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Abstract

Introduction

A key component to analyzing wearable sensor data is identifying periods of non-wear. Tra-

ditionally, strings of consecutive zero counts (e.g. >60-minutes) are identified indicating peri-

ods of non-movement. The non-movement window length is then evaluated as wear or non-

wear. Given that non-movement is not equivalent to non-wear, additional criteria should be

evaluated to objectively identify periods of non-wear. Identifying non-wear is especially chal-

lenging in infants due to their sporadic movement, sleep frequency, and proportion of care-

giver-generated movement.

Purpose

To use hip- and ankle-worn ActiGraph wGT3X-BT (wGT3X-BT) data to identify non-wear in

infants.

Methods

Fifteen infant participants [mean±SD; age, 8.7±1.7 weeks (range 5.4–11.3 weeks); 5.1±0.8

kg; 56.2±2.1 cm; n = 8 females] wore a wGT3X-BT on the hip and ankle. Criterion data were

collected during two, 2-hour directly observed periods in the laboratory. Using raw 30 Hz

acceleration data, a vector magnitude and the inclination angle of each individual axis were

calculated before being averaged into 1-minute windows. Three decision tree models were

developed using data from 1) hip only, 2) ankle only, and 3) hip and ankle combined.

Results

The hip model classified 86.6% of all minutes (wear and non-wear) correctly (F1 = 75.5%)

compared to the ankle model which classified 90.6% of all minutes correctly (F1 = 83.0%).
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The combined site model performed similarly to the ankle model and correctly classified

90.0% of all minutes (F1 = 80.8%).

Conclusion

The similar performance between the ankle only model and the combined site model likely

indicates that the features from the ankle device are more important for identifying non-wear

in infants. Overall, this approach provides an advancement in the identification of device

wear status using wearable sensor data in infants.

Introduction

There is a growing interest in tracking physical activity (PA) throughout the lifespan, starting

during infancy [1], to evaluate the relationship with PA and childhood obesity among other

chronic disease conditions known to have early onset as well as to describe movement patterns

and PA levels as infants develop [2]. Descriptions of infant movement and monitoring PA

early in life, as a marker of development status and in relation to maternal PA [3, 4] is rapidly

expanding [5, 6]. Evaluating infant PA is complicated. Infant movement is frequent, intermit-

tent, and may also be largely influenced by a caregiver such as when the infant is sleeping or

waking and being held or carried. One method that can be used to objectively capture infant

movement is accelerometer-based physical activity (PA) monitors and other wearable sensors.

These devices are being developed to objectively capture infant movement patterns including

PA behaviours. These small, non-invasive, lightweight devices have been routinely used as an

objective method to assess free-living PA in other populations and are also suitable for use in

infants to begin the evaluation of developing movement patterns [7–11].

One challenge of working with PA monitor data, in general, is identifying device wear time

and non-wear time during post-processing. This is a necessary step so that monitor data can

be correctly aggregated and summarized so that the PA metrics calculated are reflective of only

the time an individual is wearing the device. It can, however, be challenging to identify periods

of wear and non-wear without additional information such as wear time logs. The main con-

tributor to this issue is the identification of true device non-wear time [12]. Frequently,

extended periods of non-movement are misidentified as periods of non-wear [12]. Presently,

most non-wear methods have been developed for use with hip-worn monitor data using activ-

ity counts, a proprietary metric used to quantify activity that is based on filtered and integrated

raw acceleration data in a given window of time (e.g. 60 seconds) [13–17]. The activity count

value is intended to represent the movement that occurs during a specified window length

with a zero-count value representing no movement. To determine non-wear time, strings of

consecutive zero counts are identified with the intuition being that extended periods of conse-

cutive zero counts are occurring due to the device not moving and therefore most likely not

being worn [13, 14, 17]. Once the strings of consecutive zero counts have been identified, the

length of the strings are evaluated and classified as wear or non-wear based on the length of

the string of consecutive zero counts. Typically, longer strings of consecutive zero counts are

assumed to correspond to periods of non-wear. The window length used to define an extended

period of non-movement as non-wear is often tailored to the population (e.g. youth versus

adults). These methods rely solely on changes in movement for detection and identification of

periods of movement which can be ineffective, especially during extended periods of sedentary

behavior (SB) where devices are frequently worn but extended periods of non-movement

occur.
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Similar methods to those outlined above can be applied to infant PA monitor data, how-

ever, as previously mentioned, the large proportion of sleeping time and caregiver generated

movement during waking time makes the case with infants more challenging. To date, two

studies have examined extracting waking wear time in infants, and both have used ActiGraph

activity counts and not raw acceleration data [18, 19]. Ketcheson et al. [18] developed a proto-

col for the identification of non-wear periods, periods of sleep, and periods containing move-

ment generated by a caregiver resulting in only minutes of wear time where the infant was

awake. These identified periods were cleaned from the dataset based on parent logs along with

any periods of two or more minutes of consecutive zero count values leaving only waking wear

time remaining. Similarly, Pitchford et al. [19] removed data as non-wear from any periods

containing two or more minutes of consecutive zero counts as this was considered representa-

tive of non-waking time. The issue with these approaches is that the success of the protocol is

contingent upon manual review based on matching parental logs and relying on short periods

of non-movement as non-wear. The intention and motivation for identifying waking wear

time is distinctly different from that of simply identifying wear time and therefore the two out-

comes cannot be directly compared for that specific purpose. In a head-to-head comparison of

the two methods, they should not be expected to perform comparably as the desired outcome

is different. However, it is important to note the differences between methods. This work seeks

to highlight the shortcoming of using accelerometer counts to quantify infant movement,

including the identification of wear time, which is one important aspect of processing infant

accelerometer data.

With scarce literature existing on PA monitoring in infants and the limitations of current

approaches in youth and adult populations using count data, a new method is needed. To

robustly characterize PA and discriminate device wear time, we hypothesize shifting to raw

acceleration data from counts and using additional variables beyond device acceleration (i.e.

device inclination). Device inclination has previously been used to identify periods of sleep by

detecting changes in arm position for wrist-worn devices [20]. Therefore, assessing changes in

device inclination and movement should allow for more robust detection of non-wear since the

inclination information is supplementary to the device acceleration. Thus, the purpose of this

study was two-fold. The primary purpose of the study was to use device inclination paired with

device acceleration data from hip- and ankle-worn ActiGraph wGT3X-BT to identify periods of

device wear and non-wear in infants. Secondarily, the purpose of this study was to compare a

novel decision tree method for identifying wear and non-wear using raw acceleration data to a

previously developed method designed to identify waking wear time using count data.

Methods

Participants

This is a cross-sectional analysis undertaken as part of an observational study designed to

develop robust methods for measuring energy metabolism and physical activity in infants. The

study was approved by the Pennington Biomedical Institutional Review Board and was regis-

tered as a clinical trial named Measurement of Energy Metabolism in Infants (BabyEE Pilot;

NCT02683473). Parents of 15 healthy, full-term infants from Baton Rouge, LA, and the sur-

rounding areas were recruited through social media advertisements, targeted emails, flyers,

and word of mouth. Initial eligibility criteria were assessed through an online screening instru-

ment. Healthy, full-term infants aged between 1 and 3 months with no evidence of congenital

abnormality or gastric reflux and no use of medications to treat chronic conditions were

invited to participate. Written informed consent was obtained from both parents or guardians

prior to the initiation of procedures at the first visit. A data transfer protocol was established,
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and Institutional Review Board approval was obtained at the University of Tennessee, Knox-

ville for data analysis.

Procedures

Infants completed two visits at the research center approximately 6–7 days apart. During the

first laboratory visit, body weight was measured on a calibrated scale with the infant unclothed

(SCALE-TRONIX, White Plains, NY). Length was measured twice with the infant’s head in

the Frankfort position using an infantometer with a stationary headboard and a moveable

footboard. Fat mass and fat-free mass were assessed using air displacement plethysmography

(PEA POD, COSMED, Concord, CA) with the infant wearing a head cap to cover the hair.

At the initial visit, infants were fitted with two ActiGraph wGT3X-BT devices, which were

used to assess infant movement in free-living conditions between study visits. The wGT3X-BT

is a small (3.3 x 4.6 x 1.5 cm), lightweight (19 grams), triaxial accelerometer (dynamic range ±8

g) that is frequently used in research studies [21]. One device was attached to the right or left

hip by Velcro securely fixed on infant-sized underpants that were worn over the diaper with

the USB cap pointing up [i.e. vertical axis (y) -1g if the infant were to be placed in standard

anatomical position]. A second monitor was attached to the right or left ankle proximal to the

lateral malleolus with the USB cap pointing up the leg [i.e. vertical axis (y) -1g if the infant

were to be placed in standard anatomical position] by a Velcro ActiGraph strap. Parents were

instructed to leave both monitors on the infant and only to remove them if necessary, such as

during clothes changing or bathing.

On the first and last day of data collection, participants were observed in the laboratory for

approximately 2-hours. Infants were directly observed by a member of the research team

throughout their laboratory visits. During this time, infants were placed either supine on an

activity mat, reclining in an infant rocking chair, or held by a caregiver and directly observed

to make a record of general behavior during the assessment. Normal infant activity was not

manipulated or scheduled but was recorded by a member of the research team. Habitual activi-

ties noted were sleeping, feeding, crying, bouncing of the rocker, diaper changing, being swad-

dled, and being held by caregivers or members of the research team with annotations being

made to the nearest minute. Infants spent the majority (72.8%) of the laboratory visit in the

infant rocking chair. Observer notes were used to create criterion labels for each minute

including whether the device was being worn or not and whether the participant was waking

or sleeping. All available minutes with observer notes from both laboratory visits were pooled

for each participant creating the overall observation time. This time includes both wear and

non-wear periods and sleeping and waking time. The origin of the criterion minutes of wear

and non-wear is broken down as follows. During the two-hour observation periods, there

were no minutes of non-wear after the devices were placed onto the infants. The non-wear

time was obtained during two different periods when the non-wear could be determined: 1)

the period after initialization and before the participant arrived for the first laboratory visit,

and 2) the period after the device was removed following the second laboratory visit until it

was downloaded. During this time, the device was in the research laboratory, positioned on a

table not being worn or moved, which is similar to how a device would be placed during peri-

ods of non-wear in free-living situations. These periods comprised the bulk of the criterion

non-wear time used for classifier development (n = 6,771 minutes of non-wear).

Data reduction and processing

Raw acceleration data. Raw triaxial wGT3X-BT data were collected at 30 Hz. During the

data reduction and aggregation process, additional variables were calculated from the raw 30 Hz

PLOS ONE Infant wear time identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0240604 November 2, 2020 4 / 14

https://doi.org/10.1371/journal.pone.0240604


triaxial acceleration data (X-, Y-, and Z-axis acceleration). Additional variables included vector mag-

nitude ðVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ X2 þ Z2
p

Þ, and X-, Y-, and Z-axis inclination angles ex:ϴY ¼ cos� 1ð
Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y2þX2þZ2
p ¼ radians x 180

Pi ¼ axis angle in degreesÞ. Individual axis acceleration (milli-g), VM

(milli-g), and individual axis inclination angle (degrees) data were then averaged into 1-minute win-

dows. Additionally, to indicate a change in movement, a sliding coefficient of variation

CV ¼ sample standard deviation
sample mean

� �
x 100 ¼ % relative variability in a window

� �
of X-, Y-, and Z-axis

acceleration, and VM was calculated for each 1-minute window of data. To accomplish the calcula-

tion of the CV, the preceding minute(s) and succeeding minute(s) were included to create a window

for the CV calculation. Windows lengths considered include 2-, 3-, 4-, and 5- minute windows. The

CV of each window provides a measure of the relative variability in movement over that specific

window length. Specifically, to calculate the CV, the preceding minute(s) and succeeding minute(s)

were included to create a window for the CV calculation. Four windows lengths were considered; 2-

, 3-, 4-, and 5- minutes. The CV of each window provides a measure of the relative variability in

movement over that time period. Using a two-minute window length as an example, a CV was

obtained for a single minute by calculating the CV of two consecutive minutes, including the min-

ute of interest as the anchor point. This was done looking backward using the anchor minute and

the preceding minute (i.e. the minute occurring just before the minute of interest) and the anchor

minute and the succeeding minute (i.e. the minute occurring just after the minute of interest). The

minimum of these two CV values was retained as the CV of the anchor minute. An example of the

CV calculation is shown in Table 1. These additional variables were selected on the basis of incorpo-

rating device inclination and change in movement as predictors of device wear time. The final train-

ing dataset is available in the S1 Dataset.

Count data. Raw 30 Hz acceleration data were downloaded and converted to 60-s counts

with the low-frequency extension (LFE) enabled using Actilife (version 6.13.3). The 60-s VM

counts were used for calculation of wear and non-wear using the Pitchford et al. [19] and

Ketcheson et al. [18] consecutive zero counts method.

Model development

Three decision tree classification models were developed using the rpart [22], rpart.plot [23],

and caret [24] packages where each minute of collapsed data was classified as “wear” or “non-

Table 1. Sample coefficient of variation (CV) calculation for the two- and three-minute window size.

Two-Minute CV Calculation Three-Minute CV Calculation Final CV Values used in models for

each minute

Timestamp VM

(mg)

CV Two

Backwards (%)

CV Two

Forwards (%)

CV Three

Backwards (%)

CV Three

Center (%)

CV Three

Forwards (%)

Minimum CV

Two (%)

Minimum CV

Three (%)

10:30:00 1020.73

10:31:00 1021.07

10:32:00 1021.28 1.5 0.1 2.7 1.1 1.1 0.1 1.1

10:33:00 1021.3 0.1 1.2 1.2 1.1 1.8 0.1 1.1

10:34:00 1021.48 1.2 2.5 1.1 1.8 83.7 1.2 1.1

10:35:00 1021.12 2.5 103.5 1.8 83.7 77.0 2.5 1.8

10:36:00 1036.18 103.5 80.6 83.7 77.0 235.8 80.6 77.0

10:37:00 1024.44 80.6 241.5 77.0 235.8 257.6 80.6 77.0

10:38:00 990.04 241.5 113.8 235.8 257.6 109.1 113.8 109.1

10:39:00 974.24

10:40:00 969.71

VM = Vector Magnitude; mg = milli-g’s.

https://doi.org/10.1371/journal.pone.0240604.t001
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wear”. Leave-one-out cross-validation (LOOCV) by participant ID was used to assess model

performance (i.e. a model was created with data from fourteen of the fifteen participants and

tested using the data from the withheld participant. This required the development of fifteen

individual trees for each model type (combined attachment site and individual attachment

sites) holding each participant out by ID. Model parameters were independently tuned and

optimized for each model iteration using the “train” function in the caret package. For tuning

and optimization, the ‘traincontrol’ argument used k-fold cross-validation with ten folds (e.g.

the test data is split into ten subsets, the model is trained on each subset and accuracy is esti-

mated, and finally an overall accuracy estimate is made using the estimated accuracy from

each fold). The ‘tunegrid’ argument tried 50 complexity parameter (cp) values between 10−5

and 10−1. The optimal complexity parameter cp for each model was objectively selected to

reduce overfitting by using the ‘best.cp’ value from the trained model using receiver operating

characteristics (ROC) analysis. Final models and sample code are available from the corre-

sponding author upon request.

Statistical analysis

Analyses were performed jointly in R statistical software (R version 3.4.2 (2017-09-28)–“Short

Summer”) [25] and SPSS 24 (IBM Corporation, Armonk, NY). A two-part analysis was con-

ducted: 1) for decision tree model performance using raw acceleration data and 2) a compari-

son of the decision tree models to the consecutive zero counts approach for identifying wear

and non-wear across the entire lab visit and for identifying wear time during periods of sleep-

ing and waking.

Decision tree performance. For the purposes of examining model performance, non-

wear was treated as the positive class. Individual model classification accuracy (true positives

(i.e. non-wear classified as non-wear + true negatives (i.e. wear classified as wear)/(all positives

+ all negatives), sensitivity (true positives /(true positives + false negatives), and specificity

(true negatives/(true negatives + false positives), and F1 Score 2 x Sensitivity x PPV
SensitivityþPPV

� �� �
, were cal-

culated for each tree and the average of each performance metric is used to summarize total

model performance. Performance metrics across all fifteen individual models were averaged to

summarize overall model performance for each model type (combined-site, hip only, ankle

only) and feature combination. Each model was plotted using the ‘rpart.plot’ [23] package to

illustrate the classification process. Model code is available from the corresponding author

upon request.

Consecutive zero counts comparison

Classifications were made for all criterion labelled minutes (i.e. minutes with observer notes

from the laboratory visits) by the hip, ankle, and combined site decision trees. The consecutive

zero counts method, as described by Pitchford et al. [19] and Ketcheson et al. [18], was applied

to 60-s hip and ankle count data independently and also combined so both hip and ankle data

were used to make a single classification. The combined decision of wear status for the count

data was determined by a single site (e.g. if one site was labelled “wear” then the default group-

level decision for the combined site was “wear”). Minutes of wear and non-wear were calcu-

lated using each model for comparison of 1) overall time and 2) time spent in the infant rock-

ing chair. The wear time spent in the infant rocking chair was included to examine the

estimates of minutes of wear and non-wear with the inclusion of “sleep” and “wake” status of

the infant based on observer notes to determine where misclassification might be occurring as
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a crude way to compare how a method designed for identifying only wear and non-wear com-

pares to a method designed to identify waking wear time.

Results

The following describes the physical characteristics of the participants [mean±SD; age, 8.7±1.7

weeks (range 5.4–11.3 weeks); weight 5.1±0.8 kg; length 56.2±2.1 cm; n = 8 females]. Model

performance summaries are shown in Supplemental Digital Content 1. The final model for

each site was selected by evaluating the model with the highest combined classification accu-

racy and F1 score. This model selection process eliminated all models including raw accelera-

tion data (i.e. X-, Y-, and Z-axis acceleration and VM) for both the hip and ankle attachment

sites in favor of relative variability in acceleration (CV). Of the four CV window lengths, the

4-minute CV had the most stable performance between the hip and ankle. This resulted in the

final single site and combined site models including individual axis inclination angles (e.g. X-,

Y-, and Z-axis) and individual axis (e.g. X-, Y-, and Z-axis) CV values in a 4-minute window.

This left six predictors per attachment site for the development of the final single site models:

X-, Y-, and Z-axis inclination angles and X-, Y-, and Z-axis 4-minute CV.

Model performance metrics for the final models are presented in Table 2. The single-site

ankle model performed best with the highest classification accuracy and F1 score. However, all

three models (combined site, hip only, ankle only) performed similarly with�86.0% correct

classification of device wear and non-wear, sensitivities and specificities�77.0% and�85.0%,

respectively, and F1 scores all�75.0%.

Results of the comparison to the consecutive zero counts method are presented in Tables 3

and 4. The ankle only decision tree model was the closest to criterion non-wear minutes for

overall time (0.7%; 50 minutes). Comparatively, the best performing consecutive zero counts

model was the ankle for overall time (32.5%, 146.8 minutes). For correctly identifying wear

and non-wear during sleeping and waking time, the combined site decision tree model per-

formed best classifying on average 7.1 ± 20.0 minutes as non-wear during sleep time compared

to zero criterion non-wear minutes during sleep time. Comparatively, the best performing

consecutive zero counts method (combined site) classified on average 88.5 ± 39.3 minutes as

non-wear during sleep.

Discussion

This study presents a novel method for the identification of device non-wear in infants. To our

knowledge, this is the first study to investigate device non-wear in infants using raw sensor

data as an objective, standalone method. Other methods exist to score non-wear time using

Table 2. Model performance metrics from a combined site model using hip and ankle data, a hip only model, and an ankle only model.

Site Model Accuracy Sensitivity Specificity F1

Hip Inclination Angles + Individual Axis Acceleration CV-4 86.6% 77.8% 85.6% 75.4%

(69.5–97.6%) (0.0–100.0%) (65.3–100.0%) (11.0–98.7%)

Ankle Inclination Angles + Individual Axis Acceleration CV-4 90.6% 86.0% 90.7% 83.0%

(70.9–99.8%) (51.5–100.0%) (72.7–99.7%) (48.5–99.9%)

Combined Inclination Angles + Individual Axis Acceleration CV-4 90.0% 88.7% 90.2% 80.8%

(63.0–99.8%) (58.2–100.0%) (57.9–100.0%) (40.7–99.9%)

Individual Axis Acceleration = X-, Y-, Z-axis acceleration values; Inclination Angles = X-, Y-, and Z- axis inclination angles; CV = Coefficient of variation in

acceleration in the specified window of time (i.e. CV-4 is the coefficient of variation in a four-minute window); PPV = Positive Predictive Value, NPV = Negative

Predictive Value.

https://doi.org/10.1371/journal.pone.0240604.t002
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raw sensor data but are incorporated in a larger data reduction process that may not be suit-

able in all instances [26–28]. Additionally, to our knowledge, this is the first study to use device

inclination as a predictor for detecting device non-wear.

The present models deviate from the standard method of using consecutive zero counts as a

proxy for identifying device non-wear. This method instead examines changes in device accel-

eration and device inclination simultaneously to more robustly detect periods of non-move-

ment. In examining the model performance of the three models applied in this study, it is

important to note that the three strongest predictors in the combined site model were all ankle

predictors making the combined site model closely resemble the ankle only model. In fact, the

ankle only model performed slightly better than the combined site model despite an equitable

split in wear time for the hip and ankle devices. This is likely due to the fact that the hip only

Table 3. Summary of the final decision tree models classifications of wear and non-wear and comparison to the consecutive zero counts method.

Model (Site) Totala Non-

wear Minutes

Totala Wear

Minutes

Meanb (SD) Non-

wear Minutes

Percent Difference

Criterion Non-Wear

Minutes

Meanb (SD)

Wear Minutes

Percent Difference

Criterion Wear Minutes

Overall Criterion 6771 4813 451.4 (725.0) - 320.9 (131.9) -

Ankle Decision Tree 6821 4763 454.7 (764.1) 0.7% 317.5 (115.9) 1.1%

Combined Decision

Tree

6602 4982 440.1 (758.8) 2.5% 332.1 (143.5) 3.5%

Combined

Consecutive Zero

Counts

8760 2824 584.0 (778.1) 29.4% 188.3 (85.6) 41.3%

Ankle Consecutive

Zero Counts

8973 2611 598.2 (785.8) 32.5% 174.1 (78.4) 45.7%

Hip Consecutive Zero

Counts

9110 2474 607.3 (781.7) 34.5% 164.9 (80.5) 48.6%

Hip Decision Tree 4057 7527 270.5 (472.0) 40.1% 501.8 (653.5) 56.4%

aTotal minutes are a sum of all fifteen participants to demonstrate an overall summary of how many minutes of wear and non-wear each model classified compared to

the criterion minutes of wear and non-wear.
bMean minutes of wear and non-wear are the average number of minutes each model classified compared to the criterion minutes.

https://doi.org/10.1371/journal.pone.0240604.t003

Table 4. Summary of the classifications of wear and non-wear during time spent in an infant rocking chair including sleeping and waking time.

Model (Site) Totala Non-wear

Minutes

Totala Wear Minutes Meanb (SD) Non-wear Minutes Meanb (SD) Wear

Minutes

Sleep Wake Sleep Wake Sleep Wake Sleep Wake

Criterion 0 0 1987 1519 0.0 (0.0) 0.0 (0.0) 132.4 (61.3) 101.3 (46.1)

Ankle Decision Tree 115 63 1872 1456 7.7 (20.0) 4.2 (13.8) 124.8 (59.4) 97.1 (50.9)

Combined Site Decision Tree 106 82 1881 1437 7.1 (19.9) 5.5 (14.0) 125.4 (62.7) 95.8 (50.3)

Hip Decision Tree 175 37 1812 1482 11.7 (22.5) 2.5 (4.1) 120.8 (50.4) 98.8 (45.9)

Combined Site Consecutive Zeros 1328 206 659 1313 88.5 (39.3) 13.7 (18.0) 43.9 (29.8) 87.5 (53.1)

Ankle Consecutive Zeros 1365 234 622 1285 91.0 (39.6) 15.6 (20.3) 41.5 (29.3) 85.7 (54.1)

Hip Consecutive Zeros 1535 278 452 1241 102.3 (47.1) 18.5 (19.0) 30.1 (20.8) 82.7 (50.9)

aTotal minutes are a sum of all fifteen participants to demonstrate an overall summary of how many minutes of wear and non-wear each model classified compared to

the criterion minutes of wear and non-wear.
bMean minutes of wear and non-wear are the average number of minutes each model classified compared to the criterion minutes.

https://doi.org/10.1371/journal.pone.0240604.t004
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model contributed very little to the combined site model and in some cases resulted in a mis-

classification. This can likely be attributed to the mostly structured nature of the criterion data

used in development. The infants were in similar positions during the wear periods meaning

little hip movement occurred in most cases. One difference from the limited literature in this

sample population that should be noted is the use of a hip-worn device compared to a wrist-

worn device [7, 19]. Future studies focused solely on detecting independent infant movement

could consider using wrist- and ankle-devices in a population this young as they are primarily

non-locomotive except for caregiver generated movement or manual manipulation. However,

for identifying waking time, the hip should provide valuable information about device wear

and caregiver interaction since the device is affixed to underpants worn over the diaper and

would need to be removed when changing whereas a device worn on the wrist or ankle would

not need to be removed. Thus, it may be advantageous to pair a hip-worn device with either a

wrist- or ankle-worn device for monitoring wear status and distinguishing movement

characteristics.

In the two infant studies available in the literature, the identification of waking wear time is

prioritized during data cleaning [18, 19]. Pitchford et al. [19] and Ketcheson et al. [18] posited

that two or more minutes of consecutive zero counts would be representative of an infant that

was not moving and therefore likely sleeping or the device was not being worn. Thus, the con-

secutive zeros method was developed to clean periods of non-wear, non-movement, and sleep

leaving only active waking wear time. While the consecutive zero counts method was used on

wrist and ankle data in the original studies, it is reasonable to believe that brief periods of

movement to indicate waking time would also be captured at the hip in a similar fashion.

Since the consecutive zero counts method was developed as a cleaning step to identify waking

wear time, applying the methods to hip data seems acceptable in this case since the only goal of

this step was to identify movement using counts.

In an effort to quantify the magnitude of misclassification that might occur from using

count data to classify waking wear device wear time was compared against secondary criterion

levels of sleeping and waking time. The consecutive zero counts method, which was developed

to identify waking wear time, identified fewer minutes of waking wear time than the decision

tree method developed in the present study. On average, the decision tree methods classified

95.9% of waking wear minutes correctly compared to 82.8% for the consecutive zero counts

method. While true that extended periods of non-movement likely correspond to either sleep

or non-wear time, it is difficult to disentangle the two from one another in free-living circum-

stances. With sleep being a predominant behavior in infants, removing extended periods of

non-movement will likely include removing a large proportion of sleep time leaving little data

remaining to work with. Ideally, periods of sleep are retained as part of the dataset and only

true periods when the device is not being worn are removed. This demonstrates a principal

drawback to using only movement data to classify device wear status demonstrating that using

movement and position data simultaneously allows for more robust detection of device wear,

even when factoring in periods of sleep.

A contributor to the performance increase in this study was the inclusion of device inclina-

tion. This information is supplementary to changes in device acceleration and seems to help

create a more stable predictor of device wear in cases where little to no movement occurs. This

can also be true for change in movement when the device is not being worn, is moving, and is

in a position that may occur when it is being worn (e.g. the device is clipped to a diaper bag or

car seat). However, the position is similar to a device that is being worn, leading to misclassifi-

cation of the non-wear time as wear. This is a limitation, but one that currently exists with

other methods as well. The present methods should at least provide more robust criteria for

assessing these time periods and have greater potential for correctly classifying those data
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points. As device data are more robustly segmented, this area of misclassification should be

further examined in future studies.

With the shift from counts to raw data there are several additional considerations that need

to be evaluated when using raw data samples for predictive modeling. For example, the raw

data signal can be transformed based on the data processing and reduction steps taken, includ-

ing signal filtering and autocalibration. With this in mind, the decision was made to use

change in device acceleration (CV) rather than the raw acceleration data features to create a

more stable predictor of movement. This is in line with the findings of Ahmadi et al. [29] who

suggest that using features focused on change in acceleration instead of the absolute accelera-

tion values is more valuable for the discrimination of non-wear. This was due to the inherent

intra- and inter- device variation in the raw acceleration signal making the acceleration fea-

tures susceptible to misclassification simply based on the inherent differences in the sensor

trial-to-trial. Additionally, one reason the single-axis acceleration and VM values were not

considered as valuable of classifiers compared to the CV data is because of the bi-directional

raw signal. With the sign of the acceleration magnitude being contingent on the deice attach-

ment site and the device orientation, there was some confusion for the decision tree about

what sign of the same magnitude acceleration actually corresponds to wear or non-wear. For

example, if the non-wear threshold for the Y-axis at the hip is< -3 mg then -100 mg would be

classified as non-wear. This orientation dependence makes the individual axes susceptible to

this issue of no consensus about what data truly corresponds to wear and non-wear and that is

another reason those data were excluded from the final analyses. This decision should make

this method more generalizable and less prone to overfitting nuances in the acceleration signal.

Additionally, the raw signal was used to compute inclination angles for all three sensor axes.

This resulted in more stable features representing device inclination and change in movement

in place of the raw sensor values themselves.

This study is not without limitations, among which are the development environment (i.e.

laboratory conditions) and structured protocol (i.e. placement in an infant rocking chair) used

to establish criterion labels for the majority of wear minutes. In comparison to the total volume

of wear data collected, there was a limited amount of criterion labelled wear data outside of the

infant rocking chair that did not include handling by a caregiver (i.e. infant generated move-

ment). The present study uses a very young sample of participants making it challenging to

draw many comparisons to the literature where study samples in this population are typically a

little older which plays a role in development status and movement patterns. An additional

limitation to this study includes a lack of validated measures for objectively assessing infant PA

as accelerometer-based devices and inertial sensors have been used to monitor infant PA but

have not been validated as an accurate measure of infant PA. The lack of device placement

standardization is an additional limitation as the device placement between the right and left

sides of the body results in different angles of inclination. However, no standardization of

device placement does make the final models used for this study available to use with data

from devices worn on either side of the body.

The choice to work with the raw sensor data (mg) in 1-minute windows could additionally

be considered a limitation as this window length does average out some small movements that

may detectable in shorter windows (e.g. 1-s) that would indicate movement and therefore

device wear in most instances [30]. However, the resolution of the criterion measure of device

wear available in this study was recorded to the nearest minute making it most appropriate to

work the sensor data in 60-s windows. Migueles et al. [31] highlights that it is generally an

acceptable practice to collapse raw acceleration data to 60-s windows as this window length is

considered sufficient resolution for many PA assessment applications as it makes for more

simplified data handling, analysis, and interpretation [32]. Trost et al. [33] has also noted

PLOS ONE Infant wear time identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0240604 November 2, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0240604


previously that for classifying activity type in children, markedly greater agreement could be

achieved when using a 60-s window length (88.4%) compared to using a shorter 10-s window

length (81.3%) with machine learning methods. Nevertheless, the true impact of window size

in this population is presently unknown and should be considered in future analyses. While

true that valuable information pertaining to fine movements exists in the raw sensor signal

and is useful for tasks such as activity classification, working with the raw signal is not always

the most practical as it is susceptible to signal noise not due to movement as well as device cali-

bration concerns. Furthermore, some applications do not benefit from using the raw sensor

signal which can complicate analyses if the statistical method chosen cannot sufficiently lever-

age the information available in the signal [32]. The study methods presented are intended to

quantify gross device wear and non-wear time as a primary data cleaning step. Once wear time

has been identified, the raw sensor signal can be used to quantify end-points of interest (e.g.

PA type) if desired, since the rich information in the signal may be better utilized in these

applications if the criterion appropriately matches the sensor resolution chosen.

The length of non-wear periods in infants that is considered interesting and relevant has

yet to be established. Infants at this age (1–3 months) typically eat every 2–3 hours with waking

and sleeping periods in between. Presently, maintaining short periods for identifying wear and

non-wear seems plausible due to infant behaviours and movement patterns. Previous research

operated using 2-minute periods of non-movement to identify non-waking wear time and

non-wear time [18, 19]. Lastly, the choice of a simple decision tree as the method for determin-

ing wear/non-wear may seem like an overstep in terms of the complexity but the motivation

for the choice includes intentions of using this method as a building block to adapt and

improve upon in future research where additional decisions can be added such as parsing

infant movement from caregiver-generated movement. Nevertheless, a first step in evaluating

monitor data requires adequate cleaning, and this method provides an automated approach to

identify periods of wear and non-wear as a preliminary step in data cleaning.

This study has several strengths including presenting a novel approach for using raw sensor

data to objectively determine device wear compared to current conventions. The methods

present multiple models which increases applicability since some studies use only a single

attachment site instead of multiple attachment sites. This study provides a necessary starting

point for evaluating infant movement using wearable device data as movement patterns in

infants are unique to the population and require special methods for assessment.

Conclusions

In conclusion, the decision tree methods presented in this study provide an objective method

for robustly discriminating device wear time from non-wear time in infants using both a com-

bined site and independent site approach. Overall, this approach provides an easily implemen-

table method with interpretable results. While the infant population used for development is

unique, these methods should translate to developing a comparable model for youth and adults

rather readily and will be the focus of future research. Understanding physical activity develop-

ment and patterns across the life course can be possible with the use of wearable devices such

as accelerometers and use of standardized data reduction and analytic methods to quantify

wear and non-wear time reproducibly.
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