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Abstract 

Background: Breast cancer (BC) is the most frequently diagnosed cancer in women. Altering glucose metabolism 
and its effects on cancer progression and treatment resistance is an emerging interest in BC research. For instance, 
combining chemotherapy with glucose-lowering drugs (2-deoxyglucose (2-DG), metformin (MET)) or glucose starva-
tion (GS) has shown better outcomes than with chemotherapy alone. However, the genes and molecular mechanisms 
that govern the action of these glucose deprivation conditions have not been fully elucidated. Here, we investigated 
the differentially expressed genes in MCF-7 and MDA-MB-231 BC cell lines upon treatment with glucose-lowering 
drugs (2-DG, MET) and GS using microarray analysis to study the difference in biological functions between the glu-
cose challenges and their effect on the vulnerability of BC cells.

Methods: MDA-MB-231 and MCF-7 cells were treated with 20 mM MET or 4 mM 2-DG for 48 h. GS was performed 
by gradually decreasing the glucose concentration in the culture medium to 0 g/L, in which the cells remained with 
fetal bovine serum for one week. Expression profiling was carried out using Affymetrix Human Clariom S microarrays. 
Differentially expressed genes were obtained from the Transcriptome Analysis Console and enriched using DAVID and 
R packages.

Results: Our results showed that MDA-MB-231 cells were more responsive to glucose deprivation than MCF-7 cells. 
Endoplasmic reticulum stress response and cell cycle inhibition were detected after all three glucose deprivations in 
MDA-MB-231 cells and only under the metformin and GS conditions in MCF-7 cells. Induction of apoptosis and inhibi-
tion of DNA replication were observed with all three treatments in MDA-MB-231 cells and metformin-treated MCF-7 
cells. Upregulation of cellular response to reactive oxygen species and inhibition of DNA repair mechanisms resulted 
after metformin and GS administration in MDA-MB-231 cell lines and metformin-treated MCF-7 cells. Autophagy 
was induced after 2-DG treatment in MDA-MB-231 cells and after metformin in MCF-7 cells. Finally, inhibition of DNA 
methylation were observed only with GS in MDA-MB-231 cells.

Conclusion: The procedure used to process cancer cells and analyze their expression data distinguishes our study 
from others. GS had the greatest effect on breast cancer cells compared to 2-DG and MET. Combining MET and GS 
could restrain both cell lines, making them more vulnerable to conventional chemotherapy.
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Background
Breast cancer (BC) is the most common female malig-
nancy and the second leading cause of cancer-related 
death in women [1], with more than 500,000 deaths 
worldwide each year [2]. Based on molecular marker 
expression, BC is divided into subtypes as follows: hor-
mone receptor (HR)-positive subtype (estrogen receptor 
(ER +) or progesterone receptor (PR +)), human epider-
mal growth factor receptor 2 overexpression subtype 
(HER2 +), and triple-negative breast cancer (TNBC) 
(ER  −  , PR  −, HER2  −) [3]. The subtypes of TNBC 
present as basal-like 1 (BL1), basal-like 2 (BL2), immu-
nomodulatory (IM), mesenchymal (M), mesenchymal 
stem-like (MSL), and luminal androgen receptor (LAR) 
[4]. This classification into subtypes is useful when select-
ing the most appropriate therapy.

For patients with HR-positive BC, endocrine therapy 
is the preferred treatment approach. The most common 
adjuvants are the estrogen modulator Tamoxifen and the 
aromatase inhibitors (letrozole, anastrozole, and exemes-
tane), while chemotherapy is reserved for patients at risk 
of visceral crisis or with endocrine resistance [5]. For 
patients with HER2-positive BC, the combination of an 
anti-HER2 monoclonal antibody (Trastuzumab, Pertu-
zumab) with chemotherapy is the standard treatment [6]. 
Compared with other types of breast cancer, TNBC is the 
most difficult subtype to treat because it lacks appropri-
ate targets for molecular therapy; therefore, chemother-
apy remains the main approach to first-line treatment of 
TNBC [7]. However, some cases of BC develop resist-
ance to chemotherapies or fail to respond to conventional 
therapies due to altered tumor glucose metabolism [8]. 
This aberrant metabolism is characterized by hyperac-
tivated aerobic glycolysis, a phenomenon coined “War-
burg effect” [9], and decreased oxidative phosphorylation 
(OXPHOS). Controlling these phenomena using meta-
bolic inhibitors such as the antidiabetic agent metformin 
(MET) and 2-deoxyglucose (2-DG), or by inducing glu-
cose starvation (GS) should therefore be a promising 
approach to overcome therapy resistance [10].

The combination of chemotherapeutic drugs and 
MET is being clinically tested for efficacy in the treat-
ment of cancer. The credibility of MET use is related to 
MET’s ability to target cancer cell metabolism and inter-
rupt tumor progression [11]. MET-mediated inhibition 
of mitochondrial respiratory chain complex 1 increases 
levels of adenosine monophosphate (AMP), which acti-
vates AMP-activated protein kinase (AMPK). The latter 

activation in turn inhibits the mammalian target of Rapa-
mycin (mTOR), which is responsible for cell prolifera-
tion [12]. In addition, AMPK activation suppresses many 
metabolic processes (gluconeogenesis, protein and fat 
synthesis, glycolysis, and fatty acid beta-oxidation) [13]. 
It also induces cell cycle arrest and apoptosis through 
down-regulation of the tumor protein p53 (p53) and 
exerts anti-inflammatory actions by inhibiting nuclear 
factor kappa B (NF-κB) pathways [14].

The anticancer agent 2-DG is also considered to target 
the metabolic homeostasis of a cell. Clinical trials have 
suggested that combining 2-DG with chemotherapies 
overcomes drug resistance by eliminating breast cancer 
stem cells (BCSC)-induced resistance [15]. This glucose 
decoy is phosphorylated by hexokinase 2 (HK2) to inhibit 
glycolysis, resulting in adenosine triphosphate (ATP) 
depletion and inducing BC cell death [16]. 2-DG can alter 
the redox state of a cell, leading to apoptosis. It can also 
contribute to the inhibition of protein glycosylation, lead-
ing to endoplasmic reticulum (ER) stress and activation 
of the unfolded protein response (UPR) [17].

Glucose addiction in cancer is linked to hyperprolif-
eration [18]. Inhibition of glycolytic activity via GS could 
be a potential therapeutic approach [19]. Clinical stud-
ies have shown a correlation between caloric intake and 
breast cancer etiology. In addition, a lower incidence of 
cancer and a longer life span in men are observed after 
a low-sugar diet. GS inhibits energy-dependent signal-
ing pathways, including the insulin-like growth factor-1/
phosphoinositide 3-kinase/protein kinase B/mTOR 
(IGF-1/PI3K/Akt/mTOR) pathway, and activates AMPK 
resulting in down-regulation of glycolysis activity and 
cell proliferation [20]. In addition, GS increases ketone 
bodies in the bloodstream, which protects mitochondria 
from inflammation and reactive oxygen species (ROS) 
during cancer treatment [21]. It also decreases lactate 
production to prevent intracellular alkalinization [22].

Several microarray studies have analyzed the tran-
scriptomic response of cancers, specifically breast 
cancer, to different modalities of targeting glucose 
metabolism. Publications experimenting with anti-glyc-
olytic approaches (including 2-DG, MET, and GS) have 
shown upregulation [23–26] or downregulation [27–36] 
in recurrent pathways and functions, including cell cycle; 
DNA replication, damage, repair; chromosome organiza-
tion; nuclear division; and antigen processing and pres-
entation via Major histocompatibility complex class I 
(MHC class I).

Keywords: Breast cancer, Triple-negative breast cancer, Hormone receptor-positive subtype, 2-deoxyglucose, 
Metformin, Glucose starvation, Microarray
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BC cells, among other cancers, are known to depend 
mainly on glucose to proliferate. This phenomenon is 
being exploited to develop new cancer treatments which 
may include glucose-lowering drugs and/or a low glu-
cose diet in their protocols. In this study, we decided to 
investigate the difference in biological functions between 
glucose-lowering drugs (2-DG, metformin) and glucose 
starvation (GS) by analyzing differentially expressed 
genes (DEGs) in estrogen and progesterone receptor 
positive (MCF-7) and triple-negative (MDA-MB-231) BC 
cell lines using microarray analysis. What distinguishes 
our study from others is the procedure used to process 
cancer cells and analyze their gene expression data. All 
reviewed cell culture studies using glucose challenge as 
an anticancer approach starved cancer cells of glucose for 
up to 48 h, which differs from our GS that lasted for two 
weeks. In addition, we performed two data mining pro-
tocols using different DEG identification and functional 
enrichment methods to obtain more robust results, and 
we identified common up-and down-regulated functions 
between cell lines and between treatments within each 
cell line.

Methods
Reagents
2-Deoxy-D-glucose (2-DG), 1,1-dimethyl biguanide 
hydrochloride (Metformin), penicillin/ streptomy-
cin solution (100 ×  ), fetal bovine serum (FBS), trypsin 
solution, Dulbecco’s modified Eagle’s medium (DMEM) 
(Glucose-free, L-glutamine, phenol red, sodium pyru-
vate and sodium bicarbonate powder suitable for cell 
culture), Dulbecco’s modified Eagle’s medium high glu-
cose (DMEM, 4500  mg/L), Dulbecco’s modified Eagle’s 
medium low glucose (DMEM, 1000  mg/L) were bought 
and imported from Sigma-Aldrich (St. Louis, MO, USA). 
NucleoZol was purchased from MACHEREY–NAGEL 
(Bethlehem, PA, USA). GeneChip™ WT PLUS reagent kit 
was obtained from Thermo Fisher Scientific (Waltham, 
MA, USA).

Cell culture
BC cell lines MDA-MB-231 (ATCC ®HTB-26™) and 
MCF-7 (ATCC ®HTB-22™) were purchased from the 
American type culture collection (ATCC, Manassas, 
Virginia, USA). Cells were grown in DMEM 4500 mg/L 
glucose supplemented with 10% FBS and 1% penicillin/
streptomycin (100  ×  ) and treated with 20  mM MET 
or 4  mM 2-DG for 48  h. GS was executed by gradu-
ally decreasing the glucose concentration in the culture 
medium from 4.5, to 1, to 0.5 g/L, until a concentration of 
0 g/L was reached. All culture media were supplemented 
with 10% FBS and 1% penicillin/streptomycin (100 ×  ). 
Cells already maintained in medium containing 4.5  g/L 

glucose were transferred to another medium containing 
1 g/L glucose for 48 h and then maintained in 0.5 g/L glu-
cose for five days. After that, the cells were kept in a zero-
glucose medium for one week, with 10% FBS containing 
about 4.0 mmol/L of glucose, which is the average glyce-
mia in fasting individuals that mimics physiology, and 1% 
penicillin/streptomycin 100x. The culture medium was 
changed daily. Cells were maintained at 37 °C in a humid-
ified atmosphere, with 5% CO2.

RNA extraction and gene expression microarrays
Total RNA from three independent experiments (biologi-
cal replicates) was extracted using NucleoZol according 
to the manufacturer’s instructions. RNA concentration 
and A260/A280 ratio were determined using the Nan-
oDropTM 1000 spectrophotometer (Thermo Scien-
tific). RNA integrity was assessed by denaturing agarose 
gel electrophoresis (1%). One hundred ng of total RNA 
was reverse transcribed following the instructions of 
the  GeneChip® WT Plus Reagent Kit (Affymetrix, Inc., 
Santa Clara, CA, USA). Complementary RNA (cRNA) 
was synthesized and amplified through in vitro transcrip-
tion (IVT) using T7 RNA polymerase (using the Affym-
etrix WT cDNA Synthesis and Amplification Kit). The 
transcription was done having second-stranded cDNA 
as a template. After purification, the sense strand cDNA 
was synthesized by reverse transcription of the cRNA 
using 2nd cycle primers. The cRNA template was then 
hydrolyzed using RNase H., and 5.5 µg of ss-cDNA puri-
fied, fragmented, and labeled with biotin according to 
the Affymetrix WT End Labeling Kit. The ss-cDNA was 
then hybridized to the Clariom™ S human transcriptome 
array (Affymetrix, Inc., Santa Clara, CA, USA) at 45  °C 
for 17  h using the GeneChip™ 645 hybridization oven. 
The arrays were washed, stained on the FS450 Fluid Sta-
tion, and scanned using the GeneChip Scanner 3000 7G 
(Affymetrix, Inc., Santa Clara, CA, USA) according to the 
GeneChip™ User Guide. The raw CEL files containing the 
intensity data were extracted analyzed as described in the 
following.

Statistical and bioinformatics analysis
Gene analysis protocols
Two microarray data mining protocols were adopted, 
each using a different method for finding the differen-
tially expressed genes and for clustering functional terms. 
The findings from the two methods were then unified, 
which should add statistical certainty to our results. The 
gene expression data were extracted in each protocol and 
CEL files were generated using the Thermo Fisher Tran-
scriptome Analysis Console (TAC) with the SST-RMA as 
the normalization algorithm [37]. Each strategy has its 
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limitations but when combined they added valuable data 
checks to the final results.

Both protocols start by comparing, in TAC, three 
sets of treatment probes to three sets of control probes 
in each cancer cell line separately. Genes with a "Fold 
Change" (FC) <  −  2 or > 2 and having a p-value < 0.05 
were regarded as significantly differentially expressed. 
The interrogated genes were then divided into two 
groups: those that are upregulated (i.e., FC > 2) and those 
that are downregulated (i.e., FC < −  2). The "Volcano 
plots" for each comparison were exported simultane-
ously. In addition, the overlapping genes between the two 
cancer types in each of the upregulated and downregu-
lated treatments, and the set merging the latter two, were 
determined using "BioinfoGP Venny" [38]. This latter 
set will be referred to as the "overlap" set. The intersec-
tion of the sets of up-regulated and then down-regulated 
genes of the three treatments in each cell line, including 
the overlap, was also performed using Venny. Then, each 
subsection of the intersected Venn diagram was merged 
with its other pair. Another final set was queried from the 
comparison of controls in each of the two lines, still using 
the same FC criteria. A simplified schematic of the DEGs’ 
partitioning is shown in Fig. 1.

First protocol
The first protocol proceeded by composing the gene 
sets in the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) for gene enrichment 
analysis and clustering [39]. This method measures 
functional relationships between genes or terms by the 
kappa coefficient. Selected enrichment terms included 
the gene ontology (GO) GOTERM_ Biological Process 
(BP)_DIRECT, GOTERM_ Cellular Component (CC) 
_DIRECT, and GOTERM_ Molecular Function (MF) 
_DIRECT and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Reactome for pathway enrich-
ment. The DAVID functional annotation clustering tool 
was used, and clusters were exported to Excel files for 
further analysis. A significant number of non-clustered 
terms were relatable to the clustered terms. The latter 
had a p-value < 0.05 and a Benjamini p-value rapidly 
becoming insignificant with lower cluster "Enrich-
ment Scores". To account for the precedent, a geomet-
ric mean < 0.2 of the p-value of all terms of a cluster 
was considered sufficient to retain this cluster. On the 
other hand, if no significant cluster was found, the non-
clustered terms with a Benjamini p-value < 0.05 were 
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retained, and/or the analysis was checked with the 
results of the second protocol.

Second protocol
For the second protocol, the programming language for 
statistical computing "R" was used [40]. Comparison of 
treatments to controls within each cancer cell line, and 
between cell controls, was performed using significance 
analysis of microarray (SAM) [41]. The data type was set 
to "two-class unpaired" and the FC option "log scale" was 
checked. The "fitness factor ∆" was retained when it cor-
responded to a 90th percentile FDR < 0.005, a median 
FDR as small as possible, and "called genes" as high as 
possible (> 100 genes). The number of permutations was 
adjusted from a default value of 100 to 5000 when the 
cited requirements were not met. As a result, the ∆ and 
overall FDR values varied faintly around 0.5 and 0.002, 
respectively, and all gene FCs happened to be either 
< −  2 or > 2. The results were then exported with their 
"SAM plots" and the up-and down-regulated sets were 
extracted. Intersections were performed using packages 
that are part of R, "gplots" and "ggVennDiagram" [42, 
43], and the same sets were drawn, including those of the 
"overlap" cell line. GO and Reactome pathway enrich-
ment analyses were then performed on the sets, and 
terms with a Benjamini p-value < 0.05 were retained only. 
The R packages "AnnotationDbi", "clusterProfiler" and 
"ReactomePA" were required for gene enrichment [44–
46]. The terms were then converted into three semantic 
similarity matrices and 1 gene overlap similarity matrix, 
namely three for GOs and one for Reactome respectively. 
These matrices were subjected to "binary cut" clustering 
using "simplifyEnrichment" [47], as recommended by the 
software authors. The results were ordered and exported 
for analysis. It should also be noted that binary cut is not 
recommended for KEGG terms, which were covered by 
the first protocol.

Cluster analysis
In each protocol, clusters in the merged set (i.e., contain-
ing both up-and down-regulated genes) were labeled 
"up-/down-regulated" based on their cluster matches 
in the analyzed up-or down-regulated sets. It should 
be noted that the analysis of the subsets resulting from 
the intersection of the three treatments was performed 
using only BP GO and Reactome, and only common 
genes between treatments were analyzed. The previous 
decisions were made to avoid redundancy. Finally, the 
results from both methods were unified and presented 
as-is in this paper. The BP GO and Reactome clusters 
provided by the second protocol, using binary cluster-
ing, best summarizes our results and so they were visu-
alized using diagrams showing the statistical significance 

of the clusters, outlined by the most relevant term. Bar 
plots for the precedent data and others showing DEGs 
were constructed using "cowplot," "ggplot2," and "dplyr" 
[48–50]. Apple’s "Pages" application was useful for repre-
senting intersections in the Venn diagrams, which are not 
to scale. BP GO heat maps for the main comparisons (i.e. 
treatments vs. controls) were constructed from the data 
provided by the second method using "simplifyEnrich-
ment" with binary clustering as the default method.

Results
The analysis was performed on two BC cell lines, MDA-
MB-231 and MCF-7. DEGs were identified between the 
controls of the two cell lines, the controls and treatments, 
and between treated cells, (i.e., 2-DG, MET, or glucose-
starved cells). DEGs were determined using TAC or 
SAM. DEGs were visualized either on a volcano or SAM 
plot (Fig.  2a, b) (only the representation of MDA-MB-
231-GS versus the MDA-MB-231 control is shown). The 
lists of DEGs and the others volcano and SAM plot rep-
resentations are shown in Additional file 1: Table S1. Bio-
logical significance was extracted from the gene lists by 
systematically enriching their DEGs with GO and path-
way terms (KEGG and Reactome for DAVID, only Reac-
tome for binary clustering). The top enriched clusters are 
only described in this section. The comparison between 
the cell line’s controls can be reviewed with Additional 
file 2 and Additional file 3: Figure S1.

MDA‑MB‑231 cell line
Regulation with 2‑DG
For the MDA-MB-231 cell line, the comparison of 2-DG-
treated cells with the control (Fig. 3a) revealed that most 
clusters are up-regulated and very few are down-regu-
lated. For the upregulated biological processes: response 
to stimulus (lipids, hormones); response to ER stress, 
and UPR (chaperone activation); cellular component 
localization (protein, vesicle-mediated); cell migration; 
immune system processes (antigen presentation, neutro-
phil degranulation, and toll-like receptors (TLRs) inter-
leukin (IL) pathway signaling); cell adhesion (laminin and 
proteoglycans); autophagy; protein phosphorylation and 
catabolism by ubiquitination; apoptotic processes; cell 
population proliferation; temperature homeostasis; and 
organization of extracellular components (collagen and 
hemidesmosome). These processes were found to recruit 
molecular functions describing protein binding, enzymes 
(kinase, ubiquitin ligase), adhesion molecules (cadherin), 
and glutamate receptors. In addition, protein disulfide 
isomerase, mitogen-activated protein kinase (MAPK), 
and transmembrane transporter activities were observed. 
Cellular components included cytoplasmic vesicles 
and lysosomes, nucleus and ER network, ER lumen and 
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chaperone complex, cell adhesion foci, and the extracel-
lular region.

Down-regulated clusters show DNA replication, cell 
cycle (G1/S phase transition), and purine/pyrimidine 
metabolism.

Regulation with metformin
Also comparing MDA-MB-231 cells, DEGs in MET-
treated cells versus control (Fig.  3b) yielded mostly up-
regulated clusters with a few down-regulated clusters. 
For the up-regulated clusters, the biological processes 

 Downregulated   Upregulated  Insignificant

A B

Fig. 2 Microarray-based expression profiling. Volcano plot (on the left) and SAM plot (on the right) representation of the DEGs in a comparison 
of MDA-MB-231 cell line subjected to GS vs. non-treated cells. a The plot shows − log10 (p-value) (y-axis) and log2 (fold change) (x-axis). The 
significant cut-off was set to a p-value of 0.05 (− log10 (p-value) ≥  − 2, horizontal line), the biological cut-off was set to a fold change of ± twofold 
(log2 (fold change) <  − 1 and >  + 1, vertical lines). b The observed score is SAM’s  di score of every gene before the permutation process. The 
expected score is the score calculated after permutation. The pointed lines are the Δ thresholds we ought to choose
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were RNA biosynthesis and protein phosphorylation; 
stress and stimulus response (ROS, UPR, hormones) 
and associated signal transduction (cyclic adenosine 
monophosphate (cAMP); catalytic activity (ubiquitin-
protein transferase/ligase); apoptosis; cell migration; 
antigen processing and presentation via MHC class I; and 
transcription mediated by the forkhead box O (FOXO) 
transcription factor. Molecular functions were primarily 
binding mechanisms of “sequence-specific” transcrip-
tional DNA cis-regulatory regions, proteins such as tran-
scription (co-)factors or repressors, identical proteins 
(homo-dimerization), and kinases. Cellular components 
of activity included the extracellular exosome, focal adhe-
sion, and cell-substrate junctions.

For the down-regulated clusters, the biological pro-
cesses were DNA replication; DNA damage response 
and repair (resolution of D-loop structures, homolo-
gous DNA repair (HDR) by homologous recombina-
tion (HRR), Double-strand breaks (DSBs)) and cell cycle 
(cyclin-dependent G1/S phase transition); chromatin 
organization.

Regulation during glucose starvation
Finally, for glucose-starved cells (Fig.  3c), clustering 
also yielded mostly up-regulated with slightly more 
down-regulated clusters. For the up-regulated clusters, 
the biological functions were protein metabolism and 
modification process (post-translational modification 
(PTM), phosphorylation, proteolysis) and macromol-
ecule biosynthesis; RNA transcription by RNA polymer-
ase II; response to stress and stimulus (ER-related, UPR 
and chaperones); apoptosis; antigen processing and 

presentation via MHC class I; temperature homeosta-
sis; cell adhesion; and transforming growth factor-beta 
(TGFβ) receptor signaling. Molecular functions were 
mainly binding and homodimerization of "domain-spe-
cific" proteins (c-terminal) and binding of enzymes (pro-
tein kinase, GTPase and ubiquitin(-like) ligase), anions, 
misfolded proteins, ribonucleoprotein complexes, and 
cadherins. Cellular components include the cytoplasm 
(organelle membranes, mitochondria, vesicles and lys-
osomes, ER and its chaperone complex, Golgi apparatus), 
protein complexes (transferase, ubiquitin ligase), focal 
adhesions, and anchoring junctions.

For the down-regulated clusters, biological processes 
showed DNA methylation and replication; cell cycle 
(polo-like kinase 1 (PLK1) activity during the G2/M tran-
sition); chromatin and microtubule organization and 
nuclear fission; DNA damage response (Ataxia telan-
giectasia-mutated (ATM) and ataxia telangiectasia and 
Rad3-related (ATR) upregulation in response to replica-
tion stress); DNA repair (DSBs processing); protein and 
RNA cellular localization and chromosome segregation; 
NOTCH signaling; cholesterol biosynthesis (CB) via 
sterol regulatory element protein (SREBP) gene expres-
sion; FOXO-mediated transcription.

MCF‑7 cell line
Regulation with 2‑DG
As with the MCF-7 cell line, comparison of the 2-DG-
treated cells with the control (Fig.  4a) yielded only 
down-regulated clusters, in contrast to what the same 
comparison yielded for the MDA-MB-231 cell line. 
The biological processes were zinc ion homeostasis, 
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cell differentiation, innate immune response, and Rho 
GTPase-activated nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases activity.

Regulation with metformin
Comparison of MET versus control (Fig.  4b) yielded 
mostly down-regulated and a few up-regulated clusters. 
For the up-regulated clusters, the biological properties 
were: cellular responses to stress (ROS, and hormone); 
UPR (protein kinase R (PKR)-like ER kinase (PERK)-
mediated); ER stress (transcription factor 4 (ATF4)-
mediated gene activation) and signal transduction by the 
class mediator p53; cellular autophagy; apoptosis; and 
temperature homeostasis. No molecular function terms 
were shown due to the paucity of DEGs. Vesicles, lytic 
vacuoles, and cytoplasm were sites of activity.

For the down-regulated clusters, the biological func-
tions were: cell cycle (G1/S phase transition and 
associated P53 regulation); DNA damage response; 
chromosome segregation; DNA replication (DNA 
unwinding); RNA transcription via RNA polymerase II 
promoter; nuclear division, chromosome and cytoskel-
eton organization; cell population proliferation.

Regulation during glucose starvation
To end, glucose starvation versus control (Fig.  4c), 
resulted in predominantly up-regulated clusters and 
some down-regulated clusters. For the up-regulated 
clusters, the biological processes were cell response to 
ER stress (ATF4 activation), UPR (Activating transcrip-
tion factor 6-alpha (ATF6α) and X-box  1 (S) binding 
protein (XBP1[S]) activate chaperone genes, PERK-medi-
ated response, inositol-requesting enzyme 1 α (IRE1 
α)-mediated response); cell growth; transcription via 
RNA polymerase II; protein phosphorylation; serine 
family amino acid biosynthetic process; transmem-
brane transport of amino acids and hexoses (mediated 
by ABC family proteins) and cellular localization; metals 
and cations homeostatic process; and FOXO mediated 
transcription. Molecular functions include transmem-
brane transport of amino acids and anions, binding of 
misfolded proteins, kinases and ubiquitin (-like) ligases, 
homodimerization of proteins, and DNA binding of 
cofactors and transcription repressors. Cellular compo-
nents include the cytoplasm, the ER chaperone complex, 
and kinase complexes (cyclin-dependent holoenzyme, 
serine/threonine).

As for the down-regulated clusters, their biological 
functions were as follows: apoptotic process; mitotic 
cell cycle (G1/S phase transition and associated tran-
scriptional regulation by P53); and cell population 
proliferation.

Overlapping cell line
To show the functional similarities between the two BC 
cell types, a gene overlap sham cell line was established. 
Overlapping up-and down-regulated genes between the 
two cell lines were identified for each treatment. They 
were analyzed and cross-referenced in the same man-
ner as the true cell lines. It should be mentioned that the 
overlapping DEGs in the 2-DG treatment revealed too 
few genes, allowing no enrichment.

Regulation with metformin
Enrichment with MET resulted primarily in up-regulated 
clusters and some down-regulated clusters (Fig. 5a). For 
the up-regulated clusters, the biological processes were 
a cellular response to UPR, ER stress (intrinsic apop-
totic signaling), and other stimuli (glucocorticoids, hor-
mones, lipids, chemicals); and RNA biosynthesis and 
metabolic process. Molecular functions describe the 
binding of “sequence-specific” DSBs to DNA (transcrip-
tion regulatory region), and transcription factors. Cel-
lular components include the nucleus, chromosome, 
RNA polymerase II transcription regulator, and ubiquitin 
ligase protein complexes.

For the down-regulated clusters, the biological pro-
cesses were DNA replication; and cell cycle (chromo-
some segregation, cyclin E-associated events during the 
G1/S transition, Skp1-Cullin-1-F-box (SCF)-mediated 
degradation of p27/p21, S-phase kinase-associated pro-
tein (Skp2)).

Regulation during glucose starvation
DEGs in the GS primarily resulted in up-regulated clus-
ters (Fig. 5b). For these, the biological processes were as 
follows: ER stress response (ATF4-mediated gene acti-
vation) and UPR; protein folding in the ER (chaperone 
activation via ATF6α); apoptosis; protein phosphoryla-
tion (cyclin-dependent kinase and MAPK activity); RNA 
polymerase II biosynthesis in response to stress; trans-
ferase activity; cell localization (ER to cytosol transport, 
chromosome); cell motility and migration; and FOXO-
mediated transcription. Molecular functions describe the 
binding of misfolded proteins, carbohydrate derivatives, 
and anions; intramolecular disulfide isomerase activity 
(S–S bond transposition); chaperone-mediated protein 
folding; and transmembrane transport of neutral amino 
acids. Cellular components include the cytoplasm, gran-
ule (melanosome), ER smooth membrane, chaperone 
complex, ER quality control compartment, and cell ruffle 
and leading edge.

For the down-regulated clusters, the biological pro-
cesses were cell cycle arrest (p53 regulation of tran-
scription of genes involved in G2 cell cycle arrest, 
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PLK-mediated events, cyclin-associated events); chromo-
some segregation; response to DNA damage; and nuclear 
fission and organelle organization.

BP GO heat maps of the previous conditions are shown 
in Additional file 4: Figure S2, Additional file 5: Figure S3, 
and Additional file 6: Figure S4.

Intersection of DEGs
For this part, genes from the three treatments were 
intersected and Venn diagrams constructed. These give 
the number of intersected DEGs in the MDA-MB-231 
(Fig.  6a) and MCF-7 (Fig.  6b), and overlap cell lines 
(Fig.  6c). The gene lists are present in Additional file  7: 
Table S2, Additional file 8: Table S3, and Additional file 9: 
Table S4).

Intersection in the MDA‑MB‑231 cell line
Starting with the MDA-MB-231 cell line (Fig. 6a), genes 
common between MET and 2-DG treatments were ana-
lyzed and their enrichment didn’t show any statistically 
significant clusters. Enrichment of the intersected genes 
of 2-DG and GS treatments yielded only up-regulated 
clusters. We cite cellular response to ER stress and UPR; 
protein localization, and vesicle-mediated transport; cell 
migration; HER2 and TGFβ tyrosine kinase signaling; 
cell differentiation; cell adhesion; autophagy; phosphorus 
metabolism and protein PTM; apoptosis.

Genes resulting from the intersection of MET and GS 
yielded predominantly up-regulated clusters with func-
tions such as response to lipopolysaccharides (LPS) and 
lipids; tumor necrosis factor (TNF) signaling pathway, 
NOD-like receptor (NLR) signaling pathway; apoptosis; 
cell proliferation; cell differentiation; and cell–cell adhe-
sion. For down-regulated clusters, we have a response 
to DNA damage stimuli; DNA replication; DNA repair; 
protein phosphorylation, and ubiquitination; mitotic cell 
cycle; and chromosome organization.

Finally, the genes shared by all treatments mainly 
exhibited up-regulated clusters with biological functions 
such as response to lipids and LPS, cytokines, and ER 
stress and UPR; transferase activity; kinase activity; RNA 
transcription by RNA polymerase II; ROS production; 
endogenous peptide antigen presentation by MHC class 
I; cell population proliferation; cell component move-
ment and cell motility; apoptosis. As for the down-regu-
lated clusters, we have the cell cycle and DNA repair.

Intersection in the MCF‑7 cell line
Moving to the MCF-7 cell line (Fig. 6b), few or no genes 
were found in common between the MET and 2-DG 
comparison, and thus no significant enrichment resulted. 
Comparison of 2-DG and GS treatments yielded only 
upregulated clusters, namely neurotrophic tropomyosin 
receptor kinase (NTRKs) signaling.
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Common DEGs between MET and GS treatments yield 
a predominantly up-regulated enrichment cluster and a 
down-regulated cluster. For the upregulated, biological 
functions showed cellular response to oxygen-containing 

compounds, UPR and ER stress, and starvation (saccha-
rides, lipids, peptides); apoptosis, signaling via the class 
mediator p53; cell proliferation; temperature homeo-
stasis; metabolic processes of amino acids; regulation of 
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transcription from the RNA polymerase II promoter in 
response to stress; transmembrane transport of amino 
acids; and autophagy. The down-regulated cluster exhib-
ited cell cycle processes (microtubule-binding).

Genes common to all treatments showed only clusters 
of down-regulation. The cellular processes involved were 
protein nitrosylation; lipid response; cellular zinc ion 
homeostasis; cell development; intrinsic apoptotic signal-
ing pathway, and activity of the cysteine-type endopepti-
dase involved in the apoptotic process (NFκB activity); 
Rho GTPase effectors.

Intersection in the overlap cell line
The intersection of treatment genes was only possible 
between MET and GS (Fig.  6c). One up-regulated clus-
ter resulted from enrichment, having biological functions 
including cellular response to ER stress and UPR; and 
signaling through apoptotic signaling pathways.

Additional bar plots (Fig. 6d) also show the difference 
in the number of DEGs between the overlap and the two 
cell lines.

Discussion
We compared the effect of glucose deprivation on MDA-
MB-231 and MCF-7 BC cell lines using microarray data 
mining methods to establish a database for DEGs and 
pathways modulations. Two data extraction methods 
were adopted, each with complementary advantages to 
the other.

Our results showed that MDA-MB-231 cells exposed 
to any of the three treatments resulted in ER stress 
response, activation of the UPR pathway, apoptosis, 
and inhibition of cell cycle and DNA replication, which 
goes in line with past research on the matter [51, 52]. 
For MCF-7, ER stress and subsequent UPR were also 
observed with MET and GS. MET also downregulated 
DNA damage response, RNA biosynthesis and transcrip-
tion, and cell population proliferation. Accumulation of 
misfolded proteins is known to induce ER stress and acti-
vate an ER-specific adaptive response, the UPR. Intracel-
lular protein aggregation due to slow protein folding is 
observed under conditions such as lack of nutrients (e.g. 
glucose) as well as oxygen deprivation, oxidative stress 
(OS) [53], abnormalities of calcium ion homeostasis, and 
protein glycosylation [54, 55]. The UPR process aims to 
restore intracellular homeostasis by inducing adaptation 
pathways related to the activation of three ER transmem-
brane proteins: IRE1, PERK, ATF4, and ATF6.

We also demonstrated that MET and GS treatment of 
MDA-MB-231 cells leads to ROS production and inhibi-
tion of DNA repair. GS and high concentrations of MET 
(10–40  mM, as seen in our study) are known to sensi-
tize the highly glycolytic metastatic TNBC cell line (i.e. 

MDA-MB-231) to apoptosis through increased mito-
chondrial ROS and mitochondrial membrane potential 
(MMP) disruption [56–59]. MET-treated MCF-7 cells 
showed increased cellular stress, response to oxygen-
containing compounds, and apoptosis. MET treatment 
is known to interfere with signaling pathways related to 
OS and cell survival, as treatment increases nuclear p53 
expression [60], and AMPK phosphorylation [61, 62]. 
MET-induced reduction in viability mediated by apopto-
sis has also been demonstrated in our results and studies 
on the subject [63–65]. This apoptosis in BC-derived cells 
could be caused by ROS-independent mitochondrial dys-
function [63], which was also shown to specifically tar-
get cancer cells with no effect on normal breast epithelial 
cells [65].

Our results further indicate that all three treatments 
downregulate DNA replication in MDA-MB-231 through 
suppression of nucleotide metabolism [66]. During the 
cell cycle, deregulation of DNA replication leads to chro-
mosomal alterations, promoting tumorigenesis [67]. In 
our study and others [68], all treatments downregulated 
the G1/S phase transition in the MDA-MB-231 cell line, 
with GS also affecting PLK1 activity during the G2/M 
transition. For the MCF-7 cell line, MET triggered the 
inhibition of cell proliferation and associated RNA bio-
synthesis as well as checking DNA damage, specifically 
at the p53-regulated G1/S transition. Such proliferation 
arrest has been described by the majority of MET stud-
ies with MCF-7 cells [61, 69, 70]. With the one-week glu-
cose-starved MCF-7 cells, apoptosis was deregulated as 
well as the cell cycle and cell proliferation. This deregula-
tion is echoed by other papers describing the same pro-
cess [71–73]. That being said, GS has also been shown 
to increase invasiveness and metastasis of MCF-7 tumor 
cells. This phenomenon might be explained by stimula-
tion of urokinase plasminogen activator (uPA) and plas-
min activity [74].

We also showed that MET downregulates DNA repair 
mechanisms in MDA-MB-231 cells. Compared to nor-
mal cells, malignant cells have a higher DNA damage 
response (DDR), aimed at maintaining genome integrity. 
They stimulate DNA repair capacity to cope with DNA 
damage and to survive. MET downregulates RAD51 
by ubiquitination, a key player in homologous recom-
bination DNA repair, leading to inhibition of the DNA 
damage repair pathway [75]. Furthermore, ATM and 
ATR signaling cascades are two key pathways that ini-
tiate DDR and are activated in response to DSBs [76]. 
We found that GS downregulated ATR activation in 
response to replication stress, leading to downregulation 
of DNA repair mechanisms. Therapies inhibiting ATR 
are currently being tested in early-phase clinical trials in 
advanced solid tumors [77].
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Our results indicated that 2-DG treatment increases 
collagen, laminin, and proteoglycan organization. Col-
lagen serves as a scaffold for the ECM and its excessive 
production is an indicator of BC malignancy [78, 79]. In 
addition, proteoglycans are associated with high inva-
siveness and progression of BC, and the adhesive protein 
laminin plays an important role in the development of 
BC [80]. The role of adhesion molecules is to maintain 
cell-to-cell contact and attachment to the extracellular 
matrix. Loss of cell adhesion has classically been con-
sidered a pro-tumorigenic feature, promoting metasta-
sis and invasion of tumor cells [81]. Adhesion molecules 
such as E-cadherin, can exhibit a decreased expression in 
BC due to methylation of its promoter in TNBC [82].

The results also revealed that MET in the MDA-
MB-231 cell line increases calcium signaling and acti-
vates cAMP signaling. Calcium-based mechanisms have 
been shown to be crucial for the induction of apopto-
sis [83], and the role of cAMP as a growth suppressor 
reduces the metastatic properties of TNBC [84]. Besides, 
MET enhances the expression of human leukocyte anti-
gen (HLA)-encoded MHC I in the MDA-MB-231 cell 
line [85]. This is advantageous considering that HLA 
downregulation is frequently observed in tumors and 
is thought to correlate with disease progression [86]. In 
addition, it is well established that MHC I expression on 
tumor membranes is essential for tumor destruction by 
cytotoxic T lymphocytes (CTLs). Additionally, expres-
sion of interferon (IFN)-associated molecules in BC also 
depends on MHC I molecules, with being associated 
with a good response to anthracycline-based chemother-
apy [87].

Our results thus suggested that MCF-7 cells were less 
responsive to the glucose challenges than the MDA-
MB-231 cell line. The latter conclusion was drawn from 
the fact that fewer modulated genes, less significance 
and number of enrichment terms, and fewer biological 
functions related to cell lethality and dysfunction were 
observed with the MCF-7 cell line. The difference in 
the cell lines’ expression of hormone receptors and the 
resulting difference in growth factor-associated pathways 
should explain, to some degree, the difference in the cell 
lines’ behaviors to the same treatments. Adopting the 
same conclusion strategy, we can also say that starving 
cells for glucose had the most significant impact on both 
cell lines, compared with MET and 2-DG treatments. 
Cells exposed to MET were slightly less responsive than 
those undergoing GS, but significantly more reactive 
than cells exposed to 2-DG. The latter assumptions origi-
nate from the fact that GS was more enriched and associ-
ated with terms of functions related to cell lethality and 
dysfunction, with MET coming in second place for drug 
responsiveness.

Owing to the limitations of any in  vitro study, the 
results of our in  vitro study must be confirmed under 
in  vivo conditions. In addition, further studies should 
determine the effect of the duration of exposure to the 
three glucose challenges on cancer cells, which should 
also be performed on a larger number of cells in order 
to generalize from specific cell lines to the subtypes that 
these lines represent. Finally, it would be interesting to 
see studies on the response of cancer cells to a combi-
nation of glucose challenges, particularly GS and MET, 
seeing their rich impact on cancer cells and the different 
processes they regulate.

Conclusion
The ultimate goal of this study was to investigate the pro-
cedure that can replicate in the most beneficial way pos-
sible the effect of glucose-lowering on the vulnerability of 
BC cells. Our study showed that the three different glu-
cose deprivations modes had remarkable effects on both 
BC cell lines. 2-DG appears to be the “gentlest” on the 
cells’ genes modulation. GS for one week in the presence 
of FBS had the greatest influence on the cells. It should be 
noted that the MDA-MB-231 cell line responded better 
than the MCF-7 cell line to all three treatments.

Our results suggest that the combination of MET and 
GS may be a beneficial approach to inhibit both MDA-
MB-231 and MCF-7 cell lines, which are triple-negative 
and HR-positive breast cancer cell lines respectively. By 
stressing the cancer cells, they decrease their prolifera-
tion and enter an energy-saving mode, making the cancer 
cells more vulnerable and likely more sensitive to conven-
tional treatments at lower doses, all while avoiding most 
of the side effects on normal cells. Further studies should 
be performed on cell lines representing these two BC 
subtypes to generalize from specific cell lines to subtypes 
representing these lines. Finally, these in  vitro observa-
tions should be validated using an in vivo model in com-
bination with drugs for the treatment of breast cancer.
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