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Abstract: In excess of 75 arboviruses have been identified in Australia, some of which are now
well established as causative agents of debilitating diseases. These include Ross River virus,
Barmah Forest virus, and Murray Valley encephalitis virus, each of which may be detected by both
antibody-based recognition and molecular typing. However, for most of the remaining arboviruses
that may be associated with pathology in humans, routine tests are not available to diagnose infection.
A number of these so-called ‘neglected’ or ‘orphan’ arboviruses that are indigenous to Australia
might have been infecting humans at a regular rate for decades. Some of them may be associated
with undifferentiated febrile illness—fever, the cause of which is not obvious—for which around
half of all cases each year remain undiagnosed. This is of particular relevance to Northern Australia,
given the Commonwealth Government’s transformative vision for the midterm future of massive
infrastructure investment in this region. An expansion of the industrial and business development
of this previously underpopulated region is predicted. This is set to bring into intimate proximity
infection-naïve human hosts, native reservoir animals, and vector mosquitoes, thereby creating a
perfect storm for increased prevalence of infection with neglected Australian arboviruses. Moreover,
the escalating rate and effects of climate change that are increasingly observed in the tropical north
of the country are likely to lead to elevated numbers of arbovirus-transmitting mosquitoes. As a
commensurate response, continuing assiduous attention to vector monitoring and control is required.
In this overall context, improved epidemiological surveillance and diagnostic screening, including
establishing novel, rapid pan-viral tests to facilitate early diagnosis and appropriate treatment of
febrile primary care patients, should be considered a public health priority. Investment in a rigorous
identification program would reduce the possibility of significant outbreaks of these indigenous
arboviruses at a time when population growth accelerates in Northern Australia.

Keywords: arbovirus; neglected; undifferentiated febrile illness; Northern Australia; diagnostics;
control; prevention

1. Introduction

Arthropod-borneviruses (arboviruses) are by definition transmitted between vertebrate hosts by
biting arthropods (mosquitoes, ticks, sandflies, midges and gnats) [1], and the infections that they
cause pose a significant public health risk worldwide. The International Catalogue of Arboviruses
currently lists 537 registered viruses on the basis of their known transmission by arthropods, known
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for potential infectivity to humans or domestic animals, and antigenic or phylogenetic relationships to
known arboviruses [2].

At present, more than 130 arboviruses are recognised as causing mild to fulminant disease in
humans [3]. Symptoms of uncomplicated arboviral infection generally occur between 3 and 15 days
after exposure to the virus and may persist for a week or so. The most common clinical features of
infection are the indistinct influenza-like symptoms of fever, headache, and malaise, which, without
recourse to further information regarding a patient’s clinical and exposure history, often preclude a
correct diagnosis [4].

Australia is home to over 75 arboviruses that have been isolated from its native arthropods [2].
While so far only 13 of these are found to be associated with human infection, just Barmah Forest virus
(BFV) and Ross River virus (RRV) are tested for routinely. Moreover, laboratory tests are available
for Murray Valley encephalitis virus (MVEV) and West Nile Kunjin virus (KUNV) but test requests
are made on patients with highly suggestive signs and symptoms [5]. The ecology and role of other
arboviruses in humans, whether they are associated with any serious infections or undiagnosed
undifferentiated febrile illness (UFI), are unknown and their study is not prioritised. An analysis of
the notifications of BFV, RRV, MVEV, and KUNV in the last two decades has clearly shown a higher
distribution of these viruses in Northern Australia [6] (reviewed in [5]).

In this article, we describe briefly the neglected Australian arboviruses that are most likely to
emerge as significant agents of human disease. The arboviruses that we discuss have been found
to infect humans—serological evidence of host immune responses has been found. It is implicitly
understood that a virus that is associated with human infection could potentially be a pathogen,
i.e. it may have been causing a disease, the aetiology of which is so far unknown, or it could cause
disease under certain circumstances, such as in immunocompromised persons, during pregnancy,
or upon secondary infection. We also consider what action should be taken to confront the potential
threat of such neglected indigenous arboviruses in the particular environment of Northern Australia.
This is a largely tropical climatic region where both mosquito vectors and vertebrate reservoir hosts
are abundant and in which a future major expansion of a human population primarily comprising
relocating, previously non-exposed individuals, is predicted.

2. Arbovirus Ecology and Epidemiology

Most arboviruses studied thus far are transmitted in zoonotic cycles, i.e. the principal vertebrate
host is an animal other than human [7]. The distribution of an arbovirus is restricted to areas inhabited
by vertebrate hosts that serve as its reservoirs and vectors. Thus, many arboviruses have clearly
defined ecological zones, while some, distributed globally, cause diseases of considerable public health
and veterinary importance (reviewed in [8]). Examples of the latter include dengue (worldwide,
approximately between the Tropics of Cancer and Capricorn), yellow fever (Africa and South America),
Japanese encephalitis (eastern and southeast Asia and Australia), West Nile encephalitis (North
America, Europe and the Middle East), chikungunya (Asia, Central and South America, parts of the
Pacific), eastern and western equine encephalitis (North America), and Venezuelan equine encephalitis
(South America). Due to focal, global, environmental, societal and/or demographic changes, many of
these viruses have either emerged or re-emerged in the first years of this century [9–11].

Notably, the non-segmented, positive-strand RNA viruses belonging to the genus Flavivirus,
family Flaviviridae, or genus Alphavirus, family Togaviridae, are the aetiological agents of several
major global infectious diseases such as dengue, yellow fever, chikungunya and Zika. Other related
pathogens belong to the segmented, negative strand RNA Orthobunyavirus genus. The vast majority
of arbovirus-associated epidemics occur in the tropics and subtropics due to the prevailing hot and
humid climate which is conducive to the habitation of vector mosquitoes, including members of
Aedes, Anopheles, Culex, Haemagogus, and Ochlerotatus genera [12]. To this growing list of real or
potential public health threats posed by arboviruses Mayarocan now be added, identified recently
in the Amazon and other tropical regions of South America [13]. The issue of whether neglected
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Australian arboviruses similarly present an emerging, hitherto unrecognised challenge to humans is a
subject of discussion.

3. Arboviruses in Australia

Australia is the sixth largest country in the world by area, the largest country without land borders,
and the largest country overall in the southern hemisphere. Early European settlement, urbanisation,
increased sea and air travel and trade, globalisation, pathogen evolution, and elevated mean global
temperature are some of the factors that may have influenced the introduction and expanded
geographical reach of infectious diseases, including those caused by arboviruses, in Australia [14].
Furthermore, Australia spans tropical and subtropical latitudes, where arboviruses have access to an
abundant source of both reservoir hosts and vectors.

While only 13 of the more than 75 identified arboviruses indigenous to Australia are currently
known to cause disease in humans, information is scarce as to the potential human pathogenicity of
most others [15]. Of those that are recognised to cause infection in humans in Australia (Figure 1),
the alphaviruses RRV and BFV are the most well-known, infection with either of which triggers an
incapacitating and occasionally chronic polyarthritis with accompanying myalgia and lethargy [16,17].
The flaviviruses MVEV and KUNV cause encephalitis, an acute inflammation of the brain [18].

Infection with the flavivirus dengue (DENV) is typically characterised by a febrile illness but
a small proportion of cases manifest as a life-threatening haemorrhagic fever or shock syndrome
(reviewed in [19]). DENV may be acquired outside Australia and brought back by returning travellers,
a significant proportion of whom are hospitalised with unrecognised warning signs of severe disease.
As intercontinental travel from Australia, particularly to Asia, continues to increase, in order to avert
serious outcomes it is crucial that clinicians anticipate, and can recognise and manage, such tropical
infectious diseases. While DENV has a transglobal distribution, local outbreaks are also reported
regularly in far north Queensland, with foci in the vicinities of Cairns and Townsville [20], where it is
well recognised by the resident population as a not insignificant threat to their health [21].

Several other arboviruses that are indigenous to Australia (Figure 1), such as the alphavirus
Sindbis (SINV), the flaviviruses Alfuy (ALFV), Edge Hill (EHV), Kokobera (KOKV) and Stratford
(STRV), and the orthobunyaviruses Gan Gan (GGV), Kowanyama (KOWV) and Trubanaman (TRUV),
are recognised through eliciting mild symptoms of febrile illness, corroborated by detection of serum
antibodies to viral antigens, as being able to infect humans [17,22,23] (reviewed in [5]). There are
occasional reports of human disease caused by SINV, EHV and KOKV [24–26], but these are not
currently included individually in the list of Australian national notifiable diseases by disease type [27].
The magnitude of each of these arboviral infections raises the question as to what is an appropriate
threshold for recording cases for the purposes of annual notification at state/territory and national
levels. SINV is reportedly the arbovirus most frequently isolated from mosquitoes in Australia [23],
but as an alphavirus it does not come under the ‘flavivirus infection (unspecified)’ umbrella presently
used for nationwide notification [27].

Other arboviruses have been isolated from arthropods in the Australia-Pacific region [15]. These
include the newly identified Bamaga (BGV) and Fitzroy River (FRV) flaviviruses [28,29], which are
closely related to the disease-causing yellow fever virus (YFV) and EHV, but for each of which there is
scant information about its capacity to infect humans or to cause disease in humans.



Trop. Med. Infect. Dis. 2017, 2, 55 4 of 13
Trop. Med. Infect. Dis. 2017, 2, 55 4 of 12 

 

 
Figure 1. Geographical distribution of Australian indigenous arboviruses known to cause human 
infection. Use of red font for each named virus indicates the state or territory from which that virus is 
known to be recovered and the notifiable disease for which it is listed in the Australian National 
Notifiable Disease Surveillance System (ANNDSS). Use of amber font for each named virus indicates 
the reported recovery of that virus from mosquitoes during mosquito surveillance but that the 
corresponding virus-associated disease is not currently recorded in the ANNDSS. Named 
arboviruses: ALFV—Alfuy; BFV—Barmah Forest; DENV—Dengue; EHV—Edge Hill; GGV—Gan 
Gan; KOKV—Kokobera; KOWV—Kowanyama; KUNV—Kunjin; MVEV—Murray Valley 
encephalitis; RRV—Ross River; SINV—Sindbis; STRV—Stratford; Trubanaman—TRUV. The land 
mass above the horizontal green line, which marks the southern edge of the Pilbara Range (latitude 
24° S, just south of the Tropic of Capricorn, 23.52° S), approximates to the region termed Northern 
Australia. States and territory: NSW—New South Wales; NT—Northern Territory; QLD—
Queensland; SA—South Australia; TAS—Tasmania; VIC—Victoria; WA—Western Australia. 

4. Undifferentiated Febrile Illness and Pyrexia of Unknown Origin 

Fever, defined as an abnormally high body temperature (>100°F, 37.8°C), is a common symptom 
of patients seeking healthcare. Due to the non-specific clinical manifestations and a lack of positivity 
in initial laboratory testing, the cause of fever may not be identified. When the onset of fever is acute 
and no cause can be found after taking a full history and physical examination of the patient, it is 
called a UFI. If the UFI continues, it is classified as a pyrexia of unknown origin (PUO), defined in 
1961 as an illness of more than three weeks’ duration, with fever greater than 101°F (38.3°C) on several 
occasions, the cause of which is not identified after one week of in-hospital investigation [30]. Since 
this description does not include many self-limiting viral diseases, it was revised in 1991 [31]. The 
newer definition of PUO has four categories: classical; hospital-acquired; neutropenic (immune-
deficient); and HIV-associated. Also, the revision proposed a minimum of three days of 
hospitalisation or at least three outpatient visits before this diagnosis may be made. Most commonly, 
PUO is the result of infection, malignancy, or non-malignant inflammatory diseases [32].  

  

Figure 1. Geographical distribution of Australian indigenous arboviruses known to cause human
infection. Use of red font for each named virus indicates the state or territory from which that
virus is known to be recovered and the notifiable disease for which it is listed in the Australian
National Notifiable Disease Surveillance System (ANNDSS). Use of amber font for each named virus
indicates the reported recovery of that virus from mosquitoes during mosquito surveillance but
that the corresponding virus-associated disease is not currently recorded in the ANNDSS. Named
arboviruses: ALFV—Alfuy; BFV—Barmah Forest; DENV—Dengue; EHV—Edge Hill; GGV—Gan
Gan; KOKV—Kokobera; KOWV—Kowanyama; KUNV—Kunjin; MVEV—Murray Valley encephalitis;
RRV—Ross River; SINV—Sindbis; STRV—Stratford; Trubanaman—TRUV. The land mass above the
horizontal green line, which marks the southern edge of the Pilbara Range (latitude 24◦ S, just south of
the Tropic of Capricorn, 23.52◦ S), approximates to the region termed Northern Australia. States and
territory: NSW—New South Wales; NT—Northern Territory; QLD—Queensland; SA—South Australia;
TAS—Tasmania; VIC—Victoria; WA—Western Australia.

4. Undifferentiated Febrile Illness and Pyrexia of Unknown Origin

Fever, defined as an abnormally high body temperature (>100 ◦F, 37.8 ◦C), is a common symptom
of patients seeking healthcare. Due to the non-specific clinical manifestations and a lack of positivity
in initial laboratory testing, the cause of fever may not be identified. When the onset of fever is acute
and no cause can be found after taking a full history and physical examination of the patient, it is
called a UFI. If the UFI continues, it is classified as a pyrexia of unknown origin (PUO), defined in 1961
as an illness of more than three weeks’ duration, with fever greater than 101 ◦F (38.3 ◦C) on several
occasions, the cause of which is not identified after one week of in-hospital investigation [30]. Since this
description does not include many self-limiting viral diseases, it was revised in 1991 [31]. The newer
definition of PUO has four categories: classical; hospital-acquired; neutropenic (immune-deficient);
and HIV-associated. Also, the revision proposed a minimum of three days of hospitalisation or at
least three outpatient visits before this diagnosis may be made. Most commonly, PUO is the result of
infection, malignancy, or non-malignant inflammatory diseases [32].
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5. UFI/PUO as a Health Problem

Between 20% and 60% of UFI cases are attributed to infections [31,33–35]. The aetiological agents
of UFI and PUO vary according to the geography and demography of the patients. For instance,
in post-industrial countries, self-limited viral infections and infections with bacteria such as Brucella
spp., Leptospira spp., and the atypical mycobacteria are major causes of UFI/PUO. In economically
emerging nations, UFI/PUO include illnesses caused by a diverse range of human pathogens including
Mycobacterium tuberculosis, Neisseria meningitidis, systemic Salmonella enterica infections, Plasmodium
spp., DENV, Epstein-Barr virus, cytomegalovirus, and hantaviruses [36–38].

In a landmark prospective study in Belgium of patients hospitalised with febrile illness, depending
on if and when a final diagnosis was in fact established, an estimated 12–35% were assessed to have died
from PUO-associated complications [39]. The cause of the fever remained obscure in 48% of patients
with episodic fever, compared to 26% of patients with continuous fever [39]. Prolonged febrile illnesses
remain a diagnostic challenge; about one-third to half of PUO cases remain undiagnosed [40–42].
In developing countries, a diagnosis of UFI/PUO may result from a lack of laboratory resources
but even in a high-income nation like Japan that has excellent diagnostic tools, 28.9% of PUO goes
undiagnosed [43].

6. Diagnosis of Australian Arboviral Infection

For almost a decade after the identification of RRV in 1959 [44], only small numbers of patients
were identified as having a clinical infection with this agent, because virological and serological
diagnostic testing was available only within a research framework using an in-house test. Following
the development of a commercial enzyme-linked immunosorbent assay (ELISA) to detect anti-RRV
immunoglobulin (Ig)M antibody [45], the number of patients diagnosed annually rose to between
4000 and 6000 [46]. The number of localities from where RRV cases were reported increased almost
two-fold from 1985 onwards [47].

Following its identification from northern Victoria in 1974 [48], a similar experience occurred
with the diagnosis of BFV infection and its annual notification [49]. Epidemic polyarthritis, the now
outmoded term that was then used to describe the autoimmune conditions associated with both
RRV and BFV, became a nationally notifiable disease in 1990 [46]. While typically there are around
4500 notifications of epidemic polyarthritis per annum, 9554 cases were reported in 2015 [50].

Clinical infections with KUNV [51–54], EHV [25], GGV and KOKV [22,26] can now be confirmed
in specialised laboratories, but only suspected KUNV infected cases undergo screening as standard.

7. A Causal Link between Neglected Arboviral Infections and UFI/PUO?

It has been proposed that arboviruses may be responsible for some cases of UFI observed in
Australia [55]. While remarkably few systematic studies of UFI or PUO in an Australian setting have
been undertaken, those that have been performed suggest that a large proportion of UFI/PUO cases
remain undiagnosed (reviewed in [5]). This is despite the now-routine commercial testing for RRV
and for BFV. A three-year retrospective study from 2008–2011 of a tertiary referral hospital in North
Queensland found 58.8% of patients with UFI had no definitive diagnosis [56]. Neglected indigenous
arboviruses may have infected humans regularly for decades, thereby being responsible for at least
some of these UFI cases in this tropical north region. The possibility of arbovirus pathogens from
Northern Australia causing more wide-scale outbreaks, such as the notified incidences of MVEV in
2001, 2008 and 2011, and the KUNV equine outbreak of 2011 in south-eastern Australia [57], should
also be considered. While the horse-derived WNVNSW2011 strain of KUNV not only differed to,
but was more virulent than, other KUNV strains that circulated previously in Australia [57], it may be
argued that the ecology of this arbovirus changed alongside the emergence of virulence.

The introduction of commercial screening for RRV and BFV led to a highly significant rise in their
respective reported rates of infection when compared to historical records [46,49]; these conspicuous
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examples of unforeseen prevalence may also apply to other arboviral infections. Hence, it is possible
that further, neglected, arboviruses—for which diagnostic tests are not yet available outside research
laboratories—are a major underlying cause of undiagnosed UFI/PUO cases in Australia.

8. Transmission Cycles of Australian Arboviruses

Over several decades, many arboviruses have been identified in Australian mosquitoes, ticks,
and biting midges [5,15]. Little is known about their transmission cycles, their pathogenicity for
humans, or their potential to cause epidemics. Although large marsupials such as kangaroos and
wallabies are considered potential reservoirs for RRV [58,59] and BFV [59,60], and waterbirds such
as herons and egrets are regarded as hosts for MVEV, ALFV and SINV [61,62], there are many other
arboviruses whose relationship with reservoirs and vectors, and their role in human infections or
diseases, are yet to be defined.

While the epidemiology of these arboviruses is poorly understood, it is likely that they are
maintained in zoonotic cycles rather than by human-to-human transmission. It may be that these
neglected viruses are harboured by apathogenic, persistent infections in native Australian reservoir
mammals and birds, with occasional spillover into humans [5].

9. Northern Australia’s Climate Favours Arboviruses

Many of Australia’s indigenous arboviruses that are known to cause human disease have been
recovered from Northern Australia (Figure 1). Since it had no previous political purpose, the term
‘Northern Australia’ was defined formally only very recently with the passing of the Northern Australia
Infrastructure Facility Act 2016 [63]. Although there are several minor qualifications, broadly speaking
it is considered to comprise the Northern Territory and the areas of Queensland and Western Australia
that are north of the Tropic of Capricorn (latitude 23.5 degrees south of the Equator).

The northern coastal fringe of the country is made up of northern Queensland, the Northern
Territory, and the remote Kimberley and Pilbara Ranges of Western Australia. Uniquely for Australia,
the region experiences a tropical, often monsoonal, wet season during the southern hemisphere
summer months of November to April each year [59,64]. Moreover, if the mean annual air temperature
continues to rise as a consequence of global climate change, the spatial range of mosquito species able
to transmit arboviruses is likely to broaden [65]. While the presence of vectors does not necessarily
mean the emergence of human pathogens, these factors contribute to favourable breeding conditions
for mosquito species that are especially well-suited to maintaining arboviruses of potential public
health importance [66].

10. Potential Public Health Threat

The Australian Commonwealth Government is actively promoting increased settlement and
economic activity in the currently less populated areas that lie to the north of the Tropic of Capricorn
as an integral part of its ‘Developing Northern Australia’ white paper for massive infrastructure
investment in this region over the coming decades [67]. Although it comprises nearly half of the total
land mass of the country, Northern Australia includes only about one-quarter of the current Australian
population. It is therefore considered to be a region of largely untapped potential that is ripe for 21st
century population growth outside of the urban densification in the major metropolitan conurbations
to the south [67]. An incentivised expansion of the industrial, business and agricultural development
of this vast tract of land is predicted, with an increase in the residential population from the current
1.33 million to up to 2.9 million people by 2050 projected [68]. The anticipated increased human activity
in many areas of the tropical north of Australia will lead to fast-growing urbanisation that places
relocated immune-naïve people into closer proximity to native reservoir wildlife, as well as to vector
mosquitoes, for Australian indigenous arboviruses.

The growth in agriculture and other economic developments proposed for these localities will
inevitably alter the ecology of the native animals and birds that act as reservoir hosts for numerous
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neglected Australian arboviruses, as well as affecting the mosquito vectors [5]. Additionally, sudden
climatic and environmental variations [69], including the high rainfall, more frequent cyclones and
resultant increased intensity of flooding associated with outbreaks of MVEV [70] and RRV [71],
have occurred with alarming regularity in recent years [72], potentially generating an ecological
expansion of Australian arboviruses. These circumstances therefore create a perfect storm for greater
prevalence of infection with neglected Australian arboviruses, particularly in the tropical north of
the country. It is perhaps worth considering that notable close relatives of these many indigenous
arboviruses have already caused global pandemics in recent decades [73].

11. A Call to Arms for Novel Diagnostic Tests and Therapy Targets

In this circumstance, therefore, there is a pressing obligation to determine the geographical range
and true disease burden of neglected indigenous arboviruses in Northern Australia. This may be
accomplished by implementing a scheme of systematic, continual surveillance of vectors, reservoirs
and viruses in order to address where, when, and how virus transmission to humans occurs as
well as building up a picture of its likely impact. This may also be progressed through performing
routine testing by designated public health laboratories of a systematic sub-sample of UFI/PUO
patients for evidence of recent infection with neglected arboviruses as well as other potential causative
agents of UFI/PUO. Furthermore, to screen patients with UFI/PUO and other suspected cases of
arboviral infection, in addition to serology testing, the development of novel diagnostic tools should
be given high research priority. Already available methods of detection of pan-alphaviruses and
pan-flaviviruses include IgM antibody-based ELISA, quantitative reverse transcription PCR (RT-qPCR),
and microarray [74–76]. Other state-of-the-art methods, for example RNA-seq metagenomics, which
reveal an individual’s virome [77], could also be applied to this setting.

Notwithstanding the striking exceptions of YFV, Japanese encephalitis virus, and tick-borne
encephalitis virus [78], an obstacle to the successful control of infections caused by arboviruses is the
lack of effective, authority-registered vaccines [79]. Strenuous efforts to yield a commercially available
vaccine against DENV are ongoing but these are exacerbated by media-fuelled concerns over suitability
and side-effects in pilot immunisation programs [80,81]. Also, the phenomenon of antibody-dependent
enhancement of infection of humans that has been shown for many flaviviruses and alphaviruses [82]
is an impediment to any future potential consideration of therapeutic antibodies as an alternative
treatment [83]. Given this scenario, there is a dire need to accelerate the quest for novel options for
both diagnosis and therapy.

Therapy regimens that are syndrome-based are currently common practice, frequently informing
the prescription of antibiotics in empirical treatment. Such antibacterial pharmaceutical agents
are ineffective when the UFI/PUO is caused by arboviruses; indeed, their inappropriate use may
contribute to the worsening problem of antimicrobial resistance. Early, on-site, and rapid screening
for neglected Australian arboviruses could help to identify the cause of infection and thus reduce the
often ill-informed perceived obligation to provide antibiotics. Adoption of this measure would also
expedite early detection of outbreak foci, thereby facilitating a prompt, efficient and proportionate
response. This would have the effect of limiting the spread of disease, as hindsight suggests public
health policymakers could have achieved better during the recent epidemic in Latin America of the
flavivirus Zika [84,85].

The existing funding model for diagnostic pathology services in Australia does not foster requests
by a general practitioner or hospital clinician to test for infection with a little-known arbovirus, even if
they are aware of its possible role in disease. Hence, many UFI/PUO cases are not diagnosed correctly
as the treating clinicians may consider the cost of testing is not warranted or because samples for
testing were collected at an inappropriate time or from an incorrect site. They also may go undiagnosed
on account of the causative agent being novel, not known to cause human disease, or because there are
no routine diagnostic tests available.
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For cases of UFI/PUO, for reasons of both practical feasibility and cost, it is not a realistic
proposition to recommend multiple, individual laboratory tests in order to detect most or all neglected
arboviruses. In light of this, development of a generic assay that would provide for many pathogens
and which may be applied in a broad range of settings should be prioritised. For example, routine
testing by designated public health laboratories of a two-step protocol could be envisaged, starting
with pan-flavivirus and pan-alphavirus IgM antibody rapid tests and, as required of a sub-sample of
patients, followed by confirmatory detection of viral RNA by RT-qPCR [76]. Along with the ability to
screen for multiple arboviruses in a short space of time there is a saving in resources for the testing
laboratory by virtue of a quicker diagnosis. This means that any future decision not to request sample
analysis may ultimately prove a false economy.

12. One Component of a ‘One Health’ Approach to Combating Arboviruses

The One Health approach is a currently promulgated systems-based movement in which
biomedical researchers and professionals in public health, veterinary medicine, and ecology combine
their expertise in order to monitor and control the threat of infectious diseases and determine how
pathogens spread among people, animals, and the environment [86]. Involvement of biomedical
researchers, pathologists, and clinicians in this transdisciplinary model may lead to more efficient
diagnosis of, and improved outcomes for, patients with arboviral infections.

In order to achieve success in preventing outbreaks of neglected arboviruses within the context of
Northern Australia, it will be necessary to engage all relevant stakeholders, from federal, state and
local authorities, via tertiary care and general practice centres, to local neighbourhoods, schools,
and households. Risk of outbreak is always amplified when people are unaware of a disease or
its route of transmission. As with the ongoing threat posed by DENV in Queensland [21], raising
awareness levels among residents of regional communities is an extremely important component of a
future public health policy for Northern Australia. Well-targeted information campaigns would aim to
increase individual knowledge of the symptoms and possible sequelae of UFI/PUO and, with regard
to mosquito transmission of arboviral infections, personal preventive methods and vector control.

13. Conclusions and Future Directions

For the neglected arboviruses that are indigenous to Australia there is an inadequate
understanding of their distribution, epidemiology, and transmission ecology. Information is also
lacking with respect to theimmunopathology and true disease burden, including undiagnosed cases
UFI/PUO, which they cause. This knowledge gap exists despite the potential for these neglected
arboviruses to become significant human pathogens in the rapidly developing region of Northern
Australia, thereby presenting a major challenge to the public health of the nation, and conceivably
also globally [87]. Future research into the areas discussed herein, combined with production of
diagnostic tools to include first-line screening of a suite of indigenous arboviruses, would help greatly
to limit the impact of this emerging threat to human health and wellbeing in the tropical north of
Australia. Preferably, this would form a key component of a holistic, transdisciplinary strategy to
improve environmental health in order to prevent mosquito-borne diseases in Northern Australia [88].
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