
entropy

Article

On the Performance of Efficient Channel Estimation
Strategies for Hybrid Millimeter Wave MIMO System

Prateek Saurabh Srivastav 1,2,* , Lan Chen 1,* and Arfan Haider Wahla 1,2

1 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; irfan.hayd@gmail.com
2 School of Electronics, Electrical and Communication, University of Chinese Academy of Sciences,

Beijing 100049, China
* Correspondence: prateek@ime.ac.cn (P.S.S.); chenlan@ime.ac.cn (L.C.); Tel.: +86-010-82995754 (L.C.)

Received: 1 September 2020; Accepted: 30 September 2020; Published: 3 October 2020
����������
�������

Abstract: Millimeter wave (mmWave) relying upon the multiple output multiple input (MIMO) is a
new potential candidate for fulfilling the huge emerging bandwidth requirements. Due to the short
wavelength and the complicated hardware architecture of mmWave MIMO systems, the conventional
estimation strategies based on the individual exploitation of sparsity or low rank properties are no
longer efficient and hence more modern and advance estimation strategies are required to recapture
the targeted channel matrix. Therefore, in this paper, we proposed a novel channel estimation
strategy based on the symmetrical version of alternating direction methods of multipliers (S-ADMM),
which exploits the sparsity and low rank property of channel altogether in a symmetrical manner.
In S-ADMM, at each iteration, the Lagrange multipliers are updated twice which results symmetrical
handling of all of the available variables in optimization problem. To validate the proposed algorithm,
numerous computer simulations have been carried out which straightforwardly depicts that the
S-ADMM performed well in terms of convergence as compared to other benchmark algorithms and
also able to provide global optimal solutions for the strictly convex mmWave joint channel estimation
optimization problem.

Keywords: millimeter wave; MIMO; beamforming; ADMM; convex optimization; channel
estimation; ADMM

1. Introduction

The standard wireless communication system is exhausted due to the large number of users as
well as by the high data speed demands [1]. Millimeter waves (mmWaves) represent a promising
candidate with a large amount of unused bandwidth and the ability to support millions of devices at
once [2]. mmWaves have very short wavelengths therefore the hardware structure of mmWave relying
upon a multiple input multiple output (MIMO) system is unlike the conventional sub 6 Ghz wireless
communication system [3]. The smaller wavelength of mmWaves make them perfectly compatible
for multi-user MIMO systems accompanied by large antenna arrays. Since the mmWave frequencies
are highly directional as compared to lower frequencies therefore they can precisely handle large
antenna arrays during the transmission and reception process and a beamforming strategy is required
for mmWave MIMO systems. Here the term “beamforming” conventionally refers to the set of smart
antenna arrays. Beamforming restricts transmitted signals to a particular desired receiving antenna
element available in an antenna array at the receiver’s end. Consequently, for achieving the high
array, diversity and multiplexing gain, beamforming plays an important role in mmWave MIMO
systems [4]. Generally, three kind of beamforming techniques—analog beamforming (ABF), digital
beamforming (DBF) and hybrid beamforming (HBF)—are used. ABF steers the ultra linear array
(ULA) output using a single RF chain and phase shifters [5]. However, the analog structure cannot
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be equipped with multiplexing advantages. On the contrary, DBF offers the flexibility needed to
support multi-stream data transmission, but the hardware is expensive and power consuming as
it consists of separate RF chains (with ADC/DAC) for every antenna element in the uniform linear
array (ULA) [5]. Therefore, due to the aforementioned limitations, ABF and DBF are not considered
suitable for mmWave MIMO systems and hence the HBF technique which combines both analog and
digital beamforming architectures and provides a better trade-off between cost/complexity and spectral
efficiency is used for enabling the communication in mmWave MIMO systems [6,7].

In any wireless communication system, efficient estimation of the wireless channels at the receiver’s
end is the only way to ensure the quality of transmitted symbols. Apparently, channel estimation is a
vulnerable task for any type of wireless communication system. For achieving the potential advantages
of mmWave MIMO system, obtaining the accurate knowledge of channel state information (CSI) is
critically important. As the mmWave MIMO system’s operating regime and hardware constraints are
different than those of conventional wireless communication systems therefore new channel estimation
strategies are needed. There are several popular channel estimation techniques for mmWave MIMO
systems are already available in the research domain. These strategies are based on compressive
sensing (CS) where the sparsity of the channel is exploited in the angular or beamspace domain [8–14]
or due to the narrow angle spread of individual clusters, the low rank properties of channel covariance
matrices (CCMs) are being investigated [15]. The most common approach for the estimation of CSI
is to consider it as a CS problem [16]. In [17,18] the estimation techniques require receiver feedback
which can further increase the pilot demands and reduce the spectral efficiency of the system. Statics
dictionaries and beam training methods are also discussed in [13,19–22]. These methods do not require
receiver feedback and they exploit the static dictionaries of the channel matrix which usually have
the information of angle of arrival (AoA) and angle of departure (AoD), but for a larger number of
training overheads, the static dictionaries generate errors related to discretization and power leakage.
One of the most popular CS approaches is orthogonal matching pursuit (OMP), described in [23].
Exploitation of angle information for sparse channel estimation is described in [18] in which a fast
discrete Fourier transform (DFT)-based spatial rotation algorithm is designed to contemplate most
of the channel power on limited DFT grids and efficiently obtain the angle information for both
frequency division duplex (FDD) as well as time division duplex (TDD) systems [24]. Specifically,
the array signal processing-based channel estimation scheme, where the angle information of the user
is exploited to simplify channel estimation is illustrated in [24]. A CCM-based approach are described
in [25]. In any typical scattering atmosphere, [25] demonstrates the low-rank feature of the CCM’s
in mmWave communications and to curtail the effective dimensions of the channel, it elaborates the
collective spatial division multiplexing algorithm. The channel estimation problem is assigned as a
quadratic semidefinite programming (SDP) problem where the low-rank structure of the CCMs are
used and solved by using a polynomial SDP method is interpreted in [26]. In [27], a virtual channel
with common sparsity because users are sharing the same local scatters, is explained in which the
information of unitary dictionary matrix is available at a base station (BS). A comprehensive study on
signal processing techniques used for mmWave MIMO communications is briefly explained in [28].

Alternating direction method of multipliers (ADMM) was recently proposed in [29] and it has
attracted extensive attention due to its simple implementation. It is widely used in distributed
machine learning [30], image processing [31], statistical signal processing [32] and many more fields.
ADMM breaks any complicated optimization problem into several small subproblems therefore one
can derive the optimal solutions very easily [29]. ADMM is used for the narrowband and wideband
channel estimation of mmWave MIMO system by exploiting the sparsity and low rank properties of
channel were jointly exploited for efficient CSI estimation in [16,33]. An extended version of ADMM
(Ex-ADMM) with a Fortin and Glowinski’s constant (i.e., the relaxation parameter) is also used for the
narrowband channel estimation of mmWave MIMO systems in [34]. A symmetric version of ADMM
(S-ADMM) came into the research domain very recently [35,36]. Within this scheme, the Lagrange
multipliers are updated twice in a symmetrical manner [35]. The studies indicates that the convergence
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of S-ADMM with larger step sizes, can be enlarged with the help of Fortin and Glowinski’s constant [35].
The symmetrical formation of ADMM also results an enhancement in the overall performance of
the system.

The contributions of this paper can be summarized as follows:

(1) A novel S-ADMM based channel estimation scheme for the estimation of mmWave channels
relying on a MIMO system is proposed. After updating the Lagrangian multipliers twice,
a symmetrical version of ADMM can optimized the intermediate and essential variables in a
symmetrical order. In addition with the Fortin and Glowinski’s constant which is generally
known as a relaxation parameter, the convergence of the algorithm can be enhanced. In this
paper, the overrelaxed version of relaxation parameter have been considered for simulation
and experiments.

(2) To explain the superiority of the proposed scheme, various different popular start-of-art schemes
namely, OMP [13] Vector Message Approximation Passing (VAMP) [37], Ex-ADMM [34],
ADMM [33], Block Orthogonal Matching Pursuit (BOMP) [38], Generalized Approximate Message
Passing with Gaussian Mixture (GAMP-GM) [39,40] and Singular Value Thresholding (SVT) [41]
have been considered for the comparison. Furthermore, the eminence of the proposed scheme
is explained in terms of normalized mean squared error (NMSE), achievable spectral efficiency
(ASE), convergence, effect on the number of scatterers and the number of possible paths.

The rest of the paper is assembled as follows: Section 2 described the System Model used for
various studies within this paper. The problem formulation for the channel estimation of mmWave
MIMO system along with a detailed description of proposed scheme followed by the algorithm
terminologies and complexity analysis is depicted in Section 3. Simulation and results are explained in
Section 4 and finally, last but not least, conclusion remarks are elucidated in Section 5.

Notation: The notation used within this paper is described in Table 1.

Table 1. Notation.

α, a and A Scaler, vector and matrix.
AT, AH and A∗ Matrix transpose, conjugate transpose and conjugate.
||(.)||F, ||(.)||

∗
and
||(.)||1

Frobenius norm, nuclear norm and l1 − norm

Operands ◦and ⊗ Matrix Hadamard and Kronecker products.
vec (.) Vectorization of (.).

unvec (.) Inverse operation of vec(.).
E{.} Expected value of {.}.

diag(.) Diagonal of (.).
IN N × N identity matrix.

2. System Model

A hybrid mmWave MIMO system is a constellation of two continuous segments namely, a digital
MIMO baseband FBB ∈ CNRF×NS and an analog RF precoder FRF ∈ CNT×NRF at the transmitter section
while at the receiver section it has two successive joint segments of a RF combiner WRF ∈ CNR×NRF

and a baseband combiner section WBB ∈ CNRF×NS . For our studies, the HBF structure explained in [19]
is adopted. Wherein, a point to point NR ×NT mmWave MIMO system, equipped with NT transmit
and NR receive antennas at base station (BS) and mobile station (MS), respectively, is considered [42]
as depicted in Figure 1.

At the transmitter and receiver section, this system is provided with NS parallel data streams
and radio frequency (RF) chains, such that NRF ≤ min(NT, NR) [43,44]. The transmitter section is
furnished with NRF RF chains in such a way that NS < NRF < NT. For initiating the communication,
the transmitter employed NBeam

T ≤ NT pilot beam patterns, denoted as
{
fa ∈ CNT×1 : || fa||22 = 1

}
whereas, at the receiver end, the receiver employed NBeam

R ≤ NR pilot beam patterns, denoted as {wb ∈
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CNR×1 : ||wb||
2
2 = 1 [13], where a and b are the transmitter’s training precoding vector and receiver’s

training combining vector, respectively [13].Entropy 2020, 22, 1121 4 of 18 
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After the initial transmission, the received signal matrix Y at the receiver’s end can be determined as:

Y = WHAFX + Q (1)

where, the received signal matrix is the combination of different received vectors, i.e., Y ,[
y1, . . . ., yNBeam

T

]
∈ CNBeam

R ×NBeam
T , alike Y the combining matrix W and precoding matrix F is also

representing by the set of different combining and precoding vectors i.e., W ,
[
w1, . . . ., wNBeam

R

]
∈

CNR×NBeam
R and F ,

[
f1, . . . ., fNBeam

T

]
∈ CNT×NBeam

T , respectively. Here, X ∈ CNBeam
T ×NBeam

T is the

set of transmitted vectors, A is the channel matrix and Q ∈ CNBeam
R ×NBeam

T are independent and
identically distributed (I.I.D) complex additive white gaussian noise (AWGN), with zero mean and
σ2

q variance CN
(
0,σ2

q

)
[34]. For the simplicity of the system, let’s consider that the all pilot symbols

are identically similar, therefore, one can assume that X =
√

PtINBeam
T

. Here Pt expressed the average
transmitted pilot power [13,18].

As it is clear from the HBF architecture described in [19], Equation (1) can be re-written on the
basis of decomposition of W and F, i.e., F = FBBFRF, and W = WRFWBB. Therefore:

Y ,
√

Pt WBB
HWRF

HAFBBFRF + Q
Y ,

√
Pt WHAF + Q

(2)

where, FRF ∈ CNT×NT and WRF ∈ CNR×NR are the transmitted and received beamforming matrices,

respectively. FBB ∈ CNT×NBeam
T and WBB ∈ CNR×NBeam

R are the transmitted and received baseband
processing matrices, respectively [19]. W is the combiner, such that W ∈ {0, 1}NR , and F is the precoder,
such that F ∈ {0, 1}NT [19].

According to the geometric virtual (GV) model of mmWave MIMO system explained in [12,18],
Equation (2) can be further elaborated as:

A ,
Lp∑
l=1

αl dR(Φ
(l)
R , θ(l)R )dH

T

(
Φ(l)

T , θ(l)T

)
(3)

where, Lp denotes the total number of propagation paths, αl expressing the complex channel gain of
the l-th path, and it can be obtained from the random complex Gaussian distributions, and CN

(
0,1
2

)
.

dH
T

(
Φ(l)

T , θ(l)T

)
∈ CNT and dR

(
Φ(l)

R , θ(l)R

)
∈ CNR are the array response vectors (ARV) at the transmitters

and receivers, respectively [34] (see the references therein). Φ(l)
T , θ(l)T and Φ(l)

R , θ(l)R are the elevation and
azimuth AoA and AoD angles at the transmitters and receivers, respectively [34] (see the references
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therein). The elevation and azimuth AoA and AoD angles can be produced by uniform Laplacian
distributions, allocated within the range of 0 and 2π.

According to [6,45], ARV of a ULA can be expressed as:

d(θ) =
1
√

N

[
1, e−j 2π

λ kcos(θ), . . . . e−j 2π
λ (N−1)kcos(θ)

]T
(4)

where, the wavelength is denoted by λ, k is the spacing between the antennas and the ARV’s even
function is θ.

Based on the virtual beamspace representation model, Equation (4) can be rewritten in matrix
decomposition form [46,47]. Therefore, the channel matrix A can be expressed as:

A = DRZDH
T (5)

where the receiver’s and transmitter’s ARV’s in terms of unitary matrices are DR ∈

CNR×NR and DT ∈ CNT×NT [46], respectively and these are expressed as DR ,[
dR (Φ1,θ1), dR(Φ2,θ2) . . . . . . .dR

(
ΦLp ,θLp

)]
and DT ,

[
dT(Φ1,θ1), dT(Φ2,θ2) . . . . . . .dT

(
ΦLp ,θLp

)]
.

From the matrix property, DH
R DR = INR and DH

T DT = INT are N × N identity matrix IN.
In Equation (5), Z has the several virtual channel gains of higher amplitude, therefore it is known as
sparse matrix and Z ∈ CNR×NT .

3. Proposed Channel Estimation Scheme for mmWave MIMO System

In this section, the optimization problem followed by the solution obtained through proposed
S-ADMM based scheme is described in detail. Additionally, the computational complexity as well as
the algorithm terminology is also discussed briefly.

3.1. Problem Formulation for mmWave MIMO System

Partially observed data are very helpful for completing the missing entries of a low rank
matrix [48,49] therefore, to formulate the optimization problem for the channel estimation of mmWave
MIMO system, Equation (5) is split into a decomposed version such as A = DRCDH

T , where C defines
the submatrix of Z and it has the information of subsampled values of Z.

Thus, to recover the CSI matrix A, the joint optimization problem can be therefore illustrated as:

minmize
A,C

τA||A||∗ + τC||C||1

Subject to Ψ ◦A = AΨ and A = DRCDH
T

(6)

In the cost function described in Equation (6), DR and DT are treated as the side information of
matrix C. These informations are able complete the missing entries of low rank matrix A. The nuclear
norm on matrix A ensured its low rankness and the l1 − norm on C ensured the sparsity on C. τA and
τC are known as the weighting factors and it generally rely upon the number of propagation path.
These weighting factors are always assumed to be a positive number i.e., τA, τC > 0 [48].

3.2. Proposed S-ADMM Scheme for mmWave MIMO System

The optimization problem described in Equation (6) is clearly a two objective strict convex
function. Thus, solution of Equation (6) can be obtained by numerous methods. Generally, alternating
optimization techniques (AOTs) are the best selection for solving Equation (6). ADMM [29] is the one of
the best known AOT’s for solving the strict convex problems. Therefore, to get the optimal solutions of
Equation (6), reformulate it and introduced two auxiliary matrices, B ∈ CNR×NT and D , B−DRCDH

T .
Hence, the new targeted optimization problem can be expressed as:
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minmize
A,B,C,D

τA||A||∗ + τC||C||1 + 1
2 ||D||

2
F +

1
2 ||Ψ ◦ B−AΨ||

2
F

Subject to A = B and D = B−DRCDH
T

(7)

The new cost function defined in Equation (7) contains different information related to different
parameters. The first term holds the side information of low rank matrix A. The second term contains
the information of subsampled virtual channel gain. Third and fourth term have the statistics of
discretization errors and AWGN noise, respectively. Subsequently, Equation (7) can be written under
the augmented Lagrangian function (ALF) as follows:

L(A, B, C, D, Z1, Z2)

, τA||A||∗ + τC||C||1 + 1
2 ||D||

2
F +

1
2 ||Ψ ◦ B−AΨ||

2
F + tr

(
ZH

1 (A− B)
)

+ρ2 ||A− B||2F + tr
(
ZH

2

(
B−DRCDH

T −D
))
+ ρ

2 ||B−DRCDH
T −D||2F

(8)

In Equation (8), Z1 and Z2 ∈ CNR×NT are assigned as Lagrange multipliers also known as dual
variables. On the other side ρ is contemplated as the step size of the algorithm and it always been
consider as a positive integer. For the better understanding of S-ADMM, the ADMM is described first
and then the symmetrical version is discussed on the base of ADMM. ADMM is already used to solve
the cost function described in Equation (8) [33] and it generates its order as follows:

A(l+1) = argminL
A

(
A, , B(l), C(l), D(l), Z(l)

1 , Z(l)
2

)
(9)

B(l+1) = argmin
B
L

(
A(l+1), B, C(l), D(l), Z(l)

1 , Z(l)
2

)
(10)

C(l+1) = argmin
C
L

(
A(l+1), B(l+1), C, D(l), Z(l)

1 , Z(l)
2

)
(11)

D(l+1) = argmin
D
L

(
A(l+1), B(l+1), C(l+1), D, Z(l)

1 , Z(l)
2

)
(12)

Z(l+1)
1 = Z(l)

1 + ρ
(
A(l+1)

− B(l+1)
)

(13)

Z(l+1)
2 = Z(l)

2 + ρ
(
B(l+1)

−DRC(l+1)DH
T −D(l+1)

)
(14)

The optimal solution of above equations can be obtained very easily as the main targeted cost
function gets scattered in to 6 sub parts. Therefore, by following ways the variable described in
Equations (9)–(14) can be solved,

3.2.1. Solution of A

The closed-form solution Al+1 is determined by considering all the terms related to A in Equation (8)
and implementing SVT [41] on them. Therefore:

L , argmin
A

τA||A||∗ + tr
(
ZH

1 (A− B)
)
+

ρ

2
||A− B||2F = τA||A||∗ +

ρ

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣A−

(
B(l)
−

1
ρ

Z(l)
1

)∣∣∣∣∣∣
∣∣∣∣∣∣2
F

(15)

A(l+1) = Udiag(
{
sign(hi)max(hi, 0)

}
1≤i≤r)V

H (16)

Here, U ∈ CNr×r and V ∈ CNr×r are the side singular vector of the matrices (B(l)
−

1
ρZ(l)

1 ) and
hi , µi −

τ
β . τ is known as SVT operator and the r singular values are denoted by µi.
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3.2.2. Solution of B

For the close form solution of B(l+1), we consider all the terms related to B in Equation (8) and set
it to the zero. Thus:

L , arg min
B

1
2 ||Ψ ◦ B−AΨ||

2
F + tr

(
ZH

1 (A− B)
)
+ ρ

2 ||A− B||2F + tr
(
ZH

2

(
B−DRCDH

T −D
))
+ ρ

2 ||B−DRCD−D||2F (17)

L = Ψ ◦ B−AΨ −Z1 − ρ(A− B) −Z2 − ρ
(
D− B + DRCDH

T

)
Ψ ◦ B−AΨ −Z1 − ρ(A− B) −Z2 − ρ

(
D− B + DRCDH

T

)
= 0

Ψ ◦A + 2ρB = AΨ+Z1+ ρ(A)+ Z2 + ρD + DRCDH
T

B = (G + 2 ρI)−1(Z1 + ρ(A)+ Z2 + ρD + ρHC) (18)

Here, I illustrate the identity matrix, whereas G ,
∑NR

i=1 diag([Ψ]k)
T ⊗

Ekk [Ψ]i, exhibits the k-th
row, and Ekk is derived by inserting unit values in the NR ×NR zero matrix at its (k,k)-th position as
well as H , D∗T

⊗
DR [33,34].

Hence, for (l + 1) iteration of b is:

b(l+1) = (GHG + 2ρI)
−1

(
z(l)1 + ρa(l+1) + GHaΨ + z(l)2 + ρd(l) + ρHc(l)

)
(19)

For B(l+1) unvectorized Equation (19), thus:

B(l+1) = unvec
(
b(l+1)

)
(20)

3.2.3. Solution of C

For the close form solutions of Cl+1, separate all the term of C in Equation (8). Therefore:

L , argmin
C

τC||C||1 + tr
(
ZH

2

(
B−DRCDH

T −D
))
+ ρ

2 ||B−DRCDH
T −D||2F

= τC||C||1 +
ρ
2

∣∣∣∣∣∣∣∣∣∣DH
R

(
1
ρZ(l+1)

2 −D(l) + B(l+1)
)
DT

∣∣∣∣∣∣∣∣∣∣2
F

(21)

Here, Equation (21) is considered as the standard least absolute shrinkage and selection operator
(LASSO) problem [50]. Therefore, to solve Equation (21), vectorization is performed:

argmin
c

τC||C||1 +
ρ

2

∣∣∣∣∣∣
∣∣∣∣∣∣DH

R

(
1
ρ

Z(l+1)
2 −D(l) + B(l+1)

)
DT

∣∣∣∣∣∣
∣∣∣∣∣∣2
F

(22)

Let us consider, J(l+1) = DH
R DT

(
1
ρ (Z

(l+1)
2 −D(l+1) + B(l+1)

)
and j(l+1) = vec

(
J(l+1)

)
. Hence,

Equation (22) can be equivalently expressed as:

argmin
c

τc||C||1 +
ρ

2
||c− j(l+1)

||
2
F (23)

Afterwards, a soft thresholding operator is applied on Equation (23) for (l + 1) iterations:

c(l+1) = sign
(
Re

(
j(l+1)

))
◦max

(∣∣∣Re(j(l+1)
∣∣∣− τ′c, 0

)
+ sign

(
Im

(
j(l+1)

))
◦max

(∣∣∣Im(j(l+1)
∣∣∣− τ′c, 0

)
(24)

Here, τ′c is known as the scaled version of τc and τ′c ,
τc
ρ . Therefore, C(l+1) is obtained by

unvectorizing the c(l+1):
C(l+1) = unvec (c(l+1)) (25)
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3.2.4. Solution of D

To get the solution of Dl+1, we consider all the terms related to D in Equation (8) and set them
to zero:

L , argmin
D

1
2
||D||2F +

(
ZH

2

(
B−DRCDH

T −D
))
+

ρ

2
||B−DRCDH

T −D||2F

L = (1 + ρ)D− ρ (B−DRCD +
ZH

2

ρ
)

Therefore, the solution of D(l+1) can be expressed as:

D(l+1) =
ρ

ρ+ 1

(
B(l+1)

−DRC(l+1)DH
T +

1
ρ

Z(l)
2

)
(26)

The solutions of A, B, C and D can update the Equations (9)–(14). Subsequently, according to
Langrage multiplies methods, the dual variables Z1 and Z2 can be update with help of the A, B, C and
D’s solutions.

Algorithm 1 describes the channel estimation method of a mmWave MIMO system via ADMM.
Here, the intermediate and essential variable are updated first and the dual variables are updated at
the last. As described in [51], Fortin and Glowinski proposed that, attaching a relaxation parameter in
ADMM lead to the faster convergence. Therefore, according to the Fortin and Glowinski proposed
idea Equations (9)–(14) can be written as:

A(l+1) = argminL
A

(
A, , B(l), C(l), D(l), Z(l)

1 , Z(l)
2

)
(27)

B(l+1) = argmin
B
L

(
A(l+1), B, C(l), D(l), Z(l)

1 , Z(l)
2

)
(28)

C(l+1) = argmin
C
L

(
A(l+1), B(l+1), C, D(l), Z(l)

1 , Z(l)
2

)
(29)

D(l+1) = argmin
D
L

(
A(l+1), B(l+1), C(l+1), D, Z(l)

1 , Z(l)
2

)
(30)

Z(l+1)
1 = Z(l)

1 + αρ
(
A(l+1)

− B(l+1)
)

(31)

Z(l+1)
2 = Z(l)

2 + αρ
(
B(l+1)

−DRC(l+1)DH
T −D(l+1)

)
(32)

Algorithm 1. mmWave MIMO Channel Estimation Scheme via ADMM [33]

Require:
Subsampled matrix AΨ, side information matrices DR and DT, and the set of indices
of observed entries in Ψ.

Input: AΨ, Ψ, DR, DT, ρ, τA, τC and Imax

Output:
Estimated output channel matrix Â = A(Imax)

Initialization:
A(0) = B(0) = C(0) = D(0) = Z(0)

1 = Z(0)
2 = 0

Step 1: for l = 0, 1, 2 . . . . . . . Imax − 1
Step 2: Update A(l+1) by using Equation (16).
Step 3: Update B(l+1) by using the Equation (20).
Step 4: Update C(l+1) by using the Equation (25).
Step 5: Update D(l+1) by using the Equation (26).
Step 6: Update Z(l+1)

1 and Z(l+1)
1 by using Equations (13) and (14), respectively.

Step7: end for
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Here, α is known as Fortin and Glowinski’s relaxation parameter. Typically, α rely in between 0

and 1+
√

5
2 , which can be approximated around 0 and 2. Multiplication of relaxation parameter α with

the ρ is enlarge the step size of ADMM and lead to the faster convergence [51–53].
ADMM defined in Equations (27)–(32) is different than the ADMM defined in Equations (9)–(14).

To all intents and purposes, there are two distinct families of ADMM, one is derived from the operator
splitting framework and the other derived from the Lagrangian splitting [54]. Therefore, except for the
notation similarity of the ADMM defined in Equations (9)–(14) and Equations (27)–(32), the ADMM
scheme with Fortin and Glowinski’s relaxation parameter is different than the ADMM define in
Equations (9)–(14) in nature [35].

As observed in [55,56], the ADMM scheme described in Equations (9)–(14) is an application of the
Douglas–Rachford splitting method (DRSM) in [57,58] to the dual of Equations (9)–(14). However,
If the Peaceman–Rachford splitting method (PRSM), which is described in [58,59] is implemented on
ADMM described in Equations (27)–(32), the resultant new ADMM can be expressed as:

A(l+1) = argminL
A

(
A, , B(l), C(l), D(l), Z(l)

1 , Z(l)
2

)
(33)

Z
(l+ 1

2 )

1 = Z(l)
1 + αρ

(
A(l+1)

− B(l)
)

(34)

Z
(l+ 1

2 )

2 = Z(l)
2 + αρ

(
B(l)
−DRC(l)DH

T −D(l)
)

(35)

B(l+1) = argmin
B
L

(
A(l+1), B, C(l), D(l), Z(l)

1 , Z(l)
2

)
(36)

C(l+1) = argmin
C
L

(
A(l+1), B(l+1), C, D(l), Z(l)

1 , Z(l)
2

)
(37)

D(l+1) = argmin
D
L

(
A(l+1), B(l+1), C(l+1), D, Z(l)

1 , Z(l)
2

)
(38)

Z(l+1)
1 = Z

(l+ 1
2 )

1 + αρ
(
A(l+1)

− B(l+1)
)

(39)

Z(l+1)
2 = Z

(l+ 1
2 )

2 + αρ
(
B(l+1)

−DRC(l+1)DH
T −D(l+1)

)
(40)

The above described scheme in Equations (33)–(40) is known as symmetrical ADMM (S-ADMM)
wherein, all the variables are treated in a symmetrical manner.

3.3. Algorithm Elucidation

The proposed S-ADMM scheme for the channel estimation of a mmWave MIMO system is
described in Algorithm 2. Within this scheme, the matrix Ψ has the non-zero uniformly distributed
entries at their respective ij-th position in such a way that Ψ = {1, 2, 3, . . .NRNT} [60,61]. Notably,
these non-zero values are chosen in a haphazard manner. Therefore, it can be argued that the matrix Ψ
has M ones and (NRNT −M) zeros. Matrix Ψ is followed by a subsampled matrix AΨ. Thus, the entries
of AΨ is also followed by the entries of Ψ., so the positions of non-zero entries in AΨ are also similar to
the positions on non-zero entries in Ψ. The error caused during the estimation of A depends upon
the estimation accuracy of AΨ’s elements and the M non-zero values of AΨ [34]. The threshold point,
where the training symbols length are equal to the position of the non-zero entries in A i.e., T = M and
M� NRNT, is considered as a stopping criterion for the proposed S-ADMM scheme.
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Algorithm 2. Proposed S-ADMM based mmWave MIMO Channel Estimation Scheme

Require:
Subsampled matrix AΨ, side information matrices DR and DT, and the set of indices
of observed entries in Ψ.

Input: AΨ, Ψ, DR, DT, ρ, α, τA, τC and Imax

Output:
Estimated output channel matrix Â = A(Imax)

Initialization:
A(0) = B(0) = C(0) = D(0) = Z(0)

1 = Z(0)
2 = 0

Step 1: for l = 0, 1, 2 . . . . . . . Imax − 1
Step 2: Update A(l+1) by using Equation (33) and it gets updated from the solution in Equation (16)

Step 3: Update Z
(l+ 1

2 )

1 and Z
(l+ 1

2 )

2 by using Equations (34) and (35), respectively.
Step 4: Update B(l+1) by using the Equation (36) and it used solution described in Equation (20)
Step 5: Update C(l+1) by using the Equation (37) and the solution of C is updated by Equation (25).
Step 6: Update D(l+1) by using the Equation (38) and the solution of D is provided by Equation (26).
Step 7: Update Z(l+1)

1 and Z(l+1)
1 by using Equations (39) to (40), respectively.

Step8: end for

3.4. Complexity Analysis

In the proposed S-ADMM scheme, step 2 is the most important and decisive part. In step 2,
SVT operator is implemented on the non-squared matrix A. The SVT is nothing but another version of
singular value decomposition (SVD), where the targeted matrix is transformed in to an orthogonal
matrix to ensure orthogonality. Therefore, the order of complexity required to compute the step 2
is proportional to M2

T [62]. Step 4 of the proposed scheme has the solutions of the Equation (18)
is illustrated by the inversion of G + 2 ρI. However, this matrix is a diagonal matrix, therefore,
the required complexity is O(TNR). In step 6, the pseudo-inverse of H ∈ CTNR×LPNTNR has to be
calculated which needs the calculation and conversion of the Gram matrix HHH ∈ CLNTNR×LNTNR [16].
However, this step is the very expensive and cost huge computational load. Nonetheless, HHH is
already noted as a presiding diagonal matrix, hence gradient-based iterative algorithms is used to
lower the complexity order to O(L NTNR) [63]. The rest of the steps are acting as a matrix- matrix and
matrix- vector products, which inherently needs lower computational power.

4. Simulation and Results

In this section, simulations are carried out and results are explained in detail. To illustrate the
preeminence of the proposed S-ADMM scheme, by considering the parameters with their respective
values listed in Table 2, a simulation is performed and the detailed results are explained.

Table 2. Simulation Parameters.

Carrier Frequency 90 GHz
Maximum numbers of iterations 100 [64]

Maximum numbers of Monte Carlo realizations 100 [64]
Number of transmitter antennas 64
Number of transmitter antennas 64

Spacing between antennas d λ
2

Signal-to-noise Ratio (SNR) σ−2
q 30 dB

Number of mmWave channel path 2
Number of clusters 1

Standard deviation of uniformly distributed AoA’s and
AoD’s 55◦

Uniform distribution range of AoA’s and AoD’s [0, 2π]
Relaxation factor 1.5

Weighting factors τA = ρ||Aψ|| and τC = 0.1
(1−10 log(σ2

q))
Step size ρ = 3M

NRNT
= 0.005
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Seven different state-of-art benchmark algorithms namely: OMP, VAMP, ADMM, Ex-ADMM,
GAMP-GM, BOMP and SVT are taken into account for the comparison with proposed S-ADMM
algorithm. The basic and working methodology of all five benchmark algorithms are entirely different
from each other which is the main motivation to consider them for performance comparison with
our proposed scheme. The performance of the proposed S-ADMM scheme is compared with these
benchmarks in term of NMSE, ASE, convergence and effects of scatterers as well as with the number
of paths.

4.1. NMSE Comparison

To demonstrate the performance of S-ADMM in terms of NMSE, low training symbol lengths i.e.,
T = 400 and high training symbol lengths T = 1200, is considered for simulation. The relation is used to
calculate the NMSE is described as follows:

NMSE , E

10 log10
||Â−A||2F
||A||2F

 (41)

Performance of OMP is moderated at low SNR points (i.e., <5 dB) but as the SNR is increasing
from low to mid and then to the high the performance is started decreasing. This happens due to the
discretization error caused in dictionary matrix. GAMP-GM approximate any vector in to a scaler
which reduce the complexity of the algorithm and an enhancement in performance is beheld. Hence,
it is clear from Figure 2 that the performance of GAMP-GM is unquestionably better than that of
another approximate message passing algorithm VAMP for small and high training symbol lengths.
For T = 400 and 1200, at low- to mid-SNR points, the performance of GAMP-GM is very significant but
as the SNR range is increased from mid to high, the performance is slightly getting worse. The reason
behind this is that the GAMP-GM diverges with the overcomplete dictionary matrices resulting from
beam domain quantization. BOMP is another popular basic pursuit algorithm for the recovery of
sparse signals which exhibits the additional structure in the form of the nonzero coefficients occurring
in channel matrix. Such signals are referred to as block-sparse. In Figure 2, for T = 400 at low to mid
SNR points, the performance of BOMP is trail behind the OMP but as the SNR range is increased
from mid to high the performance of BOMP is getting much better as compare to OMP. For T = 1200,
BOMP outperformed OMP because OMP is not capable enough to recover the large training symbols.
This happens as the BOMP exploits the block sparse structure of channel matrix. Therefore, large and
small training symbols can be recovered by using BOMP. Practically, in BOMP, the spatial frequencies
corresponding to the AoA and AoD of each path may not fall exactly in the grid points of DFT matrices
of ULA size which caused the performance degradation. The Ex-ADMM is an extension of ADMM and
it performs well at almost all SNR points. Although, the performance of the S-ADMM is better than all
other benchmark algorithms. The reason behind that is, the Ex-ADMM only use relaxation factor to
enlarge the step size but the S-ADMM make the step size enlarger in addition with the symmetrical
treatment for all variables. When high training symbols length i.e., T = 1200 are chosen for simulation,
VAMP improved its performance at almost all SNR points. On the contrary, the performance of OMP
remain in the same condition due to the fact that, at high SNR and large training symbols length,
OMP suffered from discretization error and it is not capable to recover the transmitted symbols properly.
Ex-ADMM keep performing at T = 1200 mid to high SNR points but it is underperformed by S-ADMM.



Entropy 2020, 22, 1121 12 of 18

Entropy 2020, 22, 1121 11 of 18 

 

Performance of OMP is moderated at low SNR points (i.e., <5 dB) but as the SNR is increasing 
from low to mid and then to the high the performance is started decreasing. This happens due to the 
discretization error caused in dictionary matrix. GAMP-GM approximate any vector in to a scaler 
which reduce the complexity of the algorithm and an enhancement in performance is beheld. Hence, 
it is clear from Figure 2 that the performance of GAMP-GM is unquestionably better than that of 
another approximate message passing algorithm VAMP for small and high training symbol lengths. 
For T = 400 and 1200, at low- to mid-SNR points, the performance of GAMP-GM is very significant 
but as the SNR range is increased from mid to high, the performance is slightly getting worse. The 
reason behind this is that the GAMP-GM diverges with the overcomplete dictionary matrices 
resulting from beam domain quantization. BOMP is another popular basic pursuit algorithm for the 
recovery of sparse signals which exhibits the additional structure in the form of the nonzero 
coefficients occurring in channel matrix. Such signals are referred to as block-sparse. In Figure 2, for 
T = 400 at low to mid SNR points, the performance of BOMP is trail behind the OMP but as the SNR 
range is increased from mid to high the performance of BOMP is getting much better as compare to 
OMP. For T = 1200, BOMP outperformed OMP because OMP is not capable enough to recover the 
large training symbols. This happens as the BOMP exploits the block sparse structure of channel 
matrix. Therefore, large and small training symbols can be recovered by using BOMP. Practically, in 
BOMP, the spatial frequencies corresponding to the AoA and AoD of each path may not fall exactly 
in the grid points of DFT matrices of ULA size which caused the performance degradation. The Ex-
ADMM is an extension of ADMM and it performs well at almost all SNR points. Although, the 
performance of the S-ADMM is better than all other benchmark algorithms. The reason behind that 
is, the Ex-ADMM only use relaxation factor to enlarge the step size but the S-ADMM make the step 
size enlarger in addition with the symmetrical treatment for all variables. When high training 
symbols length i.e., T = 1200 are chosen for simulation, VAMP improved its performance at almost 
all SNR points. On the contrary, the performance of OMP remain in the same condition due to the 
fact that, at high SNR and large training symbols length, OMP suffered from discretization error and 
it is not capable to recover the transmitted symbols properly. Ex-ADMM keep performing at T = 1200 
mid to high SNR points but it is underperformed by S-ADMM. 

  
(a) (b) 

Figure 2. NMSE performance of S-ADMM for T = 400 (a) and T = 1200 (b) at 30 dB SNR. 

  

Figure 2. NMSE performance of S-ADMM for T = 400 (a) and T = 1200 (b) at 30 dB SNR.

4.2. ASE Comparison

For the performance evaluation in terms of ASE of proposed S-ADMM scheme, similar as NMSE,
low (T = 400) and high (T = 1200) training symbols lengths have been considered for simulation.
The relation assigned to calculate the ASE [65,66] is:

ASE = E{log2 det(INR +
(
NRNT

(
σ2

q + NMSE
)−1

AAH
)
} (42)

Figure 3 explains the performance evaluation of the proposed S-ADMM scheme in comparison
with OMP, VAMP, BOMP, GAMP-GM and Ex-ADMM. In the case of OMP, for T = 400 in all the SNR
range, it performed ordinarily but the performance of OMP is getting worse as the length of training
lengths as well as the SNR range are increasing. For T = 400 at low to mid SNR range the performance
of GAMP-GM is nearly similar to Ex-ADMM and BOMP but as the SNR range is increased from
mid to high, GAMP-GM outperformed BOMP, OMP and VAMP. For T = 1200 at low to mid SNR
range, GAMP-GM are very close to VAMP, Ex-ADMM, BOMP and proposed S-ADMM. As the SNR
points are increasing from mid to high, the performance of GAMP-GM is improving linearly and it
outperformed the VAMP, BOMP and OMP. In case of BOMP, for T = 400 and 1200 at low to mid SNR
range, it performed better than the OMP and VAMP. Same pattern is observed at mid to high SNR
range. Therefore, one can see that, the performance of BOMP is better than the OMP and VAMP for all
SNR points as well as for all training symbol lengths. As discussed earlier, VAMP is not designed for
low training symbols therefore it performed worst for T = 400 at almost every SNR range. For high
training symbols length (i.e., T = 1200), VAMP shows a significant improvement and performed very
well from low to mid as well as from mid to high SNR points. As a matter of fact, VAMP outperformed
OMP at all SNR points. Interestingly, the performance of the proposed S-ADMM and Ex-ADMM are
almost equal at all SNR points. However, the performance of proposed S-ADMM is slightly improved
as compared to Ex-ADMM. In conclusion, the proposed S-ADMM outperformed all other benchmark
algorithms at all SNR points for low training symbols length.
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4.3. Comparison of Convergence

Figure 4 illustrates the convergence of the proposed S-ADMM scheme. In order to compare
the convergence, benchmarks SVT, ADMM and Ex-ADMM have been considered. The number of
training symbols is fixed at 400 as well as the relaxation parameter α for Ex-ADMM and proposed
S-ADMM is set to be 1.5. As one can see from Figure 4, the SVT converges fast as it is a one stage
direct method but its NMSE performance is worse than all of the other benchmarks and the proposed
S-ADMM. The convergence of ADMM and Ex-ADMM is almost identical and moderate but the NMSE
performance of Ex-ADMM is better than that of ADMM. Convergence of the proposed S-ADMM
is better than that of all other benchmarks and its NMSE performance also outperforms the others.
Eventually, the SVT started converging around 5–10 iterations. The ADMM and Ex-ADMM take
around 15–20 iterations to converge. However, the proposed S-ADMM started converging around
7–12 iterations. Therefore, one can observe that the proposed S-ADMM outperformed all other
state-of-art benchmark algorithms in terms of convergence which makes it faster than all the other
described methods.
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4.4. Effect on Number of Scatterers and Paths

Figure 5 elaborates the performance of the proposed S-ADMM scheme over several scatterers
and the number of paths. It is observed that as the number of scatterers and number channel paths is
inversely proportional to the NMSE performance of the system.
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5. Concluding Remarks 

To jointly optimize the low rank and sparsity-based problem for the channel estimation of a 
mmWave MIMO system, a symmetrical version of ADMM (S-ADMM) has been proposed. The S-
ADMM treated every variable symmetrically in the optimization problem. For better convergence 
rate, to enhance the step size, a relaxation parameter is multiplied into the step size of duals. In order 
to get better optimal solutions, the proposed scheme divides the optimization problems into several 
subproblems and solves them individually. Although, S-ADMM is better for recovering the training 
symbols, the performance is degraded when the number of scatterers and paths are increased. 
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Figure 5. (a,b) Number of scatterers vs. NMSE at 30 dB SNR. (c) Number of paths vs. NMSE.

Figure 5a demonstrates the performance of the proposed S-ADMM scheme for low training
symbols length (i.e., T = 400). The number of scatterers is set to be L = 2, 4 and 6, respectively. All the
results are obtained at α = 1.5. It can be observed that the NMSE performance of the proposed S-ADMM
scheme is getting worse as the number of scatterers are increasing. The same thing happened in the
case of high training symbols length (i.e., T = 1200). Figure 5b also indicates the same results that
as the number of scatterers are increasing the NMSE performance is getting worse. This happens
because of the worse scattering nature of mmWaves. Figure 5c depicts the effects of escalation in path
of mmWaves. Therefore, to summarize, by the inherent nature of mmWave, it can be said that the
performance of a mmWave MIMO system decreases as the number of propagation paths and scatterers
increases, but still the performance of the proposed S-ADMM is much better than the OMP, VAMP,
GAMP-GM, BOMP and the Ex-ADMM as depicted in Figure 5c.
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5. Concluding Remarks

To jointly optimize the low rank and sparsity-based problem for the channel estimation of
a mmWave MIMO system, a symmetrical version of ADMM (S-ADMM) has been proposed.
The S-ADMM treated every variable symmetrically in the optimization problem. For better convergence
rate, to enhance the step size, a relaxation parameter is multiplied into the step size of duals. In order
to get better optimal solutions, the proposed scheme divides the optimization problems into several
subproblems and solves them individually. Although, S-ADMM is better for recovering the training
symbols, the performance is degraded when the number of scatterers and paths are increased. Therefore,
there is room for improvement. With proper modifications, the proposed S-ADMM algorithm can
be further extended for the estimation of time-varying mmWave channels in a hybrid MIMO system.
Extensive simulations experiments are carried out to explain the validation and superiority of the
scheme. Comprehensively, the proposed S-ADMM scheme performed better than all other state-of-art
benchmark algorithms considered in this work.
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