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MicroRNAs (miRNAs) play a crucial role in the prevention,
prognosis, diagnosis, and treatment of complex diseases. Ex-
isting computational methods primarily focus on biologically
relevant molecules directly associated with miRNA or disease,
overlooking the fact that the human body is a highly complex
system where miRNA or disease may indirectly correlate with
various types of biomolecules. To address this, we propose a
novel prediction model named MHGTMDA (miRNA and
disease association prediction using heterogeneous graph
transformer based on molecular heterogeneous graph).
MHGTMDA integrates biological entity relationships of eight
biomolecules, constructing a relatively comprehensive hetero-
geneous biological entity graph. MHGTMDA serves as a
powerful molecular heterogeneity map transformer, capturing
structural elements and properties of miRNAs and diseases,
revealing potential associations. In a 5-fold cross-validation
study, MHGTMDA achieved an area under the receiver oper-
ating characteristic curve of 0.9569, surpassing state-of-the-art
methods by at least 3%. Feature ablation experiments suggest
that considering features among multiple biomolecules is
more effective in uncovering miRNA-disease correlations.
Furthermore, we conducted differential expression analyses
on breast cancer and lung cancer, using MHGTMDA to
further validate differentially expressed miRNAs. The results
demonstrateMHGTMDA’s capability to identify novel MDAs.
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INTRODUCTION
MicroRNAs (miRNAs) are non-coding RNAs that are composed of
about 22 nucleotides.1 They participate in the process of biological
cell growth, differentiation, and apoptosis by regulating target genes.2

In recent years, many researchers have shown that aberrant expres-
sion of miRNAs is closely related to the occurrence of diseases.3 In-
depth research on the association between miRNAs and diseases
can uncover the potential role of miRNAs in disease pathogenesis
and aid in the exploration of potential biomarkers.4 This, in turn, of-
fers new perspectives and methods for early disease diagnosis and
personalized treatment.5 In addition, miRNAs can be also used as
drug targets to open up new avenues for disease treatment.6 Thus,
Molecular
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investigating the associations between miRNAs and diseases holds
significant theoretical and clinical implications.

Currently, computational methods for predicting possible miRNA-
disease connections fall into two broad categories: similarity-based
methods and machine learning-based methods.7–10 For similarity-
based methods, they consider the assumption that functionally
similar miRNAs are generally associated with phenotypically similar
diseases.11,12 For example, Shi et al.13 employed a random walk-based
technique to map disease-causing genes and miRNA target genes
onto a PPI similarity network to discover possible correlations be-
tween miRNAs and diseases. Xuan et al.14 proposed a weighted
k-nearest neighbor-based approach to predict miRNA-disease associ-
ations by allocating greater weights to clustering of the same miRNA
family. Ha et al.15 utilized a global similarity network based on envi-
ronmental factors and known miRNA-disease associations to predict
potential associations between them. In general, these models based
on similarity metrics are overly dependent on similarity scores and
have limitations in predicting miRNA-disease associations.

On the other hand, with artificial intelligence technology becoming
more widely used, more and more machine learning approaches are
being applied to the field of miRNA-disease association predic-
tion.16,17 For example, Zhou et al.18 proposed a gradient-enhanced
decision tree combined with a logistic regression model to predict
miRNA-disease associations. Chen et al.19 proposed a decision
tree-based model for predicting miRNA-disease associations. This
was achieved by reducing the dimensionality of the miRNA and dis-
ease feature subsets through principal-components analysis. Peng
Therapy: Nucleic Acids Vol. 35 March 2024 ª 2024 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.omtn.2024.102139
mailto:byj@hnu.edu.cn
mailto:xie_xiao_lan@foxmail.com
mailto:slpeng@hnu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omtn.2024.102139&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Molecular Therapy: Nucleic Acids
et al.20 introduced a convolutional neural network approach to
predict associations between miRNAs and diseases. This approach
leveraged a self-encoder to capture pertinent features shared
between miRNAs and diseases. Li et al.21 introduced the
Matrix Completion for MiRNA-Disease Association prediction
(MCMDA) model using the singular value thresholding technique.
To generate the ultimate miRNA-disease association matrix, they
applied the matrix completion algorithm to modify the miRNA-dis-
ease adjacency matrix. In summary, machine learning-based predic-
tion models for miRNA-disease associations are highly efficient,
significantly reducing computational costs. However, the quality of
feature extraction by the model has a significant impact on the pre-
dictive outcomes.

Despite the numerous methods proposed for predicting miRNA-
disease associations (MDAs), most have focused on analyzing
individual molecules, overlooking the intricate correlations
between different molecules. Additionally, various molecules,
such as proteins and genes, offer multi-level, multi-perspective
biological information, aiding in a more in-depth exploration of
the potential mechanisms underlying MDAs. This diversity
contributes to providing richer input features for prediction
models. Building upon this concept, we propose a prediction
model named MHGTMDA, as shown in Figure 1, which utilizes
a molecular heterogeneous graph transformer. MHGTMDA inte-
grates biological entity relationships of eight major biomolecules,
constructing a relatively comprehensive heterogeneous biological
entity graph. Serving as a powerful molecular heterogeneous graph
extractor, MHGTMDA can extract graph structural elements of
miRNA and disease. By combining these elements with their
prior attribute information, it detects potential correlations.
MHGTMDA’s contribution is categorized into the following
points.

(1) We collected eight types of biological entities and their relation-
ships, constructing a relatively comprehensive heterogeneous
biological entity graph. Utilizing a molecular heterogeneous
graph transformer, we extracted graph structural features of
miRNA and disease. These features were then combined with
prior attribute characteristics to achieve enhanced predictive per-
formance.

(2) The MHGTMDA method, when compared with the current
state-of-the-art approaches, demonstrates outstanding perfor-
mance. Case analyses also thoroughly showcase the exceptional
robustness of our model.

(3) The MHGTMDAmethod is an automated, accessible, and open-
source tool for bioinformatic researchers, which is freely available
at https://github.com/zht-code/HGTMDA.git.
RESULTS
In this section, we conducted a series of experiments to test the
comprehensive performance ofMHGTMDA on the benchmark data-
set Human MicroRNA Disease Database (HMDD) v3.2.
2 Molecular Therapy: Nucleic Acids Vol. 35 March 2024
Performance evaluation under 5-fold cross-validation

We used a 5-fold cross-validation strategy to evaluate the generaliza-
tion ability of our model (MHGTMDA). In the results, we plot the
receiver operating characteristic curves (ROCs) and precision-recall
curves (PRCs) as shown in Figures 2 and3. Furthermore, the area un-
der the ROCs (AUC) was also used to measure the ability of
MHGTMDA. The area under the PRCs (AUPR) was used to repre-
sent the relationship between precision and recall criteria of
MHGTMDA.We also computed theMatthews correlation coefficient
(MCC) to evaluate our models. As shown in Table 1, the average AUC
value of MHGTMDA under 5-fold cross-validation reaches 95.4%,
which demonstrates the high level of accuracy and robustness of
our proposed model.

Parameter analysis

To optimize the performance of our model, we conducted a parameter
analysis, with a particular focus on two crucial parameters: embedding
size and the number of layers in themulti-layer perceptron (MLP). This
in-depth analysis aims to gain a comprehensive understanding of the
performance of our proposed model under various parameter config-
urations, revealing its sensitivity and robustness to input data.

Impact of embedding size

The embedding size represents the dimensionality of our input data
in the model. By systematically analyzing the impact of different
embedding sizes on model performance, we gain a better understand-
ing of the model’s sensitivity to input features. We explored a series of
embedding sizes, ranging from small to large, observing the model’s
ability to learn complex features and generalize across them. The
experimental results, as shown in Table S2, indicate that increasing
the embedding size appropriately can enhance the model’s perfor-
mance. However, when the embedding size becomes excessively large,
the model tends to overfit the training data, resulting in a decrease in
performance on the test set. Through detailed experiments and anal-
ysis, we set the embedding size to 901 to achieve the optimal balance
between performance and computational efficiency.

Impact of MLP layers

The selection of the number of layers in the MLP, as a core compo-
nent of deep learning models, directly relates to the depth and
complexity of the model. By adjusting the number of MLP layers,
we explored the model’s performance across different layer configu-
rations. As shown in Table 2, increasing the number of layers allowed
us to observe a corresponding enhancement in the model’s expressive
capacity for data representation. This increase in layers facilitated bet-
ter capturing of advanced features within the data. Notably, our
model achieved peak performance when the number of layers was
set to four. Consequently, we set the number of MLP layers in our
model to four, based on these findings.

Ablation experiment

To further demonstrate the effectiveness ofMHGTMDA,we conducted
two sets of ablation experiments, removing attribute features and struc-
tural features, respectively, to compare the effects with MHGTMDA
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Figure 1. Overall architecture of MHGTMDA

(A) Data sources for MHGTMDA. (B) The integrated miRNA sequence and similarity network and the integrated disease similarity network were constructed respectively to

extract the inherent attribute features of both. (C) The sub-module constructed biological entity graphs, including miRNA, disease, microbe, lncRNA, circRNA, MRNA,

protein, and drug. (D) The sub-module mainly extracts the embedding feature of miRNA and disease in biological entity graphs. (E) The multimodal embedding repre-

sentations of miRNAs and diseases were concatenated and fed into the MLP for training and prediction.
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under 5-fold cross-validation experiment. First, we eliminated the attri-
bute features andonly used the biological entity graph for feature extrac-
tion bymolecular heterogeneous graph transformer for potential MDA
prediction. Second, we eliminated the biological entity graph and only
used the attribute features containing fusedGaussian interaction profile
(GIP) for MDA prediction. Finally, we fused the attribute features and
biological entity graph for feature fusion and then performed miRNA-
disease association prediction (MHGTMDA). The comparative results
as shown in Figure 4 indicate that our proposedMHGTMDA fusing the
attribute feature and biological entity graph structure feature is better in
predicting potential MDAs.

Performance comparison with the state-of-the-art methods

In this section, we further compare MHGTMDA with a number of
existing methods, including the latest and state-of-the-art methods.
More specifically, we compare MHGTMDA with ERMDA,22
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Figure 2. The 5-fold cross-validation ROC curves of MHGTMDA Figure 3. The 5-fold cross-validation PR curves of MHGTMDA
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AGAEMD,23 PATMDA,24 NIMCGCN,25 andMAGCN26 on the basis
of the same dataset. We have performed six evaluation indicators to
compare from different perspectives as shown in Table S1, in which
AUC is the area under the ROC curve and AUPRC is the area under
the PR curve. The results demonstrate that MHGTMDA outperforms
these competitors and improves the accuracy and AUC by at least
3.45% and 2.12%, respectively.

Case study

Breast cancer stands as one of the most common and deadliest can-
cers globally. Research indicates that the differential expression of
certain miRNAs influences the occurrence, progression, and prog-
nosis of breast cancer.27We conducted a case study focusing on breast
cancer. Some researchers have found that miRNAs such as miR-31
can inhibit the renewal and development of breast cancer stem cells.28

Additionally, miR-221 has been identified to be overexpressed in
breast cancer, and its overexpression correlates with the malignancy
of breast cancer.29 The aforementioned evidence suggests that miR-
NAs can serve as biomarkers for breast cancer, and the discovery of
potential miRNAs provides new targets for the treatment of breast
cancer.

To further validate the effectiveness of MHGTMDA in practical ap-
plications, we randomly selected the top 50 miRNAs predicted by
MHGTMDA that are associated with breast cancer. Subsequently,
we verified these miRNAs in the dbDEMC database30 and found
that out of the 50 miRNAs, 47 received support from the latest liter-
ature (as shown in Table S3). Our case study demonstrates the prac-
ticality and effectiveness of the proposed MHGTMDA method.

To validate the correlation between the model’s predictions for spe-
cific diseases and differentially expressed miRNAs, we conducted a
differential expression analysis on breast cancer. Utilizing the limma
package in R, we performed a differential expression analysis on the
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miRNA expression profile of breast cancer GSE118782, as illustrated
in Figure 5. The analysis identified 41 differentially expressed
miRNAs, as depicted in Figure 5A. Among these, nine miRNAs
were not present in the dbDEMC database, making it impossible to
establish effective judgments. Consequently, we proceeded to predict
the remaining 32 miRNAs. Upon assessment, 68% (22 of 32) of the
miRNAs were found to be associated with breast cancer, and these
22 miRNAs were subsequently validated through the dbDEMC
database.

Lung cancer, being one of the deadliest cancers globally, has consis-
tently drawn the attention of scientists due to its high mortality
rate. Early diagnosis and precise treatment have been focal points
of research. miRNA, as a crucial class of non-coding RNA, plays a
key role in regulating gene expression, contributing significantly to
cellular processes. Recent studies suggest that the aberrant expression
of certain miRNAs may be associated with the occurrence, develop-
ment, and metastasis of lung cancer. Therefore, we conducted a dif-
ferential expression analysis on the miRNA expression profile of
lung adenocarcinoma. As shown in Figure 6, the analysis identified
50 differentially expressed miRNAs. We utilized the MHGTMDA
model to predict these 50 differentially expressed miRNAs. Upon
evaluation, it was found that 68% (34 of 50) of the miRNAs were asso-
ciated with lung adenocarcinoma. Subsequently, these 34 miRNAs
were validated through the dbDEMCdatabase (as shown in Table S4).

DISCUSSION
In this study,we propose a novel predictionmodel namedMHGTMDA
(miRNA and disease association prediction using heterogeneous graph
transformer based on molecular heterogeneous graph). MHGTMDA
integrates biological entity relationships of eight biomolecules, con-
structing a relatively comprehensive heterogeneous biological entity
graph. Serving as a powerful molecular heterogeneous graph trans-
former, MHGTMDA extracts graph structural elements of miRNA



Table 1. The 5-fold cross-validation performance of MHGTMDA (s.t.d: standard deviation)

Fold Accuracy Sensitive Specificity Precision MCC AUC

1st 0.881 0.8757 0.8862 0.8842 0.762 0.9506

2ND 0.8833 0.8816 0.8849 0.8813 0.7665 0.9527

3rd 0.8857 0.8829 0.8886 0.8905 0.7715 0.9539

4th 0.8928 0.8979 0.8875 0.893 0.7855 0.9557

5th 0.8872 0.8809 0.8933 0.889 0.7744 0.9569

Average 0.8927 0.8838 0.8881 0.8926 0.772 0.9551

s.t.d 0.0045 0.0083 0.0032 0.0048 0.0089 0.0025
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and disease, combining their attribute information to detect potential
correlations. In a 5-fold cross-validation study, MHGTMDA achieved
an AUC of 0.9569, surpassing state-of-the-art methods by at least 3%.
Feature ablation experiments suggest that considering features among
multiple biomolecules is more effective in uncovering miRNA-disease
correlations. Furthermore, we conducted differential expression ana-
lyses on breast cancer and lung cancer, using MHGTMDA to further
validate differentially expressed miRNAs. The results demonstrate
MHGTMDA’s capability to identify novel MDAs.

MATERIALS AND METHODS
Datasets

We utilized theMDA database from theHMDD v3.231 as our training
data, consisting of 35,547 experimentally validated MDAs. We
selected 901 miRNAs and 877 diseases from this dataset, thereby con-
structing the associationmatrix˛R901�877 A˛R901�877. Additionally,
we obtained 3,348 protein nodes from the STRING database,32 2,633
lncRNA nodes from NONCODEV5,33 421 circRNA nodes from
CircBase,34 1,319 drug nodes from DrugBank,35 3,024 mRNA nodes
from the NCBI database,36 and 100 microbe nodes from the NIH
Medical Subject Headings (MeSH) database,37 thus forming the bio-
logical entity graph. Finally, an equal number of non-MDAs were
randomly selected as negative controls.

Biological entity graph construction

We constructed the biological entity graph consisting of eight types of
biological entities together with 16 types of associations as shown in
Figure 1C, including circRNA-disease associations, circRNA-miRNA
associations, disease-mRNA associations, disease-microbe associa-
tions, drug-disease associations, drug-mRNA associations, drug-
microbe associations, drug-protein associations, lncRNA-disease asso-
ciations, lncRNA-mRNA associations, lncRNA-miRNA associations,
lncRNA-protein associations, miRNA-drug associations, miRNA-
Table 2. Performance analysis on MLP layers

MLP layers Accuracy Precision Reca

Layer = 1 0.8742 0.8743 0.87

Layer = 2 0.8851 0.8850 0.88

Layer = 3 0.8889 0.8888 0.88

Layer = 4 0.8927 0.8926 0.89
mRNA associations, miRNA-protein associations, and mRNA-pro-
tein associations. Note that the graph does not contain known
MDAs in the training set to avoid label leakage. Specifically, we con-
structed the graph utilizing the torch geometric tool. First, we enter
the collected biological entities into HeteroData as nodes
(HeteroData is a PyG built in data structure for representing heteroge-
neous graphs). Next, we constructed node mappings by different node
types to construct edge indexes in HeteroData. Finally, we constructed
node type labels to represent the type of each node in HeteroData.

Sequence feature of miRNAs

Based on the hypothesis that the higher the sequence similarity of two
miRNAs, the higher the likelihood that they have the same function,38

we downloaded the sequences of 901 miRNAs from miRBase and
calculated the sequence feature of miRNAs by comparing the
sequence of each pair of miRNAs. Based on previous studies,39,40

we used sequence alignment to quantify the similarity between
miRNA ma and miRNA mb. In addition, we used the min-max
normalization function to normalize the sequence similarity between
miRNAs. The formula is shown below:

Mðma;mbÞ = Scoreðma;mbÞ � Scoremin

Scoremax � Scoremin
(Equation 1)

where Score min and Score max respectively represent the maximum
and minimum similarity scores of all miRNA sequence pairs.
Semantic similarity of diseases

We obtained MeSH descriptors for numerous diseases from the Na-
tional Library of Medicine and represented the complicated interac-
tions between diseases using a directed acyclic graph (DAG). Each
MeSH descriptor in a DAG is linked to another via an edge from
the parent node to the child node. Each MeSH descriptor has one
ll F1-score AUC AUPRC

45 0.8742 0.9412 0.9351

51 0.8850 0.9464 0.9423

89 0.8888 0.9516 0.9496

25 0.8926 0.9559 0.9551
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Figure 4. Ablation experiments with different features of MHGTMDA

Model_biological_entity_graph is a performance analysis that eliminates the attri-

bute features only keeping the biological entity graph. Model_attribute is a perfor-

mance analysis that eliminates the biological entity graph only keeping attribute

features. MHGTMDA is a performance analysis that integrates attribute character-

ization and biological entity graphs.
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or more tree numbers and is stored in the DAG as a number. The
DAG of illness A, for example, is represented as DAGðAÞ =

ðDðAÞ; EðAÞÞ, where DðAÞ signifies the disease and its ancestors,
and EðAÞ defines the link between two nodes.

We compute the illness semantic similarity based on the aforemen-
tioned definitions. Specifically, we define the semantic contribution
of a disease term t in DAGðAÞ to disease A as follows:

8<
:

DAGA = 1 if t = A

DAGAðtÞ = maxfD�DAGAðt0Þjt0 ˛ children of tgif tsA

(Equation 2)

whereD represents the semantic contribution decay factor, which de-
creases as the distance between a disease and its ancestor node in-
creases. Therefore, the semantic value of disease at the first level is
1. In order to distinguish the semantic contribution of different levels
of diseases to diseaseA, the semantic contribution value is obtained by
multiplying the contribution of different levels of diseases by the se-
mantic contribution attenuation factor.

In addition, the semantic value of a disease is defined as follows:

SCA =
X

t˛DðAÞ
DAGAðtÞ (Equation 3)

Therefore, the semantic similarity between different diseases SCA and
SCB is defined as follows:
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SSðA;BÞ =

P
t˛DðAÞXDðBÞ

ðDAGAðtÞ+DAGBðtÞÞ

SCA+SCB

(Equation 4)

GIP kernel similarity for miRNAs and diseases

We calculated the GIP kernel similarity between miRNA and disease.
First, the disease GIP similarity GIPdð da; db Þ between disease da and
disease db was computed by:

GIPdðda; dbÞ = expð � gd � k IPðdaÞ � IPðdbÞk2Þ (Equation 5)

where IPð $Þ represents the binary vector and gd represents the kernel
bandwidth, which was calculated by normalizing the original param-
eter g0

d as follows:

gd =
g0
d 

1
nd

Xnd
i = 1

k IPðdaÞk2
!

(Equation 6)

Similarly, the miRNA GIP similarity m ða; bÞ between miRNA a and
miRNA b was computed by:

GIPmðma;mbÞ = exp
�� gm � k IPðmaÞ � IPðmbÞ k2

�
(Equation 7)

gm =
g0
m 

1
nm

Xnm
i = 1

k IPðmaÞk2
!

(Equation 8)

Integrated GIP features and attribute features of miRNAs and

diseases

We integrated the original features of miRNA and diseases with their
corresponding GIP features to obtain comprehensive attribute char-
acteristics for both miRNA and diseases. For miRNAs, we con-
structed SMðma;mbÞ as the fused miRNA similarity matrix. It can
be described as follows:

SMðma;mbÞ =
8<
:

Mðma;mbÞ if ðma;mbÞ in M

GIPmðma;mbÞ others
(Equation 9)

Similarly, we constructed SDðda; dbÞ as the fused disease similarity
matrix. it can be described as follows:

SDðda; dbÞ =
8<
:

SSðA;BÞ if ðda; dbÞ in SSðA;BÞ

GIPdðda; dbÞ others
(Equation 10)

Molecular heterogeneous graph transformer

In this section, we present the detailed steps to build a molecular het-
erogeneous graph transformer (HGT).41 First, the whole HGT is
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Figure 5. Differentially expressed RNA(DERs) in breast cancer samples

(A) Heatmap of the 42 DERs in breast cancer samples. Red blocks indicate high-expression RNA, and blue blocks indicate low-expression RNA. (B) Volcano plot of the 42

DERs. Red dots represent significantly up-regulated genes, and blue dots represent significantly down-regulated genes.
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divided into three modules: heterogeneous mutual attention, hetero-
geneous message passing, and target-Specific aggregation.
Heterogeneous mutual attention

Unlike the traditional transformer model, the HGT model assigns a
unique set of projection weights W to each meta-relationship,
whereas in the traditional transformer, all words share the same set
of weights. With a narrower focus, we apply a linear projection tech-
nique, denoted as Q-LinearitðtÞ, to transform the target node t into the
i-th Query vector.

AttentionHGTðs; e; tÞ = Softmax
cs˛NðtÞ

�
k

i˛ ½1;h�
ATT-headiðs; e; tÞ

�

(Equation 11)

ATT-headiðs; e; tÞ =
�
KiðsÞWATT

4ðeÞQ
iðtÞT

�
$
mCtðsÞ;4ðeÞ;tðtÞDffiffiffi

d
p

KiðsÞ = K-LinearitðsÞ
�
Hðl� 1Þ½s��

QiðtÞ = Q-LinearitðtÞ
�
Hðl� 1Þ½t��

(Equation 12)

where ATT-head denotes the i-th attention head, KðsÞ represents the
i-th Key vector that source nodes is projected into, QðtÞ represents the
i-th Query vector that targets node t is projected into, e represents
the relationship between the source node s and the target node t,
and mð $Þ denotes the general significance of each relational ternary
as a means of adaptive scaling of the attention. The operation of
Attentionð $Þmainly consists of connecting the h ATT-heads connec-
tions to get the attention vector of each node pair ðs;tÞ. At its funda-
mental level, the process involves executing another softmax function,
leading to the generation of a probability distribution specific to each
target node t. This distribution is formed by utilizing the attention
vectors accumulated from the adjacent nodes NðtÞ.
Heterogeneous message passing

The meta-relationship of edges is introduced to the message-passing
mechanism in this module to alleviate discrepancies in the distribu-
tion of different types of nodes and edges.

MessageHGTðs; e; tÞ = k
i˛ ½1;h�

MSG-headiðs; e; tÞ

MSG-headiðs; e; tÞ = M-LinearitðsÞ
�
Hðl� 1Þ½s��WMSG

4ðeÞ

(Equation 13)

Target-Specific aggregation

In this module, first, the above heterogeneous mutual attention and
heterogeneous message passing are aggregated from the source
node to the target node, and the above steps can be shown as:

~HðlÞ½t� = ⨁
cs˛NðtÞ

�
AttentionHGT ðs; e; tÞ$MessageHGT ðs; e; tÞ�

(Equation 14)

Then, the results obtained above are input into the ELU activation
layer, and then the output is linearly transformed and residuals are
connected, and the above steps can be shown as:

HðlÞ½t� = s
�
A-lineartðtÞ ~H

ðlÞ½t��+Hðl� 1Þ½t� (Equation 15)

Finally, the extraction of embedding for the biological entity graph
part is completed.

DATA AND CODE AVAILABILITY
The datasets and source codes used in this study are freely available at
https://github.com/zht-code/HGTMDA.git.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2024.102139.
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Figure 6. Differentially expressed RNA(DERs) in lung cancer samples

Heatmap of the 50 DERs in lung cancer samples. Red blocks indicate high-expression RNA, and blue blocks indicate low-expression RNA.
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