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Circulating CD25™ B cells, a subset of regulatory B cells in humans, are closely related to inflammation and autoimmune diseases.
This study is aimed at investigating the alternation of CD25™ Bregs and their correlation with CD4 effector and regulatory T cells
in T1D individuals. We included 68 autoantibody-positive T1D and 68 age-matched healthy individuals with peripheral blood
mononuclear cells (PBMCs) and assessed them with CD25™ Bregs and CD4 effector or regulatory T cells by flow cytometry.
Here, we demonstrate that the frequency of CD25™ Bregs was significantly decreased in T1D subjects (P =0.0016), but they
were not affected by disease status (age at T1D diagnosis or duration) or T1D risk loci (rs2104286 or rs12251307) in IL2RA
(all P>0.05). Moreover, higher IgD (P =0.043) and lower CD27 (P =0.0003) expression was observed in CD25M Bregs of
T1D individuals, but not the expression of IgM, CD24, or CD38 (all P> 0.05). Although there was no correlation between
CD25" Bregs and CD4 effector T cell subsets in either TID or healthy individuals (all P> 0.05), we found a positive
correlation between CD25" Bregs and CD4 Tregs in healthy controls (Sp. r = 0.3544, P = 0.0249), which disappeared in T1D
subjects (Sp. r=0.137, P=0.401). In conclusion, our results suggest that decreased CD25" Bregs and alternation of their
phenotypes are features of T1D regardless of disease duration and T1D genetic risk loci, and an impaired balance between
CD25" Bregs and CD4 Tregs might contribute to the pathogenesis of T1D.

1. Introduction

Type 1 diabetes (T1D) is an organ-specific autoimmune dis-
ease mediated by T cells against pancreatic 3 cells. The
decreased number and impaired function of Tregs in T1D
individuals result in an imbalance between Tregs and effec-
tor T cells and abnormal immune responses, which leads
to the occurrence and progression of T1D [1, 2]. T cells,
especially CD4 and CD8 conventional T cells with specificity
for islet autoantigens [3], are critical in mediating the
destruction of f3 cells. But B cells also play an essential role
in the autoimmune destruction of f cells [4, 5], which

mainly participate in the T cell immune response by produc-
ing autoantibodies, presenting antigens, secreting cytokines,
and providing costimulatory signals [6-8].

Regulatory B cells (Bregs) are B lymphocytes that function
by skewing T cell differentiation in favor of a regulatory phe-
notype in both mice and humans. According to surface
markers, Bregs can be divided into different regulatory subsets,
including B10 cells, plasmablasts, Brl cells, and immature B
cells in humans [9]. They are involved in the immune process
by producing interleukin- (IL-) 10, IL-35, and transforming
growth factor- (TGF-f8), inhibiting the proliferation of CD4
effector T cells, and enhancing the expression of FOXP3 and
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Ficure 1: Differences in circulating CDZShi Bregs between autoantibody-positive T1D and age-matched healthy individuals. (a, b)
Representative dot plots for gating CD25™ Bregs in healthy donor and T1D subject. (c) Evaluation of the frequency of CD25™ Bregs in
CD19" B cells between T1D and healthy controls. A P value below 0.05 indicates a significant difference between groups.

CTLA-4 in Tregs [10]. Studies have shown these Bregs are
involved in the pathogenesis of T1D to some extent [11-14].

CD25 (also named as interleukin-2 «a-chain receptor (IL-
2RA)) is highly expressed in CD4 Tregs [15, 16], which is
vital for Treg function [17] and the pathogenesis of many
autoimmune diseases [2]. Studies also reveal that the CD19""
CD25" B cells (CD25" Bregs) are the first subtype of regula-
tory B cells in humans. These Bregs are partially similar to
CD4 Tregs as they express significantly higher levels of the
immunosuppressive cztokine IL-10 [10]. However, the alter-
nation of these CD25™ Bregs in T1D is still unclear.

Therefore, this study focused on the alternation of circu-
lating CD25"™ Bregs in T1D subjects and the effect of disease
status, as well as T1D risk loci in IL-2RA, on the frequency of
CD25" Bregs. Furthermore, we also assessed their correla-
tions with CD4 effector and regulatory T cells in both T1D
and healthy donors.

2. Materials and Methods

2.1. Subjects. This study included 68 T1D subjects from the
Department of Endocrinology, the First Affiliated Hospital
of Nanjing Medical University. The diagnosis of T1D met

the WHO criteria, and T1D subjects had at least one positive
islet-specific autoantibody, including zinc transporter-8 auto-
antibody (ZnT8A), glutamate decarboxylase autoantibody
(GADA), and insulinoma-related-2 autoantibody (IA-2A).
ZnT8A, GADA, and IA-2A were measured by radio-binding
assays described previously [18]. Sixty-eight age-matched
healthy controls were from the same geographic area and
had no diabetes or other autoimmune diseases. All samples
were collected after all participants and/or their guardians
had written informed consent. This study was approved by
the Ethics Committee of the First Affiliated Hospital of Nan-
jing Medical University and was conducted in accordance
with the principles of the Declaration of Helsinki.

2.2. Cell Staining and Multicolor Flow Cytometry. Ficoll den-
sity gradient centrifugation was used to separate human
peripheral blood mononuclear cells (PBMCs) at study entry
and frozen at a core facility. Thawed PBMCs were stained with
aqua for live/dead cells; for CD25™ Bregs panel, these cells
were stained with CD19 (HIB19), CD25 (M-A251), IgM
(MHM-88), IgD (IA6-2), CD24 (ML5), CD27 (323), CD38
(HIT2), and dump (CD3/CD14/CD56/Aqua); for T effector
and regulatory cells, they were stained with CD3 (SK7), CD4
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FiGurE 2: The effect of disease status and T1D risk loci (rs12251307 and rs2104286) in IL2RA on CD25 expression in CD19* B cells.
Correlation between the frequency of CD25" Bregs in CD19" B cells and age at (a) T1D diagnosis and (b) T1D duration in T1D
subjects. The correlation was determined by the Spearman rank test. (c, d) Con represents healthy controls. For both healthy controls
and T1D individuals, comparisons between wild genotype and homozygote+ heterozygote and were performed by unpaired t-test with
Welch’s correction. A total of 40 T1D individuals and 40 healthy controls were enrolled for the analysis. A P value below 0.05 indicates

a significant difference for different genotypes in each group.

(SK3), CD8 (SK1), CD25 (M-A251), CD45RA (HI100), CCR7
(GO43H7), FOXP3 (259D/C7), and CTLA-4 (BNI3), as
previously described [18]. PBMCs are run on FACSAria II
(BD Biosciences) and analyzed by Flow]Jo v10 software.

2.3. Genotyping. DNeasy blood and tissue kit (Qiagen) was
used to extract genomic DNA from isolated PBMCs.
Genome-wide association studies (GWAS) revealed T1D-
related risk loci in/nearby IL2-RA, including rs2104286 and
rs12251307 (from http://www.tldbase.org). PCR was per-
formed on ABI 7900HT by the TagMan method to assess
these loci.

2.4. Statistical Analysis. The Mann-Whitney unpaired ¢-test
evaluated the comparison between the two groups. Compar-
isons of immune phenotypes between CD25™ Bregs and
CD25 B cells from the same individual were performed
using a paired two-tailed Student’s t-test. The Spearman
rank test determined the correlations between variables. All
statistical data were analyzed using GraphPad Prism 7.0

(GraphPad Software, La Jolla, California). A P value of
<0.05 was considered statistically significant.

3. Results

3.1. The Frequency of CD25" Bregs Decreases Significantly in
TID Individuals. The clinical characteristics of T1D and
healthy donors are shown in Table S1, matched for age
and gender between the two groups. Representative dot plots
gating CD25™ Bregs in T1D and healthy donors are shown
in Figures 1(a) and 1(b). Our results indicate that age at
the time of blood donation does not affect the frequency of
CD25" Bregs in T1D or healthy controls (Figures S1A and
B), but they significantly decrease in T1D compared with
age-matched healthy individuals (23.5% + 1.2 vs. 18.2% *
1.1, P=0.0016), as shown in Figure 1(c).

3.2. CD25" Bregs Do Not Correlate with Age at T1D Diagnosis,
T1D Duration, or T1D Risk Loci in the IL2ZRA Region. Diseases
status and genetic risk loci may contribute to the frequency of
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Ficure 3: Differences of (a) IgM, (b) IgD, (c) CD24, (d) CD27, and (e) CD38 expression in circulating CD25" Bregs between autoantibody-
positive T1D and healthy individuals. A P value below 0.05 indicates a significant difference between groups.
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Ficurk 4: Differences in circulating naive/CM/EM subsets in total CD4 effector T cells between autoantibody-positive T1D and age-
matched healthy individuals. (a) Representative dot plots for gating naive/CM/EM subsets in total CD4 effector T cells in a healthy
donor (HD) and T1D subject. (b) Evaluation of circulating naive/CM/EM subsets in total CD4 effector T cells between T1D and healthy
individual controls. A P value below 0.05 indicates a significant difference between groups.

immune cell subsets. Our results demonstrate that the fre-
quency of CD25™ Bregs does not correlate with age at T1D
diagnosis or duration (Figures 2(a) and 2(b)), suggesting they
might not be affected by disease status. Besides, GWAS have
revealed several T1D genetic loci in the IL2RA region, includ-
ing rs11594656, 1512251307, rs12722495, and rs2104286. But
only 152104286 and rs12251307 are common variants in the
Chinese Han population. We further assessed their contribu-
tion to the frequency of CD25" Bregs. Although phenoscan-
ner database (http://www.phenoscanner.medschl.cam.ac.uk/)
indicated that rs2104286 had an eQTL effect on IL2RA in
esophagus gastroesophageal junction and heart atrial append-
age (from GTEx.v7) and rs12251307 had an eQTL effect on
IL2RA in whole blood (from BIOSQTL), they are not associ-
ated with CD25 expression in CD19" B cells in either healthy
controls or T1D individuals (all P> 0.05), as shown in
Figures 2(c) and 2(d).

3.3. Higher IgD and Lower CD27 Expression in CD25" Bregs
Is Observed in T1D Individuals. We next ‘performed a com-
parative phenotypic analysis for CD25™ Bregs and CD25"
B cells by evaluating the common surface marker, includ-
ing IgM, IgD, CD24, CD27, and CD38. We observe signif-
icantly higher IgD and CD38 express1on and lower CD24
and CD27 expression in CD25" Bregs compared to
CD25™ B cells in healthy individuals (all P <0.0001) (Fig-
ure S2A). The results are similar for the alternation of
IgD, CD27, and CD38 expression in CD25" Bregs com-
pared to CD25™ B cells in T1D individuals (all P <0.0001
) (Figure S2B). These results suggest CD25" Bregs are a
specific distinct subpopulation. A
Continuing our analysis, IgD expression in CD25™ Bregs
increases, while CD27 expression decreases significantly in
T1D individuals (P=0.043 and 0.0003, respectively), but
IgM, CD24, and CD38 expression does not alter, as shown

in Figures 3(a)-3(e). Although IgM, IgD, CD24, and CD38
expression does not correlate with age at the time of donat1on,
our results show that the expression of CD27 in CD25" Bregs
has a positive correlation with age at drawn in healthy donors
(Figures S3A-E). These suggest age-matched individuals are
essential for the comparisons. The expression of CD27 in
CD25™ Bregs also reduces significantly in T1D subjects com-
pared with age-matched healthy donors (P =0.0157), as
shown in Figure S4A. However, the expression of CD27 in
CD25™ Bregs does not correlate with either age at T1D diag-
nosis or duration (Figures S4B and C).

3.4. Significant Correlation between CD25" Bregs and CD4
Tregs in Healthy Donors Disappears in T1D Individuals.
Our results show that neither the frequency [19] nor the
number (Figures S5A-C) of CD4 Tregs alters in T1D sub-
jects. Here, we evaluated the differences of CD4 effector T
cell subsets between T1D and age-matched healthy individ-
uals. Although the frequency of total CD4 effector T cells
in total T cells shows no difference (Figure S6), T1D individ-
uals have lower frequency of naive CD4 T cells and higher
frequency of central memory (CM) and effect memory
(EM) CD4 T cells in both CD4 effector (Figures 4(a) and
4(b)) and CD3 T (Figure S5) cells.

Furthermore, our previous study also demonstrated that
CD4 Tregs were significantly correlated with regulatory
monocytes in healthy controls, which disappeared in T1D
individuals [18]. Here, we further assessed the correlation
between CD25™ Bregs and CD4 effector and regulatory T
cells. As shown in Figures 5(a) and 5(b) and Figures S7A-
F, no correlation between CD25"™ Bregs and CD4 effector
T cell subsets is observed in either T1D or healthy donors
(all P >0.05). As shown in Figures 5(c) and 5(d), we observe
a positive correlation between CD25" Bregs and Tregs in
healthy controls (Spearman r=0.354, P=0.025), which
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FiGure 5: Correlations between CD25" Bregs and effector CD4 T cells, CD4 Tregs, and CTLA-4" Tregs in healthy control and T1D
individuals. Correlation analysis between CD25M Bregs and effector CD4 T cells from (a) healthy donors (HD) and (b) T1D individuals.
Correlation analysis between CD25M Bregs and CD4 Tregs from (c) HD and (d) T1D individuals. Correlation analysis between CD25M
Bregs and CTLA-4" Tregs from (e) HD and (f) T1D individuals. Spearman correlations were performed for these correlations. A P value
< 0.05 was considered significant.
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disrupted in T1D individuals (Spearman r = 0.137, P = 0.401
). In addition, CD25" Bregs tend to correlate with CTLA-4"
Tregs in healthy controls (Spearman r=0.284, P =0.076),
but not T1D individuals (Spearman r=0.007, P =0.602),
as shown in Figures 5(e) and 5(f).

4. Discussion

Studies have demonstrated different Breg subsets in both
mice and humans [9]. In mice, studies showed that Bregs
could prevent or delay autoimmune diabetes in nonobese
diabetic (NOD) mice. Tian et al. initially explored the role
of Bregs in T1D in nonobese diabetic (NOD) mice [11,
12]. However, the conclusions are not entirely consistent in
humans. Thompson et al. found that the secretion of IL-10
from circulating Bregs in T1D subjects was not statistically
significant compared with healthy controls [13]. El-
Mokhtar et al. found that Breg subgroups CD24™CD27*
(B10) and CD24"CD38™ decreased significantly in T1D
subjects, which were negatively correlated with fasting blood
glucose and glycosylated hemoglobin [14].

CD25" Bregs, one of the regulatory B cells in humans
[17], are closely related to inflammation, malignant tumors,
and autoimmune diseases. Hjalmar et al. found that the
average proportion of CD19" B cells expressing CD25 in
subjects with chronic lymphocytic leukemia was signifi-
cantly higher than that in healthy controls, and the median
treatment time of these patients was shorter than that of
patients with CD25™ B cells [20]. de Andrés et al. found that
CD25" Bregs increased significantly in the cerebrospinal
fluid compared with peripheral blood. Moreover, these Bregs
are higher in multiple sclerosis patients with relapsed symp-
toms than nonclinically active multiple sclerosis patients
[21]. Another study showed that higher CD25™ Bregs are
independently associated with better graft function in renal
transplant recipients [22]. Our study found that the fre-
quency of CD25" Bregs decreased significantly in T1D sub-
jects, which is another evidence of their effect on
autoimmune diseases. In addition, although studies demon-
strate that the development of B lymphocytes and changes in
receptor diversity are affected by the aging process [23], we
did not find any correlation between CD25™ Bregs and the
age at drawn in either T1D or healthy individuals.

Besides, disease status and genetic risk loci may also
affect these Bregs. We did not find any correlation between
CD25" Bregs and disease onset and duration. As for multi-
ple genetic risk loci in/near IL2RA, they were reported to
affect CD25 expression in whole blood and other tissues
and help reduce the frequency of IL-2R signaling in T1D
and MS patients [24]. But we did not find any effect of these
loci on CD25 expression on CD25" Bregs, likely due to
lower surface expression. These suggested these risk loci
might affect CD25 expression in a cell type-specific manner.

Furthermore, our results indicated that compared to
CD25 B cells, CD25™ Bregs had a distinct phenotype in
higher expression of CD24 and CD27, meanwhile lower
expression of IgD and CD38. IgD participates in the initia-
tion of B cell production of antibodies, attenuates the sur-
vival of mature B cells, and participates in inhibiting

nonspecific B cell activation and autoimmunity [25]. Our
study revealed higher IgD expression in CD25™ Bregs in
T1D, which suggested higher autoimmune response in
T1D status. CD27 is a regulator of B cell activation and anti-
body production [26]. Our study found that the expression
of CD27 in CD25" Bregs significantly decreased in T1D
subjects. Interestingly, CD27 expression was positively asso-
ciated with age at drawn in both T1D and healthy individ-
uals. These suggest age-matched individuals are essential
for comparing immune cells between T1D subjects and
healthy donors, and CD27 may have a particular influence
on the production and immune function of CD25" Bregs.

Furthermore, studies have shown that CD25™ Bregs
could increase CD4 Tregs while reducing Th17 cells [27].
Kessel et al. found that human CD25™ Bregs inhibited the
proliferation of CD4 T cells and enhanced the expression
of Foxp3 and CTLA-4 in Tregs [10]. Another study also
indicated CD25™ Bregs that secrete IL-10 are a subgroup
of cells with different functions that affect the fate of T cells
in patients with leprosy. These cells convert effector T cells
into Treg and enhance Treg activity [28]. Our study found
that CD4 Tregs positively correlated with CD25" Bregs in
healthy individuals were disrupted in T1D subjects. Based
on these studies, we speculated that the suppressive function
of CD25™ Bregs might be diminished in T1D individuals,
partially due to the decreased IL-10 secretion in CD25™
Bregs, which deserves further exploration with extra more
studies.

Our study also has some limitations. Firstly, we only
found a tendency of correlation between CD25™ Bregs and
CTLA-4" Tregs in healthy individuals. It should be further
investigated with more sample size to assess the bona fide
correlation. Secondly, the phenotype of CD25™ Bregs should
also need further confirmation by other independent studies.
Thirdly, the functional cytokines of CD25™ Bregs, including
IL-10, IL-35, and TGF-f, should be evaluated in T1D and
age-matched healthy controls by further studies.

In conclusion, this study found decreased circulating
CD25" Bregs and altered phenotype in CD25™ Bregs T1D
individuals, and the positive correlation between CD25M
Bregs and Tre%ls in healthy donors was disrupted in T1D
subjects. CD25™ Bregs might contribute to the onset and
development of T1D, but the related mechanism remains
to be further studied.
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