1� f Cð Þσ0 1� eð Þexp �R0R x;1ð Þ½ �P HSC  Dð Þ
� f C 1� f Cð Þσ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ISC  Dð Þ
þ f C 1� f Cð Þ 1� σ0ð Þexp �R0R x;1ð Þ½ �P HD Cð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ID Cð Þ
þ f C 1� f Cð Þσ0 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HSD Cð Þ
þ f C 1� f Cð Þσ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ISD Cð Þ:

ð4:47Þ

Model A-2 + IB-RA

df C
dt
¼ f C 1� f Cð Þ 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD HCð Þ � P HC  HDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
P ID HCð Þ � P HC  IDð Þð Þ
þ f C 1� f Cð Þσ0 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ2
P HSD HCð Þ � P HC  HSDð Þð Þ
þ f C 1� f Cð Þσ0 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
P ISD HCð Þ � P HC  ISDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �
P HD ICð Þ � P IC  HDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ
P ID ICð Þ � P IC  IDð Þð Þ
þ f C 1� f Cð Þσ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ
P ID ICð Þ � P IC  IDð Þð Þ
þ f C 1� f Cð Þσ0 1� eð Þ2 1� exp �R0R x;1ð Þ½ �ð Þ2 P ID ICð Þ � P IC  IDð Þð Þ:

ð4:48Þ
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Model A-2 + SB-RA

df C
dt
¼ �f C 1� f Cð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HC  Dð Þ
� f C 1� f Cð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP IC  Dð Þ
þ f C 1� f Cð Þ 1� σ0ð Þexp �R0R x;1ð Þ½ �P HD Cð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ID Cð Þ
þ f C 1� f Cð Þσ0 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HSD Cð Þ
þ f C 1� f Cð Þσ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ISD Cð Þ:

ð4:49Þ

Model A-3 + IB-RA

df C
dt
¼ f C 1� f Cð Þ 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD HCð Þ � P HC  HDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P ID HCð Þ � P HC  IDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD ICð Þ � P IC  HDð Þð Þ
þ f C 1� f Cð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P ID ICð Þ � P IC  IDð Þð Þ
þ f C 1� f Cð Þσ0 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD HSCð Þ � P HSC  HDð Þð Þ
þ f C 1� f Cð Þσ0 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P ID HSCð Þ � P HSC  IDð Þð Þ
þ f C 1� f Cð Þσ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD ISCð Þ � P ISC  HDð Þð Þ
þ f C 1� f Cð Þσ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P ID ISCð Þ � P ISC  IDð Þð Þ:
ð4:50Þ
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Model A-3 + SB-RA

df C
dt
¼ �f C 1� f Cð Þ 1� σ0ð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HC  Dð Þ
� f C 1� f Cð Þ 1� σ0ð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP IC  Dð Þ
� f C 1� f Cð Þσ0 eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HSC  Dð Þ
� f C 1� f Cð Þσ0 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ISC  Dð Þ
þ f C 1� f Cð Þexp �R0R x;1ð Þ½ �P HD Cð Þ
þ f C 1� f Cð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ID Cð Þ:

ð4:51Þ

Model B + IB-RA

df C
dt
¼ f C 1� f Cð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P HD HSCð Þ � P HSC  HDð Þð Þ
þ f C 1� f Cð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð Þ 1� exp �R0R x;1ð Þ½ �ð Þ

P ID HSCð Þ � P HSC  IDð Þð Þ
þ f C 1� f Cð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þexp �R0R x;1ð Þ½ �

P DH  ISCð Þ � P ISC  HDð Þð Þ
þ f C 1� f Cð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð Þ2

P ID ISCð Þ � P ISC  IDð Þð Þ:
ð4:52Þ

Model B + SB-RA

df C
dt
¼ �f C 1� f Cð Þ eþ 1� eð Þexp �R0R x;1ð Þ½ �ð ÞP HSC  Dð Þ
� f C 1� f Cð Þ 1� eð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ISC  Dð Þ
þ f C 1� f Cð Þexp �R0R x;1ð Þ½ �P HD Cð Þ
þ f C 1� f Cð Þ 1� exp �R0R x;1ð Þ½ �ð ÞP ID VCð Þ:

ð4:53Þ

All dynamical equations above can be solved numerically. We introduce a
so-called explicit scheme for the time-varying terms to obtain a numerical solution
for vaccination coverage at equilibrium.
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4.2.3.6 Discussion

Figures 4.29, 4.30, 4.31, and 4.32 present our analytical results. Figures 4.29 and 4.30
provide the results under the four types of subsidy policies when respectively presum-
ing e¼ 1.0 (perfect vaccination) and e¼ 0.4 (low reliable vaccination) using IB-RA as
a strategy-updating rule. Figures 4.31 and 4.32 present the same presuming SB-RA.

Fig. 4.29 Analytical result: Color indicates difference between subsidy (σ > 0) and non-subsidy
(σ ¼ 0) cases. Panel (*-A) Vaccination coverage (VC), (*-B) final epidemic size (FES), (*-C) total
social payoff (TSP). Panel (1-*) Model A1, (2-*) Model A2, (3-*) Model A3, (4-*) Model
B. e ¼ 1.0 and IB-RA are presumed

208 4 Social Dilemma Analysis of the Spread of Infectious Disease



Because of the mean-field approximation, panels (VC, FES and TSP) in the top
row (assumingModel A1) in Fig. 4.29 should be compared with Fig. 4.24 presuming
RRG. Qualitatively, both show the same tendency. Differences in detail level come
from finite resolution and insufficient population, as well as insufficient average
degree in the simulation, which seems to some extent inevitable. Thus, we conclude
that our theoretical model well-reproduces the MAS-simulation result.

Fig. 4.30 Analytical result: Color indicates difference between subsidy (σ > 0) and non-subsidy
(σ ¼ 0) cases. Panel (*-A) Vaccination coverage (VC), (*-B) final epidemic size (FES), (*-C) total
social payoff (TSP). Panel (1-*) Model A1, (2-*) Model A2, (3-*) Model A3, (4-*) Model
B. e ¼ 0.4 and IB-RA are presumed
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Let us compare the subsidy systems assuming perfect vaccination (e ¼ 1.0) and
IB-RA in Fig. 4.29. Focusing on TSP under Models A-1 and A-2, the negative
region exists in a relatively smaller subsidy size of σ(hereafter, the first negative
region) and a larger subsidy size of σ, dovetailed with a higher vaccination cost
(hereafter, second negative region). In the first negative region, a subsidy going to

Fig. 4.31 Analytical result: Color indicates difference between subsidy (σ > 0) and non-subsidy
(σ ¼ 0) cases. Panel (*-A) Vaccination coverage (VC), (*-B) final epidemic size (FES), (*-C) total
social payoff (TSP). Panel (1-*) Model A1, (2-*) Model A2, (3-*) Model A3, (4-*) Model
B. e ¼ 1.0 and SB-RA are presumed
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non-vaccinators (i.e., defectors) counterproductively works to suppress the social
cost because being a defector becomes cost-advantageous (since they may avoid
infection by being given free-tickets), reducing the fraction of cooperators (i.e.,
vaccinators) as compared with the default case. As a consequence, the number of
self-financed vaccinators comes down, worsening the social efficiency. On the other

Fig. 4.32 Analytical result: Color indicates difference between subsidy (σ > 0) and non-subsidy
(σ ¼ 0) cases. Panel (*-A) Vaccination coverage (VC), (*-B) final epidemic size (FES), (*-C) total
social payoff (TSP). Panel (1-*) Model A1, (2-*) Model A2, (3-*) Model A3, (4-*) Model
B. e ¼ 0.4 and SB-RA are presumed
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hand, in the second negative region, due to a relatively higher vaccination cost
compared to disease cost, some reasonable number of people getting infected is
rather beneficial to the entire society, rather than spending too much on vaccination.
Furthermore, although the general tendencies of Models A-1 and A-2 are the same,
more deliberate comparison reveals that Model A-2 more badly works so that makes
the first negative region more red than Model A-1 does. Namely, Model A-2 delivers
all free-tickets to non-vaccinators, which consequently reduces self-financed vacci-
nators more significantly than does Model A-1. Therefore, one important social
implication that can be noted is that a subsidy helping people who potentially aim to
free-ride on the public good devastates social efficiently. A subsidy system should be
based on the principle that “heaven helps those who help themselves”. As we
confirm latter in the discussion on Models A-3 and B, a subsidy system focused
only on potential vaccinators more efficiently suppresses the total social cost vis-a-
vis the default case.

Recalling what happens when only non-vaccinators are subsidized, let us move
on to Models A-3 and B, where only vaccinators are subsidized. The first negative
region does not occur under any settings, whether relying on global information
(SB-RA) or not (IB-RA). As a whole, those two subsidy models outperform other
models (Models A-1 and A-2). Hence, we would say that a subsidy policy focused
only on potential vaccinators should be adopted. Again, this is because subsidies
going to potential non-vaccinators eventually impede the increase of self-financed
vaccinators due to misled people who aim either to free-ride or to be given a free
ticket despite not cooperating.

Comparing Model A-3 with Model B, we find that they show analogous tenden-
cies. This is consistent with what we observed in the MAS result (Figs. 4.21 and
4.22). However, on the whole. Model A-3 seems better than Model B in terms of
social efficiency. Pairs of the broken-line boxes in Models A-3 and B prove this,
where the region in Model A-3 looks bluer than that by Model B. One plausible
cause for this tendency is that distributing free tickets only to limited eligible
individuals drives people to vaccinate (increasing self-financed vaccinators) more
significantly than offering a discount coupon to all eligible individuals, due to the
non-linearity of the Fermi function considered when updating a strategy. This can
explained in detail below.

Recall the two arguments (i.e., payoffs) in the Fermi function. Let us suppose a
non-vaccinator (defector) copies V from a vaccinator (cooperator) who is given
either a free-ticket in the case of Model A-3 or a discount coupon in the case if
Model B, and compare those two models. Note that the state-transition probability of
Model A-3 is larger than that of Model B, which is attributed to the reduction in price
by a free-ticket or discount-coupon. Since the same σ is presumed for this compar-
ison, the fraction (number) of vaccinators given free-tickets in Model A-3 is less than
that given discount-coupons (that is consistent with the entire number of vaccinators)
in Model B, which is considered in the final dynamical equations (Eq. (4.50) or
Eq. (4.51) for Model A-3 and Eq. (4.52) or Eq. (4.53) for Model B). But, again,
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because of non-linearity of the Fermi function (state-transition probability), the
attractive force causing NV to become V in Model A-3 is greater than that in
Model B.

Comparing Fig. 4.29 with Fig. 4.30, or Fig. 4.31 with Fig. 4.32, with decrease of
vaccine reliability (decrease of e) the first negative region becomes smaller whereas
the second negative region is larger. Interestingly, in the case assuming e ¼ 0.4 and
IB-RA, both regions in which introducing a subsidy is not justified are insensitive to
σ. In fact, if Cr becomes more than 0.6, the subsidy obviously deteriorates the social
efficiency regardless of the size of subsidy. For Cr below 0.2, this deterioration effect
becomes more slight.

Figures 4.31 and 4.32, presuming SB-RA, present a quite different picture than
Figs. 4.29 and 4.30, resulting from the difference in the strategy-update rules. Let us
compare our respective TSPs with e ¼ 0.4. The black and gray boxes indicate the
first and second negative regions. As discussed above, the first negative region
results from the situation whereby subsidizing non-vaccinators hampers the increase
of self-financed vaccinators, while the second region is brought about by the fact that
spending too much on vaccination becomes less beneficial on the whole than
allowing a reasonable level of infectious individuals. Although the first negative
regions (black boxes) are at comparable levels, the second negative region (gray
box) of Fig. 4.32 is less than that of Fig. 4.30, only appearing at larger σand larger Cr.
Thus, sharing global information during strategy-updating events (SB-RA) helps to
justify a subsidy system. Observing carefully, we can note that the range of vacci-
nation costs justifying subsidies (colored blue) is insensitive to σ; however, although
it clearly appears around 0.2 � Cr � 0.5 in Fig. 4.30, it almost disappears in
Fig. 4.32. If we make the same comparison for Model A-2 in Figs. 4.30 and 4.32
(see black and gray boxes in respective right panels), we find the same behavior.
There is none of any range of vaccination cost justifying subsidy insensitive to σ in
Model A-2 of Figs. 4.31 and 4.32. Moreover, remarkably, in the right-hand panel of
Model A-2 in Fig. 4.32, there is almost no parameter region in which a subsidy is
justified. Subsidizing only non-vaccinators (Model A-2) in the case presuming a
strategy-updating rule relying on global information (SB-RA) and a unreliable
vaccination (e ¼ 0.4) is not justified at all.

4.2.4 Summary and Social Implications

In order to help society establish an effective subsidy policy to combat the spread of
infectious disease and mitigate the risk of pandemics, this study proposed a com-
prehensive “vaccination game”, wherein a subsidy system is considered in the
context of both the dynamics of individual decision-making based on evolutionary
game theory and the spread of disease using the SIR/V model through a social
network with consideration of a subsidy system.
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For our analysis, we performed not only multi-agent simulation (MAS)
considering how the underlying topology of the social network affected equilibrium,
but also a theoretical approach presuming a mean-field approximation. In particular,
our analytic model deals with imperfectly working vaccination parameterized by
“effectiveness”, which does not always bring a perfect immunity by taking a
vaccine.

We presume four types of subsidy systems depending on whether a free-ticket or
a discount-coupon is given, as well as individual attributes, such as being a potential
vaccinator or a defector trying to free-ride on herd immunity.

We mainly observed our results in terms of vaccination coverage (VC), final
epidemic size (FES), and total social payoff (TSP) (or, looking negatively, total
social cost), using these to indicate social efficiency.

First of all, we confirmed that our analytical approach is capable of reproducing
the result obtained by the MAS approach.

Our result suggests that spending too little on subsidy or too much for a relatively
higher vaccination cost results in an ironic situation where introducing a subsidy
incurs a higher social cost than the default case. Little spending on the subsidy results
in making self-financed vaccinators decrease as a fraction of society (hereafter; let us
call this the “first regime”). Overspending on a subsidy when the vaccination cost is
high brings the situation that rather some people being infected becomes rather
socially efficient than too much vaccinators due to the relation of vaccination cost to
infection cost; this devastates the social efficiency compared to the default case
realizing (which we hereafter call the “second regime”).

The MAS result shows that the underlying social network significantly influences
equilibrium. In particular, a scale-free network rather than a lattice expands the
parameter region in which a subsidy system deteriorates the social efficiency.

If a vaccine’s reliability degrades (presuming low effectiveness), the parameter
region in which a subsidy is counterproductive due to the second regime grows and
becomes less sensitive to the subsidy size.

A subsidy that applies only to potential cooperators is quite important for the
optimal social design of a subsidy system. Although a subsidy applying to people
who have no intention of vaccinating unless given either a free-ticket or a discount-
coupon might be thought efficient, or at least socially favored or accepted in the
context of a high-welfare society, such a scheme could reduce the number of
inherently cooperative vaccinators (self-financed vaccinators), owing to disregard
for the principle of “heaven helping those who help themselves”.

Although the difference between free-ticket policy and discount-coupon policy
was observed to be small (so long as tickets were only given to potential vaccina-
tors), this theoretical approach shows that the free-ticket slightly outperforms the
discount-coupon policy. This is because a larger payoff difference is brought by a
free-ticket instead of a discount-coupon, triggering an increase in self-financed
vaccinators.
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