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Abstract 

The tumor microenvironment (TME) is a complex multicellular functional compartment that includes fibroblasts, 
myofibroblasts, endothelial cells, immune cells, and extracellular matrix (ECM) elements. The microenvironment pro-
vides an optimum condition for the initiation, growth, and dissemination of hepatocellular carcinoma (HCC). As one 
of the critical and abundant components in tumor microenvironment, cancer-associated fibroblasts (CAFs) have been 
implicated in the progression of HCC. Through secreting various growth factors and cytokines, CAFs contribute to the 
ECM remodeling, stem features, angiogenesis, immunosuppression, and vasculogenic mimicry (VM), which reinforce 
the initiation and development of HCC. In order to restrain the CAFs-initiated HCC progression, current strategies 
include targeting specific markers, engineering CAFs with tumor-suppressive phenotype, depleting CAFs’ precursors, 
and repressing the secretions or downstream signaling. In this review, we update the emerging understanding of 
CAFs in HCC, with particular emphasis on cellular origin, phenotypes, biological functions and targeted strategies. It 
provides insights into the targeting CAFs for HCC treatment.
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Background
Hepatocellular carcinoma (HCC) is the fourth leading 
cause of cancer-related mortality worldwide [1]. Accord-
ing to the latest statistics, almost 85% of HCC cases occur 
in developing countries such as Eastern Asia and sub-
Saharan Africa, where chronic hepatitis B virus (HBV) is 
the most common etiology [2, 3]. In contrast, for devel-
oped countries, the primary causes of HCC are hepatitis 
C virus (HCV), alcoholic cirrhosis, and non-alcoholic ste-
atohepatitis [4]. Over the past two decades, the incidence 
of HCC in the USA has increased twofold to threefold, 
mainly ascribed to the growing HCV-related cirrhosis 

and the prevalence of non-alcoholic fatty liver disease 
(NAFLD) [5, 6]. With the increasing heavy alcohol con-
sumption, obesity, and insulin resistance (IR), more 
alcohol-related liver disease (ALD)-related HCC  and 
metabolic-related HCC cases have been reported [1, 7].

During the hepatocarcinogenesis, inflammation and 
fibrosis are well acknowledged as the key drivers. Per-
sistent liver damage can lead to liver fibrosis with the 
formation of regenerative and dysplastic nodules. Con-
tinuous cycles of such destructive–regenerative pro-
cess eventually gives rise to liver cirrhosis and even 
carcinogenesis. Indeed, about 1/3 patients with liver 
cirrhosis will ultimately develop to HCC [8]. However, 
early diagnosis of HCC is challenging due to the hidden 
symptoms. Approximately 80% of HCC patients are diag-
nosed at advanced stage, of which the median survival 
is around 6–8  months. For these patients at advanced 
stages, treatment strategies include, liver transplantation, 
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topical therapy, and systemic chemotherapy. Addition-
ally, antiangiogenics and immunotherapies are also con-
sidered as effective treatment choices. Sorafenib, a small 
multi-tyrosine kinase inhibitor (TKI), has been approved 
as the first-line treatment of advanced HCC for over 
10 years [9]. Another first line agent, Lenvatinib, has also 
been evaluated as a novel agent against advanced HCC. 
For patients that fail in first-line therapy, other antiangio-
genic agents (e.g. regorafenib, cabozantinib, and ramu-
cirumab) and immunotherapies (e.g. nivolumab and 
pembrolizumab) are recommended as second-line strate-
gies [10–14].

Despite the current available treatment strategies, the 
overall prognosis of HCC remains unsatisfactory. There-
fore, the underlying molecular mechanisms that drive 
HCC progression and metastasis still need to be inves-
tigated. Increasing studies suggest that targeting tumor 
cells exclusively is insufficient to improve patients’ sur-
vival, as the malignant behaviors of tumor cells can be 
greatly modulated by the reconstruction of tumor micro-
environment (TME). Given that HCC is often initiated by 
fibrosis or cirrhosis, the premalignant microenvironment 
(PME) is considered before tumor formation, which is 
featured by chronic liver injury, inflammation, and fibro-
sis in HCC [15]. Once hepatoma occurs, TME, as the 
suitable environment for tumor cells, takes the place of 
PME to promote tumor progression [16]. TME in HCC 
is distinguished by profound ECM remodeling and non-
tumoral stromal cells, particularly the tumor-associated 
stromal and immune cells, including cancer-associated 
fibroblasts (CAFs), B and T cells, neutrophils, endothe-
lial cells, and tumor-associated macrophages (TAMs) 
[17]. The reciprocal crosstalk among these compartments 
of TME and HCC cells significantly reinforces prolifera-
tion, migration, metastasis and chemoresistance, as well 
as generation of vasculogenic mimicry (VM) and immu-
nosuppressive induction of neoplastic cells [18, 19]. As a 
result, the TME has been identified as a perspective tar-
get for developing potential therapeutic agents.

Characterization of CAFs
CAFs is a heterogeneous group of dynamical fibroblasts 
that infiltrates in tumor. Distinct from normal fibro-
blasts, CAFs exhibit a spindle-shaped morphology with 
large indented nucleus, Golgi complexes, and endoplas-
mic reticulum (ER). Thus, these CAFs could acquire 
enhanced metabolic activities and intensive secretory 
performance [20]. Structurally and functionally, CAFs 
fertilize the microenvironment for tumor progression by 
secreting various factors, including ECM proteins (e.g. 
collagen type-I and ectodysplasin-A), epidermal growth 
factor (EGF)/fibroblast growth factor (FGF) family mem-
bers, pro-angiogenesis factors (e.g. hypoxic inducible 

factor (HIF) and platelet derive growth factor (PDGF)), 
chemokines (e.g. CXCL and CXCR family members), 
cytokines (e.g. transforming growth factor-β (TGF-β)), 
and different enzymes [e.g. metalloproteinases (MMPs)] 
[21].

The heterogeneity of CAFs is contributed by the mul-
tiple cellular precursors, such as tissue-resident quies-
cent fibroblasts, bone marrow-derived cells, adipocytes, 
pericytes and endothelial cells derived from local stro-
mal cells with endothelial-to-mesenchymal transition 
(EndMT), and cancer cells undergoing epithelial–mes-
enchymal transition (EMT) [22]. Multiple protein 
markers have been reported to identify CAFs, includ-
ing α-smooth muscle actin (α-SMA), fibroblast activa-
tion protein (FAP), fibroblast specific protein 1 (FSP1 
or S100A4), Vimentin, and PDGF receptor (PDGFR)-α 
and β [23]. By contrast, specific markers for distinguish-
ing the heterogeneous CAFs are still lacking. The most 
acknowledged marker α-SMA can be used to identify 
myofibroblast-like CAFs, vascular muscular cells, and 
pericytes [24, 25]. Additionally, FAP seems more specific 
for fibroblasts, though it is also overexpressed in a subset 
of CD45+ immune cells [26].

The heterogenous CAF subsets have been character-
ized in different tumors with distinct functions. Recent 
study demonstrated the existence of four CAF subsets 
(S1–S4) in breast cancer by concomitant analysis of six 
markers (CD29, FSP1, FAP, α-SMA, PDGFR-β, and 
Caveolin1) [27]. Further investigations showed that CAF 
subset S1 was associated with immunosuppressive TME 
by inducing regulatory T cells (T-regs) differentiation, 
whereas CAF subset S4 improved CD8+ T cells infiltra-
tion. In addition, four subtypes with specific phenotypic 
features of CAFs (A–D) were identified in pancreatic 
ductal adenocarcinoma (PDAC), of which subtype A 
could furthest enhance proliferation and chemoresist-
ance of cancer cells [28]. Interestingly, in another study 
of PDAC, CAFs were stratified into two subtypes, i.e. 
α-SMA(+) CAFs were distributed around neoplastic 
cells, while α-SMA(−) CAFs localized distantly from 
cancer cells with stronger paracrine capability of pro-
inflammatory cytokines [24].

Recently, the subtypes and biological functions of CAF 
are analyzed precisely by using more advanced technolo-
gies, such as single-cell sequencing and flow cytometry 
[29]. Some researchers isolated CAFs cells from fresh 
HCC tumor tissues. These CAFs are featured by the 
fibroblastic morphology and activated myofibroblast 
phenotype with FSP-1 and FAP expression [30]. Moreo-
ver, techniques that provide spatial resolution, e.g. mul-
tiplexed nucleic acid in  situ hybridization and highly 
multiplexed antibody-based staining, are also utilized to 
determine whether specific CAF subtype is affected by 
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its spatial location within tumor [31]. Recent studies have 
shown that the precise location may impact the CAFs 
subtypes with phenotypic discrepancy. For instance, 
CAF subtype A characterized by periostin was mainly 
observed at the invasive edge of primary lung tumor, 
crucial for the tumor capsule formation and metastasis 
niche. The CAF subtype B marked by myosin-11, com-
monly identified at the invasive front of tumor, was 
related to lymph node metastasis and unfavorable prog-
nosis. Besides, podoplanin-marked CAF subtype C was 
distributed in the central area of tumor and involved in 
immunogenic responses [32]. Therefore, identifying sub-
population of CAFs on the ground of the specific role in 
tumor progression may contribute to innovative targeted 
therapies and personalized therapies against various can-
cer types.

CAFs in HCC
Heterogeneous origins of CAFs in HCC
As a remarkable feature of CAFs, heterogeneity is 
embodied with different origins, locations, phenotypes, 
and functions of cells. Hepatic CAFs commonly marked 
with α-SMA and FAP are widely distributed in tumor 
septum, fibrous capsule, and hepatic blood sinusoids. 
According to recent studies, CAFs in HCC can be origi-
nated from multiple cell types, including hepatic stellate 
cells (HSCs), HCC cells undergoing EMT, mesenchymal 
stromal cells (MSCs), hepatic sinusoidal endothelial cells 
(HSECs) undergoing EndMT, and peritumoral tissue 
fibroblasts (PTFs).

One typical source of hepatic CAFs is HSC, which is 
one major accelerator in liver fibrosis [33]. Based on the 
genetic cell fate mapping assays, HSCs are suggested as 
the dominant precursor of α-SMA(+) myofibroblasts in 
most types of liver diseases [33–35]. Under normal con-
ditions, quiescent HSCs are distributed in the disse space 
functioning as pericytes to store Vitamin A. However, 
sustained liver injury leads to the activation of HSCs into 
myofibroblasts, along with enhanced secretion of ECM, 
chemokines and cytokines [36]. Through migrating to the 
tissue repairing site, HSCs modulates hepatic fibrogene-
sis, sequentially causing liver fibrosis and cirrhosis. Once 
hepatocarcinogenesis, activated HSCs may act as CAFs 
and dedicate to the formation of HCC fibrous septa and 
fibrous capsules.

The transformation of HSCs into CAFs is a compli-
cated process, during which intracellular factors from 
stromal cells and paracrine stimuli from tumor cells 
are inductive factors [37]. Tan et al. previously reported 
that human HSC cell line LX2 could be converted into 
α-SMA(+)/FSP1(+) CAFs with exposure to tumor-
derived TGF-β in  vitro [38]. A recent transgenic model 
also suggested that the hepatocyte-derived platelet 

derive growth factor-C (PDGF-C) transformed HSCs 
into myofibroblast-like  cells, which in turn produced 
cytokines to promote the development of HCC [39]. In 
addition, Zhou et al. indicated that HCC-derived exoso-
mal miRNA-21 could induce the conversion of HSCs into 
CAFs via downregulating PTEN and activating PDK1/
AKT signaling pathway, subsequently accelerating tumor 
growth and angiogenesis by secreting massive proinflam-
matory cytokines [40].

Another source of hepatic CAFs is supposed to be 
tumor cells. HCC cells locating near the blood sinusoid 
commonly present with upregulated α-SMA or FAP 
expression. Existing evidence implicate that CAFs with 
high aggressiveness are originated from HCC cells under-
going EMT. Consistently, one typical CAF marker,  FAP, 
is also associated with the EMT phenotypes of HCC 
cells. Zou et  al. indicated that hypoxic condition trans-
formed HCC cells into CAFs-like cells with enhanced 
FAP expression, in parallel with hypoxia inducible factor 
1α (HIF-1α) and classical EMT markers (e.g. E-cadherin, 
Snail, and TWIST) [41]. Moreover, HCC cells exoge-
nously acquired CAF features with the administration of 
EMT-related cytokine TGF-β, characterized by remark-
ably increased α-SMA expression [42].

In addition to HSCs and HCC cells, there are other 
cell types (MSCs, HSECs, and PTFs) that could be trans-
formed into CAFs. Bhattacharya et al. found that MSCs 
acquired the CAF-like phenotype, characterized by the 
increased expression of tenascin-C and CXCL12, after 
co-culture with HCC cell line (SK-Hep1) [43]. As some 
CAFs distributed in hepatic blood sinusoids, endothelial 
cells undergoing EndMT provide another source of CAFs 
in the HCC microenvironment [44]. Apart from that, 
PTFs can also be converted into CAFs after exposure to 
lysophostatidic acid (LPA) secreted by HCC cells [45]. In 
summary, current studies indicated that CAFs in HCC 
are derived from various cell types, of which HSCs are 
considered the principal origin. However, other potential 
sources of CAFs like bone marrow-derived cells and por-
tal fibroblasts (PFs) remain controversial in HCC.

The activation of CAFs in HCC
As numerous evidences support the indispensable roles 
of CAFs in HCC growth and metastasis, the cancer cells 
also fertilized the proliferation and activation of CAFs as 
feedback. Once activated by corresponding stimuli from 
cancer cells or TME, CAF progenitors acquire CAF phe-
notypes and secrete plentiful factors to reinforce their 
tumor-supporting activities, thereby completing the 
positive feedback of CAF-HCC cells loop. Such bi-direc-
tional activation between cancer cells and stromal cells is 
critical to cancer progression.
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Mazzocca et al. demonstrated that LPA secreted from 
HCC cells reinforced trans-differentiation of PTFs into 
a CAF-like myofibroblastic phenotype, which in turn 
facilitated proliferation, migration and invasion of HCC 
cells. As mentioned above, PDGF-C provoked HSCs into 
precursors of CAFs with abundant cytokine secretions, 
ultimately accelerating the progression of HCC [39]. 
TGF-β secreted by CAFs and HSCs has been unequivo-
cally implicated in the malignant phenotypes of HCC 
cells. Giannelli et  al. illustrated that TGF-β signaling 
advanced HCC progression by both intrinsic and extrin-
sic pathways from activated CAFs in TME [46]. Consist-
ently, Mazzocca et  al. further elucidated that inhibition 
of TGF-β could attenuate CAF proliferation by down-
regulating connective tissue growth factor (CTGF) levels, 
leading to a significant reduction of HCC growth and dis-
semination [47]. Recently, STMN1 was found to medi-
ate the intricate crosstalk between HCC cells and CAFs. 
When co-cultured with HCC cells, HSCs were endowed 
with CAFs properties and secrete hepatocyte growth 
factor (HGF), thereby enhancing STMN1 expression of 
HCC cells through the MET pathway. In turn, upregula-
tion of STMN1 in HCC cells activated HSCs to acquire 
the CAFs phenotypes [48]. Besides, HCC cells-secreted 
tissue inhibitor of metalloproteinase 1 (TIMP-1), an 
endogenous inhibitor for MMPs, has been reported to 
accelerate cancer progression by initiating the transfor-
mation of liver fibroblasts into CAFs. TIMP1 initiated 
immortalized fibroblasts into CAF-like phenotypes, 
characterized by elevated expression of CAF markers and 
enhanced proliferative activities [49]. Currently, it has 
been recognized that specific sub-populations of CAFs 
could facilitate cancer stemness by inducing prolifera-
tion of cancer stem cells (CSCs) and de-differentiation of 
cancer cells in a paracrine-dependent pathway. As feed-
back, CSCs could in turn release specific factors to main-
tain the activated state of CAFs [50]. Furthermore, Mano 
et al. identified bone morphogenetic Protein-4 (BMP4) as 
one key factor involving in the activation of CAFs [51]. 
Intriguingly, exogenous BMP4 exerted no direct effects 
on HCC invasion, instead triggering more cytokine pro-
duction of CAFs in a paracrine manner.

Biological functions of CAFs in HCC progression
It is noteworthy that CAFs play critical roles in the HCC 
progression by both direct and indirect interactions with 
HCC cells. CAFs have been shown to guide the collective 
tumor cell migration and invasion. Recent study found 
that the CAFs migrated through the ECM while drag-
ging tumor cells, which was mediated by heterophilic 
adhesion involving N-cadherin at the CAF membrane 
and E-cadherin at the cancer cells [52]. Moreover, CAFs 
secrete multiple types of ECM proteins, growth factors, 

cytokines and extracellular vesicles (Table 1). With these 
secretions, CAFs are implicated in modulating ECM, 
facilitating new vessels, suppressing the anti-tumor 
immunity, and enhancing EMT and stem feature of HCC 
cells, which ultimately benefit for HCC initiation with 
malignant phenotypes (Fig. 1).

CAFs alter ECM in HCC
The ECM is a dynamic system consisted of collagens, 
elastin, fibrin, and proteoglycans undergoing con-
stant remodeling. Normal ECM benefits resident cells 
by providing structural and biochemical support [69]. 
Nevertheless, altered ECM is accompanied with tumor 
initiation and progression [70]. Current studies indicate 
that CAFs secrete a large number of ECM proteins for 
accelerating tumor progression via matrix degradation, 
deposition, and stiffening [71]. In the TME, activated 
CAFs secrete ECM proteins to reinforce the deposition of 
fibrillar collagens, thereby giving rise to the ECM stiffen-
ing. Santamato et al. reported that through secreting the 
ECM component laminin-5, activated CAFs stimulated 
the migration and invasion of HCC cells through the 
MEK/ERK pathway [72]. In addition to boosting metas-
tasis behaviors, Schrader et  al. demonstrated that the 
strengthened tumor matrix stiffness also improved the 
proliferation of HCC cells through the PKB/Akt pathway 
[73]. Contractility is considered as another physical func-
tion of CAFs involved in ECM restructuring. By exerting 
a mechanical force either widening the pores in the ECM 
or aligning collagen fibers, CAFs could “create the path” 
for cancer cells to migrate and “guide” cancer cells for 
directional migration [71]. Following the alterations of 
ECM, CAFs re-establish a favorable stromal environment 
for cancer cell invasion. Meanwhile, the matrix answers 
back by activating CAFs to differentiation. This feed-
back loop is of great significance in maintaining the acti-
vated state of CAFs and constructing the tumorigenicity 
stroma.

CAFs enhance the stemness of HCC cells
CSC is one specific subset of cancer cells identified 
in HCC tissues, maintaining a highly adaptable and 
dynamic state [74]. Manifested in capabilities of pro-
liferation, self-renewal and migration, CSCs facilitate 
the initiation, growth, and metastasis of HCC. Under 
specific conditions, CSC characteristics can be trig-
gered by stimuli from TME [75]. Prior studies have 
noted that the importance of paracrine pathways in 
the CAFs-induced stem properties of HCC cells. Lau 
et al. elucidated that CAFs-derived HGF expanded liver 
tumor-initiating cells by regulating c-Met/FRA1/HEY1/
ERK cascade [55, 56]. Focusing on CD24 + HCC cells, 
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Li et  al. emphasized that CAFs induced the stemness 
via HGF- and IL-6-activated STAT3 pathway in  vitro 
and in vivo [56]. Consistently, Xiong et al. also indicated 
that CAFs-secreted IL-6 promoted the stem proper-
ties of HCC cells through STAT3/Notch signaling [65]. 
According to the latest study, CAFs and activated PTFs 
were more likely to recruit CSCs and maintain their 
stemness by producing a series of cytokines, including 
IL-6, CCL2, CXCL1, CXCL8, SCGF-b, HGF and VEGF 
[76]. Sun et  al. demonstrated that CAFs-derived carti-
lage oligomeric matrix protein (COMP) endowed HCC 
cells with stem-like properties, accelerating the inva-
sion and metastasis of HCC cells [30]. Furthermore, 
CAFs could also activate Notch3/LSD1  signaling and 
autophagy-related mTOR pathway of HCC cells, sub-
sequently driving their  self-renewal  in CSCs [77, 78]. 
Interestingly, there might be a potential positive loop 
between CSCs and CAFs. Huang et al. discovered that 
CAFs secreted TGF-β to sustain self-renewal of pluri-
potent stem cells, which conversely maintained CAFs 
in an active state with higher secretary and proliferate 
characteristics through the CAF-CSC crosstalk [50]. 
Collectively, CAFs regulate stem features of HCC cells 
to foster the development of HCC.

CAFs promote chemoresistance
Therapy resistance is an undeniable issue for HCC eradi-
cation. Though Sorafenib is recommended as preference 
for systemic therapy, its efficiency is reported only 30% in 
HCC patients with acquired resistance within 6 months. 
Mechanisms accounting for drug resistance are compli-
cated, of which tumor-stromal interactions may alleviate 
the sensitivity of HCC cells to anti-cancer drugs. As eluci-
dated above, CAFs secret multiple types of cytokines and 
vesicles, thereby inducing the therapy resistance of HCC 
cells. CAFs-derived HGF enhanced the chemoresistant 
characteristics of CD73+ tumor cells against sorafenib 
or cisplatin by activating the MEK-ERK1/2 pathway [79]. 
Khawar et al. found that CAFs—HCC cells—mixed sphe-
roids showed enhanced resistance to sorafenib, while 
TGF-β inhibitors further improved drug efficacy [80]. 
Consistently, Liu et  al. noted that conditioned medium 
of CAFs conferred HCC organoids resistance to anti-
cancer drugs including Sorafenib, Regorafenib and 5-FU 
in a paracrine signaling-dependent manner [81]. Aro-
novich et  al. demonstrated that CAFs protected tumor 
cells from doxorubicin-induced cell death through secre-
tion of CXCL12, which enhanced chemoresistance by 
binding to CXCR4 [82]. Interestingly, CAFs-derived 
CXCL12 might facilitate cisplatin resistance by activating 

Table 1  Effects of CAFs-secreted factors on HCC

BMP4, bone morphogenetic Protein-4; ECM, extracellular matrix; COMP, cartilage oligomeric matrix protein; MMP, metalloproteinases; EMT, epithelial–mesenchymal 
transition; HGF, hepatocyte growth factor; TGF-β, transforming growth factor-β; VM, vasculogenic mimicry; IL-6, interleukin 6; mTOR, mechanistic target of rapamycin 
kinase; STAT3, activate signal transducer and activator of Janus kinase; LAMC2, Laminin Subunit Gamma 2; VEGF, vascular endothelial growth factor; PDGF-C, platelet 
derive growth factor-C; PGF, placental growth factor; CCL2/5/7/12, chemokine (C–C motif ) ligand 2/5/7/12; CXCL16, chemokine (C-X-C motif ) ligand 16; MDSCs, 
marrow-derived suppressor cells; Hh, hedgehog; FOXQ1, forkhead box Q1; NDRG1, N-myc downstream-regulated gene 1; MAPK, mitogen-activated protein kinase

CAFs secretion Molecules Effect on HCC Mechanism References

ECM proteins BMP4 Invasion Trigger cytokines through SMAD pathway [51]

COMP Proliferation, migration, invasion, Promote EMT process [30]

MMP9 Invasion, metastasis – [53]

Growth factors HGF Proliferation – [54]

Stemness Facilitate c-Met/ FRA1/ HEY1 signaling and STAT3 signaling [55, 56]

TGF-β Induce VM VE-cadherin/MMP2/LAMC2 networks [57]

VEGF Angiogenesis – [58]

PDGF-C Angiogenesis – [59]

PGF Angiogenesis – [60]

Cytokines CXCL12 Proliferation, migration, invasion – [49]

Induce VM Activate VE-cadherin/ MMP2/LAMC2 network [57]

Immunosuppression Recruit monocytes and facilitate differentiation into MDSCs 
in IL-6-STAT3-dependent manner

[61]

IL-6 Proliferation, migration, invasion Activate mTOR signaling [62]

Immunosuppression Activate STAT3 signaling [61, 63, 64]

Stemness IL-6/STAT3/notch signaling [56, 65]

CCL2, CCL5 Migration Hh pathway [66]

CCL7, CXCL16 Migration, invasion TGF-β signaling [66]

FOXQ1 Initiation Trans-activate NDRG1 [67]

Extracellular vesicles Exsomal miR-320a Suppress proliferation, migration Inhibit the MAPK pathway [68]
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the Wnt/β-catenin pathway [83]. Moreover, Zhang et al. 
found that neuregulin 1 (NRG1) in CAF supernatant 
promoted resistance in tumor cells by enhancing HER3 
expression [84]. In addition, by analyzing on a three-
layered microfluidic tumor-on-a-chip platform, CAFs 
significantly promoted proliferation and delayed doxo-
rubicin pharmacokinetics of tumor cells when compared 
to coculture with normal fibroblasts [85]. Furthermore, 
CAFs-extracellular vesicles (EV)-derived Annexin A6 
conferred tumor cells resistance against conventional 
chemotherapeutics by modulating β1 integrin/FAK/YAP 
signaling [86].

CAFs facilitate angiogenesis and vasculogenic mimicry 
in HCC
Tumor angiogenesis refers to the establishment of new 
blood vessels derived from pre-existing ones. Given 
that tumor growth and metastasis need nutrients and 
oxygens, angiogenesis is considered as a hallmark of 
malignancy, especially for highly-vascularized HCC. 
Angiogenesis can be regulated by various pro-angiogenic 
stimulators secreted by cancer cells and stromal cells in 
the microenvironment. As a major component of tumor 

stromal, CAFs activated by physiological stimuli like lep-
tin or hypoxia could induce angiogenesis and expedite 
HCC growth via producing angiogenic factors [87]. Liu 
et  al. indicated that CD90 and placental growth factor 
(PGF) enriched-CAFs were profoundly correlated with 
tumor angiogenesis markers (CD31, CD34, and CD105) 
[60]. Moreover, the overexpression of PGF was correlated 
with angiogenesis markers and poor prognosis [88, 89]. 
Notably, the crosstalk between HCC and CAFs contrib-
utes to angiogenesis as a positive loop. HCC cells fuel 
CAFs with elevated secretion of the pro-angiogenesis 
factor vascular endothelial growth factor (VEGF), which 
enhances the expansion and tumor vessel formation of 
HCC cells via upregulating EZH2/VASH1 pathway [90]. 
These evidences suggest the underlying effects of CAFs 
on the angiogenesis of HCC in vivo and in vitro.

Extensive studies have suggested anti-angiogenic drug 
as an effective anti-tumor strategy, which target vascu-
lar endothelial cells to block blood supply to tumor cells. 
However, angiogenesis may not be the exclusive mecha-
nism that tumors acquire microcirculation. Aggressive 
tumor cells are capable of forming highly patterned vas-
cular channels and vasculogenic mimicry (VM), in which 

Fig. 1  Effects of cancer-associated fibroblasts on HCC. CAFs could contribute to HCC initiation and progression by various ways, including ECM 
remodeling, enhancing HCC cells stemness, accelerating angiogenesis and vasculogenic mimicry (VM), as well as inducing immunosuppression. 
COMP, cartilage oligomeric matrix protein; ECM, extracellular matrix; VM, vasculogenic mimicry; HGF, hypoxic growth factor; PDGF, platelet derive 
growth factor; EMT, epithelial–mesenchymal transition; PDGFR, platelet-derived growth factor receptor; CTGF, connective tissue growth factor; CSCs, 
cancer stem cells; VEGF, vascular endothelial growth factor
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tumor cells generate their own blood-delivery channels 
without the participation of endothelial cells [91]. Of 
interest, Yang et al. found that CAFs ratio in VM + HCC 
tissue was significantly higher than that in VM−  tissue. 
Further investigation disclosed CAFs isolated from fresh 
HCC tissues remarkably enhanced VM formation in vitro 
and in vivo through enhancing the expression of VE-cad-
herin, MMP2 and laminin5γ2 via TGF-βR1 and CXCR4 
in HCC cells, suggesting the roles of CAFs in facilitating 
VM formation and angiogenesis [57].

CAFs induce immunosuppressive milieu in HCC
Increasing studies highlight the immunosuppressive 
functions of TME in favoring the HCC progression and 
potential drug resistance. The initiation of such immune-
tolerant microenvironment is mediated by numerous 
inflammatory factors such as growth factors, cytokines, 
chemokines generated by multiple cell types co-existed 
and interacted in TME [92, 93]. Of them, the key con-
structive cells include TAMs, marrow-derived suppres-
sor cells (MDSCs), tumor-associated neutrophils, CAFs, 
as well as infiltrating T cells and natural killer (NK) cells 
[94].

Accumulating studies have emphasized the major role 
of CAFs in shaping the immunosuppressive TME. By 
producing immune prohibitive cytokines and immune 
checkpoint ligands, CAFs recruit immunosuppressive 
cells like MDSCs and peripheral blood neutrophils, and 
modulate immune cells differentiation such as mono-
cytes and dendritic cells (DCs) [95]. MDSCs are het-
erogeneous populations composed of immature myeloid 
cells with various differentiation states. With the capabil-
ity to inhibit the proliferation and activity of T and NK 
cells, MDSCs restrain the immune response of the TME. 
In a murine model of hepatic cancer, Yang et  al. found 
that FAP(+) CAFs-secreted CCL2 recruited circulat-
ing MDSCs with high CCL2R expression via STAT3-
CCL2 signaling. Conversely, neutralizing anti-CCL2 
antibody or knockdown of CCL2 remarkably blocked 
the migration of MDSCs and abrogated FAP(+) CAF-
mediated  tumor  promotion [96]. In addition, Cheng 
et al. indicated that CAF-derived IL-6 could recruit and 
regulate the survival, activation, and function of neutro-
phils through STAT3-programmed cell death ligand 1 
(STAT3-PDL1) signaling cascade, afterward contribut-
ing to the immune tolerance of HCC cells [64]. Accord-
ing to the study of Li et  al., CAFs produced IL-6 could 
activate STAT3 in DCs, boosting the generation of regu-
latory DCs, which are characterized by tolerogenic phe-
notypes with high expression of suppressive cytokines. 
Moreover, these CAF-educated DCs could confer T 
cells a suppressive phenotype with the decreased pro-
duction of IFN-γ in CD8+ T cells and the expansion of 

CD4+ CD25+ Foxp3+ Tregs expansion [97]. Apart from 
that, hepatic CAFs could also recruit monocytes by stro-
mal cell-derived factor (SDF)-1a/CXCR4 pathway, and 
stimulate the monocytes differentiation into MDSCs in 
IL-6-STAT3-dependent manner, thereby eliminating the 
anti-tumor immune responses by inhibiting T cell pro-
liferation and functions [61]. Furthermore, HCC derived 
CAFs inactivated NK  cells by secreting indoleamine 
2,3‑dioxygenase (IDO) and PGE2, thereby forming an 
immune-tolerant niche appropriate for HCC progression 
[97]. Another study reported that CAFs secreted TGF‑β 
could improve the Tregs proliferation, thus accelerating 
the HCC growth in the hepatic TME [63]. These evi-
dences demonstrated that CAFs contribute to the immu-
nosuppression functions of HCC via interacting with 
various types of immune cells in TME.

CAFs associate with clinical outcome of HCC
The molecular heterogeneity of HCC is manifested in 
both tumor and tumor stromal cells, triggering distinct 
clinical outcomes. As CAFs contribute to HCC progres-
sion, this key tumor stromal component has the potential 
to predict the survival of HCC patients. Current stud-
ies have found the correlation of α-SMA (+) CAFs with 
poor clinical outcome in HCC cases. Lau et al. reported 
that α-SMA expression was negatively correlated with 
disease-free survival (DFS) of HCC patients [55]. Con-
sistent with it, Fang et  al. also found HCC cases with 
higher proportion  of a-SMA(+) CAFs had shorter DFS 
[98]. Another study showed that the HCC recipients with 
α-SMA(+) CAFs had higher risk of recurrence after liver 
transplantation [99]. Additionally, Yang et  al. suggested 
a-SMA(+) CAFs as a biomarker for HCC progression 
due to the implications in metastasis and tumor stag-
ing [100]. At gene level, the encoding gene of a-SMA, 
ACTA2, was also associated with clinicopathologic fea-
tures including TNM stage, tumor size, tumor encapsula-
tion, and vascular invasion. Moreover, HCC patients with 
higher expression of ACTA2 exhibited shorter over sur-
vival (OS) and higher recurrent rate [67].

It was recently reported that CAFs-expressed CD90 
was associated with clinicopathologic features of HCC. 
Zhao et al. pointed out that high levels of CD90(+) CAFs 
were correlated with advanced pathological grade, satel-
lite lesion, PVTT, and HCC recurrence. Furthermore, 
CD90(+) CAFs were indicative of unfavorable outcome 
of HCC patients after hepatic resection [101]. Other 
than cell surface markers, CAFs derivations are candi-
date predictors for HCC prognosis. Liu et  al. clarified 
that CAFs-derived PGF, specifically contributing to the 
neo-angiogenesis, was vastly correlated with unfavora-
ble prognosis of HCC patients [102]. Consistently, Xu 
et al. signified that high expression of PGF in peri-tumor 
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tissues were indicative of poor OS of HCC patients [89]. 
In addition, the expression of PGF was also positively 
associated with early recurrence of HCC patients [88]. 
Significant telomere attrition has been observed in tumor 
tissues compared to their normal counterparts. Ma et al. 
suggested that shortened telomeres in CAFs resulted in 
decreased survival time and increased recurrence rate 
of HCC patients. This finding was further confirmed in 
an independent cohort from The Cancer Genome Atlas 
(TCGA) public database [103]. Taken together, the sur-
face molecular markers and derivations of CAFs may 
provide potential prognosis of HCC outcome.

Target CAFs in HCC
Given the remarkable tumor-supportive roles, CAFs are 
evaluated as promising therapeutic targets for cancer 
intervention. It is generally accepted that cancer cells are 
liable to develop resistance to various types of therapies 

due to the genetic instability. Comparatively, CAFs are 
genetically more stable and less prone to acquire drug 
resistance [104]. Generally, the strategies of targeting 
CAFs include targeting specific markers, endowing CAFs 
with tumor-suppressive phenotype, depleting the CAFs’ 
precursors, and repressing the secretions or downstream 
signaling molecules of CAFs. Herein, we summarized 
current studies regarding CAFs-targeted treatment for 
HCC (Table 2).

Engineer CAFs to acquire tumor‑constraining features
Indeed, it is unavoidable to precisely target CAFs with-
out damaging normal cells, which limits the application 
of marker depletion. Particularly, directly ablating the 
vital stromal component CAFs may break the homeosta-
sis and inversely exacerbate the disease. Thus, inactivat-
ing CAFs into a quiet state or conferring CAFs the tumor 
suppressor phenotype might be preferable therapeutic 

Table 2  Strategies of targeting CAFs in HCC

COMP, cartilage oligomeric matrix protein; TGF-β, transforming growth factor-β; VM, vasculogenic mimicry; IL-6, interleukin 6; mTOR, mechanistic target of rapamycin 
kinase; STAT3, activate signal transducer and activator of Janus kinase; CCL2/5/7/12, chemokine (C–C motif ) ligand 2/5/7/12; CXCL16, chemokine (C-X-C motif ) ligand 
16; MDSCs, marrow-derived suppressor cells; Hh, hedgehog; FOXQ1, forkhead box Q1; CTGF, connective tissue growth factor; MAPK, mitogen-activated protein kinase; 
RvD1, Resolvin D1; MMP, metalloproteinases; EMT, epithelial–mesenchymal transition; VM, vasculogenic mimicry; ROS, reactive oxygen species; LPA, lysophostatidic 
acid; HCC, hepatocellular carcinoma; CAFs, cancer-associated fibroblasts; HSCs, hepatic stellate cells; PTFs, peritumoral tissue fibroblasts

Therapeutic approach Therapeutic setting Mechanism Major effects on HCC References

Engineer CAFs miR-335 – Inhibit proliferation and invasion [105]

miR-320 Target PBX3 to suppress MAPK 
pathway

Inhibit proliferation and metastasis [106]

miR-101 Target TGF-β/ SDF1-VE-cadherin/
MMP2/LAMC2 networks

Suppress CAFs-promoted VM 
formation

[57]

Target CAFs’ precursors Sibrotuzumab – Inhibit HSCs activation [107]

DFOG Suppress FOXM1 expression and 
HGF secretion

Inhibit CSC features and activation 
of HSCs

[108]

Metformin – Inactivate HSCs and abrogate 
hepatocarcinogenesis

[109]

Curcumin Inactivate ROS/ HIF-1α/CTGF 
signaling

Suppress HSCs-induced angiogen-
esis and invasion

[110]

α-bromomethylene 
phosphonate- LPA

Block the transformation from PTFs 
to CAFs

[45]

Target paracrine productions of 
CAFs

IL-6 neutralizing antibody Inhibit IL-6 signaling Deplete stem cell-like properties of 
HCC cells

[65]

LY2109761 Inhibit the synthesis and release 
of CTGF

Reduce HCC growth and dissemi-
nation

[47]

CCL2,5,7 antibodies Inhibit Hh and TGF-β pathways Inhibit tumor migration [66]

T0901317 Abrogate TGF-β-induced pheno-
types through LXRα interactions

Suppress HCC growth [42]

RvD1 Suppress COMP secretiom by 
targeting FPR2/ROS/FOXM1 
signaling

Impede CAFs-induced EMT and 
stemness features of HCC cells

[30]

Target CAFs-mediated signaling 
and pathways

Dorsomorphin Inhibit SMAD signaling Impede the activation of CAFs [51]

P38 MAPK inhibitor Block CAF-M-MDSC crosstalk Provoke antitumor immunity [111]

Rapamycin Suppress mTOR-signaling pathway Inhibit HCC cells proliferation, 
migration and invasion

[62]

Cryptotanshinone Inactivate p-STAT3 signaling Abrogate stem cell-like properties 
of HCC cells

[65]
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approaches. In a CCl4− and alcohol induced liver fibrosis 
model, most activated myofibroblasts were declined into 
inactivated HSCs during  regression  of  liver  fibrosis by 
removing etiological agent [112]. In addition, researchers 
have employed nanoparticles that can be uptake by CAFs 
to genetically modify CAFs in  situ, whereby CAFs may 
be engineered as a tumor depletion center to persistently 
release anti-tumor cytokines [113]. In xenograft mice 
models, the engineered CAFs served as a tumor-directed 
cytotoxic chemotherapeutic reservoir to trigger the 
apoptosis of neighboring tumor cells [114]. Interestingly, 
the apoptosis of adjacent tumor cells reciprocally reverts 
CAFs to a quiescent state, orchestrating the suppressive 
microenvironment that is favorable for a second-wave 
of nano-therapy. Thus, engineered CAFs may function 
as cytotoxic drugs, providing a new paradigm for tumor 
therapy.

CAFs communicated with cancer cells partly by extra-
cellular vesicles (EVs) in a paracrine way. Several stud-
ies indicated that downregulation of the signals carried 
by CAF-derived EVs or exosomes contributed to the 
proliferation and metastasis of hepatoma cells. In con-
trast, overexpressing certain miRNAs may confer CAFs 
the tumor-suppressive phenotypes, providing potential 
options to impede HCC progression. Wang et al. reported 
that downregulation of miR-335 was observed in cancer 
cells and CAFs, which was beneficial to cancer develop-
ment. Moreover, miR-335-engineered CAFs acquired 
the anti-tumor phenotypes against neighboring cancer 
cells [105]. Furthermore, Zhang et al. demonstrated that 
CAFs-mediated HCC progression was associated with 
the loss of exosomal miR-320a derived from CAFs. By 
reprogramming with exogenous miR-320a, CAFs exerted 
miR-320a-mediated tumor-suppressing effects on HCC 
cells [106]. However, these strategies for controlling the 
evolvement of HCC are still limited and remain further 
pre-clinically investigated.

Target paracrine productions of CAFs
Aside from the strategies above, another promising strat-
egy is to target CAF-derived cytokines and chemokines. 
Growing studies have suggested that the potentially tar-
geted value of CAFs-secreted TGF-β in the VM forma-
tion [57], tumor growth and invasion [46, 115]. Morén 
et  al. indicated that liver X receptors α (LXRα) agonist 
T0901317 suppressed HCC growth by abrogating TGF-β-
induced fibroblastic phenotypes of CAFs and hepatoma 
cells [42]. Mechanically, T0901317 repressed the tran-
scriptional induction by TGF-β stimulation through 
LXRα binding to the adjacent DNA motifs of the ACTA2 
promoter. Indeed, several pharmacological approaches 
of impeding TGF-β signaling have been developed to 
efficiently attenuate aggressiveness of HCC cells. It has 

been reported that TGF-β signaling in fibroblasts inhib-
ited T cells penetration and impaired the tumor response 
to anti-PD-L1 agent. Remarkably, co-administration of 
TGF-β-blocking and anti-PD-L1 antibodies provoked 
effective anti-tumor immunity and reversed the chem-
oresistance of anti-PD-L1 agent [116]. In addition, TGF-β 
inhibitors have been developed and manifested with 
inhibitory effects on HCC cells. One typical representa-
tive TGF-β receptor inhibitor LY2109761 interrupts the 
cross-talk between HCC cells and CAFs, leading to a 
significant reduction of HCC growth and dissemina-
tion [47]. More applausively, another TGF-β inhibitor 
LY2157299 is evaluated at phase II clinical trial for HCC 
patients that fail in sorafenib treatment [117]. Recently, 
gold nanoparticles (GNPs) were found to alter cell mor-
phology, migration, and molecular markers of CAFs 
by decreasing the levels of fibroblast activation protein 
TGF-β1 [118].

Several chemokines containing CCL2/5/7 and 
CXCL16 were detected highly expressed in CAF-CM. 
Further investigation showed that these CAFs-derived 
chemokines facilitated HCC metastasis through activat-
ing Hh and TGF-β pathways in HCC cells. The neutral-
izing antibodies of the chemokines obviously abolished 
CAFs-induced HCC migration, suggesting that CAFs-
generated chemokines are potential therapeutic tar-
gets for HCC [66]. Recent data demonstrated that CAFs 
released soluble CXCL12 into the HCC microenviron-
ment and activated CXCL12/CXCR4/PI3K/AKT sign-
aling of neighboring HCC cells, which subsequently 
alleviated apoptosis by elevating the BCL-2/BAX ratio. 
Indeed, downregulating CXCR4 abrogated the anti-
apoptotic effects triggered by CAFs, suggesting the 
underlying role of CXCL12/CXCR4 pathway in CAFs-
mediated apoptosis evasion in HCC milieu [49]. Previous 
studies have noted that the CXCL12-CXCR4 axis could 
induce FAP(+) CAFs-mediated immunosuppression by 
excluding CD8+ T cells. In a PDAC model, targeting the 
CXCL12-CXCR4 pathway by a specific CXCR4 inhibi-
tor AMD3100 induced infiltration of CD8+ T cells into 
the tumors. Besides, CXCL12-induced T cell exclusion 
greatly hindered the anti-tumor effects of anti-PD-L1 
monoclonal antibodies, thus AMD3100 synergized with 
α-PD-L1 could greatly enhance the therapeutic effects 
on tumor cells [119]. However, the efficiency of targeting 
CXCL12-CXCR4 axis remain further evaluation in HCC.

Sun et al. indicated that Resolvin D1(RvD1), an endog-
enous anti-inflammatory lipid mediator, impeded CAFs-
induced EMT and stemness features of HCC cells by 
suppressing the secretion of COMP [30]. RvD1 also 
impaired CAFs-derived COMP in a paracrine manner by 
targeting FPR2/ROS/FOXM1 signaling, ultimately block-
ing the FOXM1 recruitment to the COMP promoter. As 
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one of the most abundant cytokines secreted by CAFs in 
HCC, IL-6 modulates immune response by regulating 
the generation of DCs, recruitment and function of neu-
trophils, and the induction of monocytes to differentiate 
into MDSCs. Recent studies showed that that blocking 
IL-6 enhanced antitumor immunity in HCC. IL-6 inhibi-
tors could also reverse the anti-PD-L1 resistance of HCC. 
Moreover, synergized IL-6 and PD-L1 blockade effec-
tively inhibited HCC growth in  vivo. In a mice model 
of HCC, combinational treatment of IL-6 blockade and 
anti-PD-L1 presented effectiveness with smaller tumor 
size and longer survival time [120]. In addition, Xiong 
et al. noted that IL-6 neutralizing antibody depleted stem 
cell-like properties of HCC cells through inactivating 
STAT3/Notch signaling [65].

As is generally acknowledged that hepatic fibrosis 
greatly promotes occurrence of HCC, alleviating fibro-
sis may actually attenuate hepatocarcinogenesis. Accu-
mulating clinical evidence have endorsed the efficiency 
of low-dose metronomic (LDM) chemotherapy regimen 
than traditional chemotherapy. Traditional maximum-
tolerated dose chemotherapy could unexpectedly induce 
an ELR+ chemokine–producing phenotype in CAFs, 
whereby fostering chemoresistance and tumor progres-
sion. On the contrary, continuous LDM therapy largely 
downregulates therapeutics-induced CAFs paracrine 
signaling and prevents CAFs activation, resulting in an 
enhanced treatment response [121]. Currently, the effec-
tiveness of either LDM chemotherapy alone or in com-
bination with targeted therapeutics has been validated 
in several clinical trials [122]. Thus, it is a worthwhile 
potential approach to overcome CAFs-induced aggres-
sive behaviors in HCC.

Deplete CAFs by targeting surface markers
α-SMA is a typical marker of the myofibroblast subset of 
CAFs. However, the effects of targeting α-SMA remains 
controversial on tumor progression. In a mouse model 
of breast cancer, targeting α-SMA(+) CAFs obviously 
impeded tumor metastasis [123]. In contrast, blocking 
α-SMA enhanced the infiltration of CD3+ Foxp3+ Tregs 
in tumors, thereby facilitating immunosuppressive TME 
for tumor progression [124]. Currently, the major strategy 
for depleting CAFs is mainly targeting another CAF sur-
face marker FAP. Lang et al. constructed a CAF-targeting 
siRNA delivery system by loading the FAP-α antibody 
onto the cell-penetrating peptide-based nanoparticles, 
which specifically downregulated CXCL12 expression 
in CAFs [125]. Polyphyllin I could considerably inhibit 
FAP, SDF-1, and HGF in CAFs, and further suppress the 
growth of gastric cancer in  vivo [126]. Genetic deple-
tion of FAP reduced the infiltration of FAP(+) CAFs with 
increased infiltration of CD8+ T cells [127]. In addition, 

targeting FAP by DNA vaccines efficiently promoted 
CD8+ T cell-mediated repression of CAFs, thereafter 
elevating intra-tumor chemotherapeutic drug uptake 
in multi-drug-resistant tumors [104]. To date, pre-clin-
ical studies suggested targeting FAPα might be efficient 
approaches, including DNA vaccine, enzymatic inhibi-
tor, neutralizing antibody, and chimeric antigen receptor 
T-cells [128]. Different from these strategies, Zhen et al. 
conducted a nanoparticle-based photoimmunotherapy 
that can selectively kill CAFs without causing systemic 
toxicity [129]. By using FAP-specific single chain variable 
fragment, this nano-approach efficiently eliminated CAFs 
and caused tumor suppression in tumor-bearing immu-
nocompetent mice.

Target precursors of CAFs
Except for targeting CAF cell surface markers, alterna-
tive approach of targeting CAFs’ precursors may effi-
ciently reduce the generation of CAFs. Remarkably, as 
the main source of CAFs in HCC, the activated HSCs 
can be targeted by sibrotuzumab without toxic to nor-
mal hepatic cells [107]. Additionally, Chen et al. demon-
strated that a genistein derivative DFOG intervened the 
crosstalk between HSCs and hepatic CSCs by downregu-
lating FOXM1 expression and HGF secretion of HSCs. 
Metformin, a well-known anti-diabetes drug, was previ-
ously reported to prevent liver tumorigenesis by attenu-
ating HSCs activation in CCl4 challenged transgenic 
mouse model [109]. Another widely used agent curcumin 
could significantly suppress the HSCs-induced aggres-
sive behaviors of HCC cells by inhibiting reactive oxygen 
species (ROS)/HIF-1α/CTGF signaling [110]. Currently, 
activated HSCs can also be inhibited by efficient anti-
fibrotic drugs, including PRI-724, follistatin, Gliotoxin, 
salvianolic acid, sulfasalazine, Curcumin, tanshinone I, 
and conophylline [130–133]. It is worth noting that these 
drugs against liver fibrosis may also benefit for HCC 
treatment by blunting of CAFs’ activation [94]. Apart 
from HSCs, PTFs might also be the candidate target. A 
pan-LPA inhibitor (α-bromomethylene phosphonate-
LPA) blocked the transformation from PTFs into CAFs, 
subsequently suppressing HCC growth and  progression 
in vitro and in vivo [45].

Block activation signaling and downstream effectors 
of CAFs
Monocytic MDSCs (M-MDSCs) accumulated in fibrotic 
livers, which is associated with decreased tumor-infiltrat-
ing lymphocytes (TILs) and increased tumorigenicity in 
mouse models. In human HCC, M-MDSCs enriched in 
the para-cancerous fibrotic liver tissues are remarkably 
correlated with aggressive tumor phenotypes and shorter 
survival. Prior study indicated that M-MDSCs in HCC 
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could be differentiate from monocytes activated by CAFs 
through monocyte-intrinsic p38 MAPK signaling. Inter-
estingly, targeting the CAF-M-MDSC crosstalk using 
p38 MAPK inhibitor significantly enhanced the efficacy 
of anti-PD-L1 therapy and led to tumor eradication, ulti-
mately prolonging survival in the fibrotic-HCC mouse 
model [111].

Almost half of the HCC cases show upregulated activity 
of mTOR pathway, which plays essential roles in tumor 
growth, proliferation and apoptosis. Since CAFs-derived 
factors trigger hepatocarcinogenesis partially through 
mTOR  cascade signaling, inactivating mTOR  signal-
ing  may be a potential treatment for HCC. Indeed, the 
mTOR signaling pathway inhibitor rapamycin exhibited 
antitumoral activity by interfering with progranulin or 
IL-6-mediated proliferation and invasion of HCC cells 
[62]. In lung cancer and melanoma, the IGF2 neutralizing 
antibody and the autophagy inhibitor 3-MA dramatically 
reduced the CAF-promoted tumor relapse in mice after 
radiotherapy by regulating m-TOR-mediated autophagic 
activities. Additionally, mTOR pathway contributes to 
the synthesis of various secretions of α-SMA(+) CAFs, 
thereby eliminating the CAF-mediated drug resistance in 
cancer cells. Therefore, targeting mTOR signaling attenu-
ates the production of multifarious secretions, which 
provide an alternative option for cancer treatment [134]. 
As described above, BMP4 activated NFs into CAFs via 
SMAD signaling pathway. Further dorsomorphin (SMAD 
1/5/8 inhibitor) treatment suppressed the elevation of 
ACTA2 and IL-6 induced by exogenous BMP4 [51]. 
Aside from that, p-STAT3 (Tyr705) inhibitor cryptotan-
shinone could also deplete the CAFs-induced CSC effects 
on HCC cells by abrogating STAT3 signaling [65]. These 
evidences suggest that the key genes and signaling path-
ways involved in the activation of CAFs are promising 
molecular targets for HCC treatment.

Conclusion
Accumulating evidences suggest the pivotal roles of CAFs 
in favoring aggressive behaviors in HCC. In this review, 
we explicitly summarized the heterogeneity of CAFs in 
HCC, regarding cell origin, location, and phenotypes. 
Potential mechanisms by which CAFs fuel HCC pro-
gression include ECM remodeling, neovascularization, 
immunosuppression, EMT and stemness of HCC cells. 
Given the crucial roles in HCC progression, CAF may be 
an attractive target for the treatment of HCC. Growing 
studies have highlighted the benefits of “anti-CAFs” ther-
apy for tumor patients. However, for the current status, 
it is formidable to target CAFs precisely without damag-
ing normal tissue due to the elusive sources and less spe-
cific markers. Additionally, considering the existence of 
cancer-restraining CAFs in other cancer types, the exact 

roles of CAFs in HCC should be further determined [135, 
136]. In conclusion, it is attached great significance to 
further investigating the roles and mechanisms involved 
in the CAFs in HCC progression, which will provide can-
didate targets for HCC treatment.
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