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Abstract

CaV1/CaV2 channels, comprised of pore-forming a1 and auxiliary (b,a2d) subunits, control diverse biological responses in
excitable cells. Molecules blocking CaV1/CaV2 channel currents (ICa) profoundly regulate physiology and have many
therapeutic applications. Rad/Rem/Rem2/Gem GTPases (RGKs) strongly inhibit CaV1/CaV2 channels. Understanding how
RGKs block ICa is critical for insights into their physiological function, and may provide design principles for developing
novel CaV1/CaV2 channel inhibitors. The RGK binding sites within CaV1/CaV2 channel complexes responsible for ICa

inhibition are ambiguous, and it is unclear whether there are mechanistic differences among distinct RGKs. All RGKs bind b
subunits, but it is unknown if and how this interaction contributes to ICa inhibition. We investigated the role of RGK/b
interaction in Rem inhibition of recombinant CaV1.2 channels, using a mutated b (b2aTM) selectively lacking RGK binding.
Rem blocked b2aTM-reconstituted channels (74% inhibition) less potently than channels containing wild-type b2a (96%
inhibition), suggesting the prevalence of both b-binding-dependent and independent modes of inhibition. Two mechanistic
signatures of Rem inhibition of CaV1.2 channels (decreased channel surface density and open probability), but not a third
(reduced maximal gating charge), depended on Rem binding to b. We identified a novel Rem binding site in CaV1.2 a1C N-
terminus that mediated b-binding-independent inhibition. The CaV2.2 a1B subunit lacks the Rem binding site in the N-
terminus and displays a solely b-binding-dependent form of channel inhibition. Finally, we discovered an unexpected
functional dichotomy amongst distinct RGKs— while Rem and Rad use both b-binding-dependent and independent
mechanisms, Gem and Rem2 use only a b-binding-dependent method to inhibit CaV1.2 channels. The results provide new
mechanistic perspectives, and reveal unexpected variations in determinants, underlying inhibition of CaV1.2/CaV2.2
channels by distinct RGK GTPases.
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Introduction

Ca2+ influx via high-voltage-activated CaV1/CaV2 Ca2+ chan-

nels links electrical signals to physiological responses in excitable

cells, and consequently, regulates myriad biological functions

ranging from muscle contraction to hormone and neurotransmit-

ter release [1,2]. CaV1/CaV2 channel activity is modulated by

various intracellular signaling molecules, and this serves as a

powerful method to alter physiology [1,3]. Furthermore, molecules

that selectively inhibit CaV1/CaV2 channels are current or

prospective therapeutics for serious cardiovascular (e.g. hyperten-

sion, angina) and neurological (e.g. Parkinson’s disease, neuro-

pathic pain, stroke) diseases [4,5,6,7,8].

Rad/Rem/Rem2/Gem (RGK) proteins are a four-member

subfamily of the Ras superfamily of monomeric GTPases [9], and

are the most potent known intracellular inhibitors of CaV1/CaV2

channels [10,11,12]. RGK proteins are present in excitable

tissue— including skeletal/cardiac muscle, nerve, and endocrine

cells— suggesting that their inhibition of CaV1/CaV2 channels has

physiological significance. Consistent with this notion, suppression

of basal Rad expression in heart increases L-type CaV1.2 calcium

current (ICa,L) and leads to cardiac hypertrophy [13,14]. Mech-

anistically, RGK GTPases inhibit CaV1/CaV2 channels using

multiple methods [15]. For example, Rem inhibits recombinant

CaV1.2 channels reconstituted in HEK 293 cells using at least

three independent mechanisms [16]: (1) by decreasing the number

of channels (N) at the cell surface; (2) by inhibiting open probability

(Po) of surface channels; and (3) by partially immobilizing voltage

sensors as reported by a reduced maximal gating charge (Qmax).

A core unanswered question relates to the geographical

localization of RGK binding site(s) on CaV1/CaV2 channel

complexes responsible for ICa inhibition. Mature CaV1/CaV2

channels are macro-molecular complexes comprised minimally of

a pore-forming a1 protein assembled with auxiliary b/a2d
subunits, and calmodulin [2,17]. CaVb is required for a1

trafficking to the plasma membrane, enhancing channel open

probability (PO), and normalizing channel gating [18,19]. All four

RGKs bind CaVbs and it has been widely assumed, though not

proven, that the RGK/b interaction is essential for CaV1/CaV2

channel inhibition [10,12,15,20]. This notion has been strongly
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challenged by a recent finding that b binding is not necessary for

Gem inhibition of neuronal P/Q-type (CaV2.1) channels [21].

This new provocative result raises several outstanding fundamen-

tal questions. First, it is now unclear whether the RGK/b
interaction plays any role in ICa inhibition, or whether it is merely

an unrelated epi-phenomenon. Second, though it has been

proposed that RGKs may inhibit CaV1/CaV2 channels by

binding directly to pore-forming a1 subunits [21,22], to date no

RGK binding site responsible for ICa reduction has been described

for any a1-subunit isoform. Third, while it is formally possible that

distinct RGKs may use different mechanisms and determinants to

inhibit individual CaV1/CaV2 channels, this idea has not been

explored.

Here, we report that Rem uses both b-binding-dependent and

b-binding-independent mechanisms to inhibit recombinant

CaV1.2 channels. We identified a novel Rem binding region on

the N-terminus of the pore-forming CaV1.2 a1C subunit that

mediates b-binding-independent inhibition. The N-type (CaV2.2)

channel a1B subunit lacks the Rem binding site in the N-terminus

and displays only b-binding-dependent inhibition. Finally, we

discovered that distinct RGK GTPases differ in their use of the

two determinants for CaV1.2 channel suppression— Rem and

Rad use both b-binding-dependent and independent mechanisms,

whereas Gem and Rem2 solely utilize a b-binding-dependent

mode of inhibition.

Results

Rem inhibits CaV1.2 channels using both b-binding-
dependent and b-binding-independent mechanisms

Rem potently inhibits recombinant CaV1.2 channels (a1C/b2a)

reconstituted in HEK 293 cells (Fig. 1 B and C). Cells transiently

transfected with a1C+b2a generate robust ICa,L which is virtually

eliminated (96% inhibition) when Rem is co-expressed (Fig. 1 B

and C). It is unknown whether this dramatic effect is mediated

through Rem binding to the auxiliary b, the pore-forming a1C

subunit, or both (Fig. 1A). To address this issue, we introduced

three point mutations (D243A, D319A and D321A) into b2a to

generate a mutant (b2aTM) that selectively loses binding to RGK

proteins, as previously demonstrated [23] and confirmed here (Fig.

S1). Cells expressing mutant CaV1.2 channels reconstituted with

a1C+b2aTM yielded strong ICa,L with amplitude and voltage-

dependence indistinguishable from wild-type CaV1.2 (Fig. 1 D and

E), demonstrating that the mutations did not adversely affect the

structure and functional interaction of b with a1C. Rem inhibited

ICa,L through mutant a1C+b2aTM CaV1.2 channels (Fig. 1 D and

E). However, the magnitude of Rem inhibition of mutant channels

(74%) was significantly less than observed with wild type CaV1.2

(Fig. 1). The intermediate impact of Rem on a1C+b2aTM channels

indicates Rem inhibits CaV1.2 channels using both b-binding-

dependent and independent mechanisms.

We previously reported that Rem inhibits CaV1.2 channels

using multiple, independent methods: decreasing N, Po, and Qmax

[16]. We investigated which, if any, of these distinct mechanisms is

dependent on Rem binding to b. To quantitatively determine the

relative CaV1.2 surface density we introduced a 13-residue high-

affinity bungarotoxin (BTX) binding site (BBS) into the extracel-

lular domain II S5–S6 loop in a1C-YFP [16]. Surface a1C[BBS]-

YFP was detected in non-permeabilized cells by sequential

exposure to biotinylated BTX and streptavidin-conjugated quan-

tum dot (QD). Labeled cells are then subject to flow cytometry,

permitting high throughput measurements of fluorescence signals

[16,24] (Fig. S2). Cells expressing a1C[BBS]-YFP+b2a displayed a

strong QD655 fluorescence signal (Fig. 2A, top row), indicating an

abundance of channels at the cell surface. Co-expression of CFP-

Rem with wild-type CaV1.2 markedly decreased N, as reported by

a ,75% decrease in mean QD655 fluorescence (Fig. 2A;

normalized mean QD655 fluorescence = 0.2660.01, n = 3 inde-

pendent flow cytometry experiments in cells co-expressing CFP-

Rem compared to control cells expressing a1C[BBS]-YFP+b2a

alone). These results are consistent with our previous observations

[16]. Cells expressing a1C[BBS]-YFP+b2aTM displayed a similar

channel surface density as control a1C[BBS]-YFP+b2a cells

(Fig. 2B; normalized mean QD655 fluorescence = 0.9460.04,

n = 3). Interestingly, CFP-Rem barely decreased QD655 fluores-

cence in cells expressing a1C[BBS]-YFP+b2aTM (Fig. 2B; normal-

ized mean QD655 fluorescence = 0.7760.02, n = 3), compared to

the substantial drop observed with control channels (Fig. 2A).

Therefore, the ability of Rem to reduce N is critically dependent

on its capacity to bind b.

A second mode of Rem inhibition of CaV1.2 involves a

reduction in channel Po that depends on membrane targeting of

Rem’s nucleotide binding domain (NBD) [16,20]. When expressed

in cells, wild-type Rem autonomously targets to the inner leaflet of

the plasma membrane via electrostatic and hydrophobic interac-

tions afforded by basic and aromatic residues in the distal C-

terminus [25]. A Rem truncation mutant, Rem265, featuring a

deletion of the final 32 amino acid residues in the C-terminus,

loses both membrane targeting and the ability to block ICa

[12,16,20]. Replacing the deleted 32 residues with a generic

membrane-targeting domain rescues the capacity to inhibit ICa

[26]. We exploited this feature to generate an inducible CaV

channel inhibitor by placing the C1 domain of protein kinase Cc
(PKCc) to the end of CFP-Rem265 [16]. When expressed in cells,

the resulting construct, CFP-Rem265-C1PKC, is cytosolic but can

be rapidly recruited to the plasma membrane with the phorbol

ester, PdBu (Fig. 2C). In a1C+b2a channels, membrane recruit-

ment of Rem265-C1PKC results in an attendant rapid and

substantive 60% decrease in ICa (Fig. 2D), which is solely due to

a decrease in Po [16,20]. In sharp contrast, a1C+b2aTM channels

were unaffected by membrane-recruitment of Rem265-C1PKC

(Fig. 2E). The slight 10% reduction in ICa observed in this group is

commensurate with the normal amount of channel rundown

observed in these time course experiments. These results establish

that this Rem-induced reduced-Po mechanism of channel inhibi-

tion is also mediated through the Rem/b interaction.

A third characteristic functional impact of Rem on CaV1.2

channels is a reduction of Qmax that occurs even when the decrease

in N is accounted for, and is likely accomplished by a Rem-induced

partial immobilization of a1C voltage sensors [16]. Wild-type

a1C+b2a channels yield large ON gating currents and Qmax, which

are almost eliminated in the presence of CFP-Rem (Fig. 2F).

Qualitatively similar results were obtained with mutant

a1C+b2aTM channels, which displayed a large Qmax that was

significantly reduced by CFP-Rem (Fig. 2G). Therefore, unlike the

effects on N and Po, binding to b is not necessary for Rem-induced

decrease of CaV1.2 Qmax.

Identification of a novel Rem binding region on the pore-
forming a1C subunit

The most parsimonious explanation for the existence of a b-

binding-independent mode of Rem-induced block of ICa,L is that

Rem directly binds a1C to initiate this form of CaV1.2 inhibition.

However, to date, no such functional Rem binding site on a1C has

been described. Given that Rem is localized to the intracellular

side of the plasma membrane, we hypothesized the existence of a

Rem binding site somewhere within the major cytoplasmic regions

(N-terminus, I–II loop, II–III loop, III–IV loop, and C-terminus)
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PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e37079



of a1C (Fig. 3A). We searched for such a binding site using two

complementary methods. First, we used fluorescence resonance

energy transfer (FRET) to probe for an interaction between YFP-

Rem and CFP-tagged intracellular domains of a1C (Fig. 3B). Using

a three-cube FRET method [27,28], we found that only CFP-

tagged a1C N-terminus (CFP-a1CNT) yielded an appreciable

FRET signal when co-expressed with YFP-Rem (Fig. 3B). None of

the other CFP-tagged a1C intracellular loops yielded a FRET

signal significantly above control cells expressing YFP-Rem+CFP

(Fig. 3B, dotted line). The FRET results were not due to

differences in the stoichiometry of donor to acceptor molecules

since the estimated ratio of donor (ND) to acceptor (NA) molecules

[27,28] was similar among the different groups (Fig. S3). The

FRET results aligned with visual evidence of protein co-

localization (Fig. 3). When expressed individually, YFP-Rem is

enriched at the plasma membrane whereas CFP-a1CNT has a

mostly diffuse fluorescence through the cytosol and in the nucleus

(Fig. S4). However, when co-expressed with YFP-Rem, a fraction

of the CFP-a1CNT present in cells was targeted to the plasma

membrane, tracking the membrane localization of Rem and

providing visual evidence of an interaction (Fig. 3B; Fig. S4).

As a complementary approach, we used co-immunoprecipita-

tion (co-IP) assays to determine interaction between YFP-Rem and

individual CFP-tagged a1C intracellular domains co-transfected

into HEK 293 cells (Fig. 3C). All CFP-tagged a1C intracellular

domains and YFP-Rem were well expressed (Fig. 3C, input). Only

CFP-a1CNT co-IPed with YFP-Rem (Fig. 3C), corroborating the

results from FRET and protein co-localization approaches

(Fig. 3B). As a further control experiment, we observed no pull

down of CFP-a1CNT with anti-Rem antibody in cells transfected

with CFP-a1CNT alone (i.e., no YFP-Rem co-expressed; not

shown). We were surprised to find no binding between Rem and

a1C C-terminus (a1CCT) given a recent report that these two

proteins interact [29]. The reasons for this disparity are unclear.

However, the fact that using three independent approaches

(FRET, co-localization analyses, and co-IP) we could observe no

interaction between Rem and a1CCT while detecting association

with a1CNT effectively rules out the potential trivial explanation of

a false negative result that could conceivably be obtained with any

one method. One possibility is that the presence of fluorescent

protein tags on Rem and a1CCT may occlude or weaken this

interaction to a point where it is undetectable in our different assay

conditions.

a1CNT is comprised of 153 amino acid residues. Peptide

mapping (Fig. 3D) combined with co-IP (Fig. 3E) and confocal co-

localization (Fig. S5) experiments suggested the Rem binding site

resides in a region towards the distal end of a1CNT. This region is

immediately upstream of transmembrane segment 1 in domain I

(IS1), and shows homology (60% identical residues or conservative

substitutions) among distinct CaV1/CaV2 a1-subunit isoforms

(Fig. 3F). Surprisingly, despite the high sequence homology, Rem

did not bind CaV2.2 N-terminus (a1BNT) as determined either by

FRET (Fig. 4A) or visual inspection of protein co-localization (not

shown).

Rem association with a1CNT mediates b-binding-
independent inhibition of CaV1.2

Does Rem binding to a1CNT mediate b-binding-independent

CaV1.2 inhibition? We addressed this question in several ways.

First, given that CaV2.2 a1BNT does not bind Rem (nor do any of

the other a1B intracellular domains) (Fig. 4A), we hypothesized

that CaV2.2 would lack a b-binding-independent form of channel

inhibition. Indeed, while Rem strongly suppressed ICa in control

cells expressing a1B+b2a (Fig. 4B), it had no impact on a1B+b2aTM

channels (Fig. 4C). Hence, Rem inhibits CaV2.2 channels solely

through a b-binding-dependent mechanism. We attempted to

exchange N-termini between CaV1.2 a1C and CaV2.2 a1B, to

determine if a1CNT is necessary and sufficient to reconstitute b-

binding-independent Rem inhibition in CaV1/CaV2 channel a1

subunits. Unfortunately, the chimeric channels gave rise to very

small currents suggesting that a1-subunit N-termini may have a

customized, non-transferable role in the structural and/or

functional maturation of individual CaV1/CaV2 channels.

As an alternative approach towards evaluating the functional

importance of Rem/a1CNT association, we determined the impact

of over-expressing a1CNT on Rem inhibition of a1C+b2a and

a1C+b2aTM channels, respectively. We reasoned that if Rem/

Figure 1. Rem inhibits CaV1.2 channels using both b-binding-dependent and independent mechanisms. (A) Alternative models for Rem
functional interaction with CaV1.2 channel complex. (B) Exemplar Ba2+ currents from HEK 293 cells expressing wild-type CaV1.2 (a1C+b2a) in the
absence (left) or presence (right) of Rem. (C) Population current density (Ipeak) vs. voltage relationships for wild-type CaV1.2 channels in the absence
(&, n = 6 for each point) or presence (red m, n = 5 for each point) of Rem. Data are means 6 S.E.M. (D, E) Data for mutant CaV1.2 channels (a1C+b2aTM)
in the absence (&, n = 8 for each point) or presence (red m, n = 10 for each point) of Rem. Same format as B, C. In E, data from wild-type CaV1.2
channels are reproduced (dotted lines) to facilitate direct visual comparison.
doi:10.1371/journal.pone.0037079.g001
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a1CNT interaction is functionally relevant then over-expressing

a1CNT would, via competition, partially rescue Rem inhibition of

a1C+b2a channels, while fully overcoming Rem inhibition of

a1C+b2aTM channels (Fig. 4D). Indeed, these predictions were

borne out in functional experiments. Over-expressing a1CNT

partially relieved Rem inhibition of wild type CaV1.2 channels

(Fig. 4E; Ipeak,0mV = 20.965.4 pA/pF, n = 6 for cells expressing

a1C+b2a+Rem+a1CNT compared to Ipeak,0mV = 2.861.2 pA/pF,

Figure 2. Distinct mechanisms of Rem inhibition of CaV1.2 differentially depend on Rem/b interaction. (A, B) Differential impact of CFP-
Rem on surface density of wild-type (a1C[BBS]-YFP+b2a) and mutant (a1C[BBS]-YFP+b2aTM) CaV1.2 channels, respectively, using a surface channel
quantum dot labeling method. Confocal images for corresponding imaging channels were obtained with identical instrument settings. Scale bar,
25 mm. (C) Rapid recruitment of CFP-Rem265-C1PKC to the plasma membrane induced by 1 mM PdBu. Scale bar, 8 mm. (D, E) PdBu-induced membrane
translocation of CFP-Rem265-C1PKC concomitantly inhibits wild-type (a1C+b2a), but not mutant (a1C+b2aTM) CaV1.2 channels. (F, G) Rem inhibits gating
currents and Qmax in both wild-type and mutant CaV1.2 channels. * P,0.05 when compared to the corresponding without Rem data using Student’s
two-tailed unpaired t test.
doi:10.1371/journal.pone.0037079.g002
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n = 5 for a1C+b2a+Rem, P,0.05, Student’s t test), while fully

rescuing mutant channel currents (Fig. 4E; Ipeak,0mV =

80.1623.5 pA/pF, n = 8 for cells expressing a1C+b2aTM+Re-

m+a1CNT compared to Ipeak,0 mV = 92.4615.5 pA/pF, n = 8 for

cells a1C+b2aTM). As a control experiment, a1BNT had no impact

on Rem inhibition of mutant channels (Fig. 4E; Ipeak,0 mV =

18.264.6 pA/pF, n = 5 for cells expressing a1C+b2aTM+Re-

m+a1BNT compared to Ipeak,0 mV = 22.265.3 pA/pF, n = 10 for

a1C+b2aTM+Rem). These results are consistent with the idea that

Rem/a1CNT association mediates b-binding-independent Rem

inhibition of CaV1.2 channels.

Distinct RGK GTPases differentially use a1- and b-binding
dependent mechanisms to inhibit CaV1.2 channels

We next examined whether the use of both a1- and b-binding

mechanisms to inhibit CaV1.2 channels is a conserved feature

among the four distinct RGK GTPases. Initial indications of

fundamental differences were immediately apparent from visual

confocal co-localization images and co-immunoprecipitation

experiments which demonstrated that unlike Rem, none of the

other RGK proteins— Gem, Rem2, and Rad— bound a1CNT

(Fig. S6). We assessed the impact of individual RGKs on either

a1C+b2a or a1C+b2aTM channels reconstituted in HEK 293 cells,

and observed a sharp dichotomy in functional responses (Fig. 5A).

Whereas, all RGKs markedly inhibited ICa,L through wild-type

a1C+b2a channels only Rem and Rad also inhibited a1C+b2aTM

channels. Mutant a1C+b2aTM channels were completely refractory

to Gem and Rem2, explicitly demonstrating that these RGK

proteins utilize only b-binding-dependent mechanisms to inhibit

ICa,L (Fig. 5 A and B). The finding that Rad displayed both a b-

binding-dependent and a b-binding-independent mode of inhibi-

tion (albeit to a lesser extent than observed for Rem) was surprising

given its apparent lack of binding to a1C N-terminus (Fig. S6). We

speculated that Rad may bind to another intracellular domain of

a1C to initiate b-binding-independent inhibition of CaV1.2.

However, we could not detect any evidence of Rad binding to

any of the other major intracellular domains of a1C (Fig. S7). One

possibility is that Rad may bind to a1C using multiple weak

interactions rather than a dominant strong binding site as we have

found for Rem.

Discussion

Amongst the myriad forms of physiological modulation of CaV

channels by intracellular signaling molecules, inhibition of CaV1/

CaV2 channels by RGKs stands out for its potency (often virtual

elimination of ICa) and indiscrimination (affects all CaV1/CaV2

isoforms). In this regard, RGKs behave as polar opposites to CaV

channel auxiliary b subunits which interact promiscuously with all

CaV1/CaV2 to stimulate ICa by increasing channel membrane

trafficking and increasing single-channel open probability (Po).

Given this fact, the discovery that RGKs bind bs led to the widely-

held assumption that RGK/b interaction was fundamental to the

mechanism of channel inhibition [15,30]. Early renditions of this

idea suggested that RGKs bound to bs and prevented their

interaction with a1 subunits, thereby compromising channel

trafficking to the membrane [10,31,32], and leaving channels at

the cell surface in a low-Po ‘a1-alone’ mode [33]. However, it was

subsequently shown that RGKs do not disrupt the a1-b interaction

leading to revised models invoking a ternary a1/b/RGK complex

in which bs bridge a1 subunits and RGKs to initiate ICa inhibition

[11,16,20,34,35]. Recently, the primacy of the RGK/b interaction

in the mechanism of ICa inhibition has been challenged based on

the interesting finding that preventing Gem interaction with b did

Figure 3. Rem binds a1C N-terminus. (A) Schematic of a1C showing
four homologous transmembrane domains (I–IV), intracellular N/C
termini and domain-connecting loops. (B) Top, interaction of individual
CFP-tagged a1C intracellular loops and termini with YFP-Rem probed
using FRET. Dotted line represents YFP-Rem+CFP (n = 10). Bottom,
confocal images. Scale bar, 8 mm. (C) CFP-tagged a1CNT co-immuno-
precipitates with YFP-Rem. All the co-ip lanes and the first input lane
were from the same gel. The rest of the input lanes were from a second
gel run simultaneously because there were insufficient lanes available in
the first gel to accommodate all samples, including marker lanes.
Hence, in the input gel image (right) the first lane (CFP-NT) was spliced
onto the rest of the lanes (dotted line). The co-ip gels have been
cropped to remove light chain IgG bands from the precipitating
antibody. (D) Schematic of a1CNT peptide fragments. (E) Co-immuno-
precipitation of YFP-tagged a1CNT peptide fragments with CFP-Rem. (F)
Sequence comparison of last 22 N-terminus residues among distinct
CaV1/CaV2 channel a1 subunits.
doi:10.1371/journal.pone.0037079.g003
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not impair its ability to block CaV2.1 (P/Q) channels [21]. In the

wake of this report, it is unclear whether the RGK/b interaction

has any role in the mechanism of ICa inhibition, or merely

represents an unrelated epiphenomenon. We have investigated

this issue using a b2a-subunit mutant that selectively loses binding

to RGK proteins. The new findings presented in this work are: (1)

Rem inhibits CaV1.2 channels using both b-binding-dependent

and b-binding–independent mechanisms; (2) binding to b is

required for Rem-mediated decrease in CaV1.2 channel surface

density (N) and open probability (Po), but not Qmax; (3) Rem

associates with a1C N-terminus to initiate b-binding-independent

inhibition; (4) Rem inhibits CaV2.2 channels using a solely b-

binding-dependent mechanism; (5) distinct RGKs differentially use

b-binding-dependent and a1-binding-dependent mechanisms to

inhibit CaV1/CaV2 channels.

The finding that all four RGKs use (at least partially) b-binding-

dependent mechanisms to suppress CaV1.2 channels, reasserts the

importance of the RGK/b interaction for ICa inhibition. Indeed,

for Gem and Rem2, a b-binding-dependent mechanism was the

sole mode for inhibiting CaV1.2 channels. Similarly, Rem

inhibited CaV2.2 channels solely through a b-binding-dependent

Figure 5. Distinct RGKs differentially use b-binding-dependent
and independent mechanisms to inhibit CaV1.2 channels. (A)
Histogram showing impact of individual RGKs on wild-type (a1C+b2a)
and mutant (a1C+b2aTM) CaV1.2 channels. *, #, $ P,0.05 when
compared to a1C+b2a, a1C+b2aTM, or a1C+b2a+RGK, respectively, using
two-tailed unpaired Student’s t test. (B) Cartoon showing dichotomy in
the determinants used by distinct RGKs to inhibit CaV1.2 channels.
doi:10.1371/journal.pone.0037079.g005

Figure 4. Rem interaction with a1C N-terminus mediates b-
binding-independent inhibition. (A) Top, topography of CaV2.2 a1B

subunit. Bottom, interaction of CaV2.2 a1B intracellular domains with
YFP-Rem probed using FRET. Dotted lines represent FRET data from
YFP-Rem+CFP-a1CNT and YFP-Rem+CFP, respectively. (B, C) Population
Ipeak-V relationships for wild type (a1B+b2a) and mutant (a1B+b2aTM)
CaV2.2 channels, respectively, in the absence (&, n = 5 for wild type
channels, and n = 9 for mutant channels) or presence (red m, n = 5 for
wild type channels, and n = 10 for mutant channels) of Rem. Data are
means 6 S.E.M. (D) Schematic showing rationale and predictions for a1C

N-terminus over-expression experiments. (E) Histogram showing impact

of a1C or a1B N-terminus on wild-type (a1C+b2a) and mutant (a1C+b2aTM)
CaV1.2 channels in the presence of Rem. * P,0.05 when compared to
a1C+b2a or a1C+b2aTM using two-tailed unpaired Student’s t test. #
P,0.05 when compared to a1C+b2a+Rem or a1C+b2aTM+Rem using two-
tailed unpaired Student’s t test.
doi:10.1371/journal.pone.0037079.g004
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mechanism, indicating this phenomenon is not limited to just

CaV1.2 channels. Beyond b-binding-dependent inhibition, Rem

and Rad also blocked CaV1.2 channels in a b-binding-indepen-

dent manner. For Rem, this response was mediated through an

association with a1CNT. The discovery of an a1C-binding-

dependent mode of RGK inhibition in CaV1.2 channels aligns

with the finding that Gem inhibits CaV2.1 channels in a b-

binding-independent (and presumably a1A-binding-dependent)

manner [21]. Taken together with previous studies [21,22], our

data suggests a dualistic view for RGK regulation of CaV1.2

channels. First, all RGKs can inhibit CaV1/CaV2 channels by

interacting with b subunits. The essential role of bs in the

functional maturation of all CaV1/CaV2 channels may, therefore,

explain the indiscriminate nature of RGK inhibition of ICa

through HVA CaV channels. Second, distinct RGKs can

selectively inhibit specific CaV1/CaV2 channel isoforms by

differentially binding to individual a1 subunits. This insight may

be potentially exploited to engineer RGKs with sole selectivity for

individual a1 subunits as a means of creating custom, isoform-

specific genetically encoded CaV1/CaV2 channel inhibitors [17].

For Rem inhibition of CaV1.2, the a1C-binding-dependent and b-

binding-dependent mechanisms appear to be equally potent in

blocking ICa,L.

How does binding of RGK proteins to either b or a1 subunits

actually suppress ICa? Rem inhibition of recombinant CaV1.2

channels occurs via multiple mechanisms including: decreased N

(due to enhanced dynamin-dependent endocytosis), Po, and Qmax

(due to voltage sensor immobilization) [16]. Interestingly, Rem-

induced decrease in N and Po (but not Qmax) was b-binding-

dependent. Understanding precisely how the Rem/b interaction

leads to channel endocytosis and decreased Po is an interesting

question for future experiments. It is tempting to speculate that

Rem-induced reduction in Qmax (voltage sensor immobilization)

underlies a1C-binding-dependent inhibition of CaV1.2. Neverthe-

less, we cannot rule out that Rem binding to a1CNT may also

inhibit channel Po using a parallel mechanism that is independent

of voltage sensor immobilization. Such mechanistic details may

potentially be resolved by evaluating the structural determinants

on Rem necessary for a1C-binding-dependent inhibition [16].

Over the last decade, several groups have investigated

mechanisms of RGK GTPase inhibition of CaV channels,

sometimes with discrepant results [10,11,12,16,21,31,35,36,37].

Often, across the various groups, these studies have involved

different RGKs and distinct CaV1/CaV2 channel types, as well as

varied experimental systems. This work produces the new insight

that the mode of RGK-mediated CaV channel inhibition is

customized at both the channel and GTPase level. Hence, a

particular RGK can employ divergent mechanisms to block

distinct CaV channel types, while a specific CaV channel isoform

can be inhibited by different RGKs with diverse mechanisms. This

perspective may help explain some of the inconsistent results

previously published regarding RGK regulation of CaV channels.

In conclusion, this work contributes to the growing realization

that the seemingly simple phenomenon of RGK inhibition of

CaV1/CaV2 channels is underlain by a rich variety of mechanisms

and structural determinants [16,36]. Such mechanistic complexity

may be physiologically relevant as it could significantly enrich the

functional versatility of RGKs as Ca2+ channel blockers in

excitable cells. For example, RGK inhibition of ICa could occur

on different timescales depending on the mode of block of CaV

channels– b-binding-dependent decreases in N could lead to long-

term reductions in current, while b-binding-independent regula-

tion of Qmax produces short-term tuning of ICa. In-depth

understanding of the complexities underlying RGK regulation of

ICa will be important for deciphering such physiological dimen-

sions of this channel modulation, and may be potentially exploited

to create custom genetically encoded CaV channel blockers for

specific applications.

Materials and Methods

cDNA cloning
XFP-tagged RGK constructs [mouse Rem (NM_009047);

human Gem (NM_181702); human Rem2 (NM_173527); mouse

Rad (NM_019662)] were generated by first polymerase chain

reaction (PCR) amplifying and cloning XFP into pcDNA4.1

(Invitrogen) using KpnI and BamHI sites. Subsequently, RGK

constructs were PCR amplified and cloned downstream of XFP

using BamHI and EcoRI sites. To generate CFP-Rem265-C1PKCc,

we used overlap extension PCR to fuse residues 26–89 of mouse

PKCc [38] to the C terminus of Rem265. The fusion product was

subsequently cloned downstream of CFP using BamHI and EcoRI

sites. CFP-a1C intracellular loops constructs were amplified by

PCR and cloned downstream of the XFP molecule using BamHI

and EcoRI sites. To generate XFP-tagged CaVb constructs, we

PCR amplified and cloned XFP into pAd CMV using BamHI and

XbaI sites. CaVbs were amplified by PCR and cloned upstream of

the XFP molecule using NheI and BamHI sites. Point mutations in

b were generated using QuikChange Site-Directed Mutagenesis

Kit (Stratagene). The thirteen-residue bungarotoxin binding site

[BBS] [39] was engineered into the domain II S5–S6 extracellular

loop of a1C at residue 713 using unique restriction enzyme sites,

StuI and BbrPI. Primers that extended from the unique restriction

sites were used together with primers containing the BBS sequence

in an overlap extension PCR reaction. The overlap extension

product was directly ligated into a1C-YFP to generate a1C[BBS]-

YFP.

All PCR products were verified by sequencing
Cell culture and transfection. Low-passage-number HEK

293 cells (gift from Dr. Robert Kass, Columbia University) [40]

were maintained in DMEM supplemented with 10% FBS and

100 mg ml21 penicillin-streptomycin. HEK 293 cells cultured in 6-

cm tissue culture dishes were transiently transfected with

CaV1.2a1C (6 mg), b2a (6 mg), T antigen (2 mg), and the appropri-

ate RGK construct (4 mg), using the calcium phosphate precipi-

tation method. Cells were washed with PBS 5–8 h after

transfection and maintained in supplemented DMEM. For

confocal microscopy experiments, transfected HEK 293 cells were

replated onto fibronectin-coated culture dishes with No. 0 glass

coverslip bottoms (MaTek). For electrophysiology experiments

cells were replated onto fibronectin-coated glass coverslips 24 h

after transfection.

Electrophysiology
Whole-cell recordings were conducted 48–72 h after transfec-

tion using an EPC-8 or EPC-10 patch clamp amplifier (HEKA

Electronics) controlled by PULSE software (HEKA). Micropi-

pettes were fashioned from 1.5-mm thin-walled glass with filament

(WPI Instruments), and filled with internal solution containing (in

mM): 135 cesium methanesulphonate (MeSO3), 5 CsCl, 5 EGTA,

1 MgCl2, 4 MgATP (added fresh) and 10 HEPES (pH 7.3). Series

resistance was typically 1.5–2 MV. There was no electronic series

resistance compensation. External solution contained (in mM): 140

tetraethylammonium-MeSO3, 5 BaCl2, and 10 HEPES (pH 7.3).

Whole-cell I–V curves were generated from a family of step

depolarizations (240 to +100 mV from a holding potential of

290 mV). Currents were sampled at 25 kHz and filtered at 5 or
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10 kHz. Traces were acquired at a repetition interval of 6 s. Leak

and capacitive currents were subtracted using a P/8 protocol.

Labeling of cell surface CaV1.2 channels with QD655

Transfected cells were washed twice with PBS containing

calcium and magnesium (pH 7.4, 0.9 mM CaCl2 and 0.49 mM

MgCl2), and incubated with 1 mM biotinylated a-bungarotoxin in

DMEM/3% BSA in the dark for 1 h at room temperature. Cells

were washed twice with DMEM/3% BSA, and incubated with

10 nM streptavidin-conjugated QD655 for 1 h at 4uC in the dark.

For confocal microscopy, cells were washed with PBS, and imaged

in the same buffer. For flow cytometry, cells were harvested with

trypsin, washed with PBS and assayed in the same buffer.

Confocal microscopy
Static images of a1C[BBS]-YFP, XFP-Rem constructs and

quantum dots signal were observed using a Leica TCS SPL AOBS

MP Confocal microscope system and a 406 oil objective (HCX

PL APO 1.25-.75 NA). HEK 293 cells expressing CFP/YFP fusion

proteins were imaged using a 458/514-nm Argon laser line for

excitation and red signals were imaged using a 633-nm helium-

neon laser line for excitation.

Flow cytometry
Cells were counted using a BD LSRII Cell Analyzer. HEK 293

cells expressing CFP/YFP fusion proteins were excited at 407 and

488-nm, respectively, and red signal was excited at 633-nm. For

each group of experiments we used isochronal untransfected and

single color controls to manually set the appropriate gain settings

for each fluorophore to ensure signals remained in the linear range

and to set threshold values. The same gain settings were then used

for assaying all isochronal transfection samples. Flow cytometry

data were analyzed using FlowJo software.

Immunoprecipitation and immunoblotting
Confluent cultures of HEK 293 cells plated in 6-cm tissue

culture dishes were harvested 48 h after transfection. Cells were

washed in PBS and resuspended in 0.5 mL cold lysis buffer

(50 mmol/L Tris-HCl, 150 mmol/L NaCl, 1% NP-40) containing

16 protease inhibitor cocktail for 30 minutes. Cell lysates were

centrifuged at 10,0006g for 15 minutes at 4uC, and the

supernatant precleared by incubation with 50 mL protein G beads

slurry for 1 h. The mixture was centrifuged and the resulting

supernatant incubated with 4 mg primary antibody [Santa Cruz

Biotechnology: anti-Rem (SC58472); anti-Gem (SC19753); anti-

Rem2 (SC160720); anti-Rad (SC49714)] and 50 mL protein G

slurry for 1 h on a rotator. The mixture was again centrifuged, and

the pellet washed four times with lysis buffer. 50 mL Laemmli

sample buffer was added to the bead pellet and the mixture

vortexed and heated (90u–100uC for 10 minutes). The sample was

centrifuged and the supernatant loaded onto a gel for subsequent

SDS-PAGE and Western blot analyses. For immunoblots, primary

antibodies to GFP (Invitrogen, A6455) were detected by horse-

radish peroxidase-conjugated secondary antibodies (goat-anti

rabbit obtained from Thermo Scientific, 32260) and enhanced

chemiluminescence.

Fluorescence resonance energy transfer (FRET)
Determination of RGK-a1 subunit intracellular domain inter-

actions in live cells was accomplished using the three-cube FRET

algorithm as previously described [27,28]. Cells transfected with

XFP-tagged proteins were washed with Tyrode’s solution and

placed on an inverted microscope equipped for epifluorescence.

Individual cells were excited using a 150-W Xenon arc lamp light

source, and epifluorescence emission signals measured with a

photomultiplier tube were integrated by a fluorometer and

digitized. For each cell, three successive measurements were taken

with filter cube sets optimum for measuring CFP, YFP, and FRET

signals, respectively. Background and autofluorescence levels were

determined by averages from single untransfected cells, and

subtracted from experimental values from each cube. The FRET

ratio (FR) was calculated from background-corrected experimental

measurements as previously described [27,28].

Data and statistical analyses
Data were analyzed off-line using PulseFit (HEKA), Microsoft

Excel and Origin software. Statistical analyses were performed in

Origin using built-in functions. Statistically significant differences

between means (P,0.05) were determined using two-tailed

unpaired Student’s t test. Data are presented as means 6 S.E.M.

Supporting Information

Figure S1 Evidence that bTM loses binding to Rem. (A)

Confocal images of a HEK 293 cell co-expressing CFP-Rem265-

C1PKC and wild type YFP-b3. Under basal conditions both CFP

and YFP fluorescence are diffusely distributed in the cytosol. Upon

addition of 1 mM PdBu (5 min), CFP-Rem265-C1PKC is recruited

to the nuclear and plasma membrane. The sub-cellular localiza-

tion of YFP-b3 dynamically follows that of CFP-Rem265-C1PKC,

providing visual evidence of an interaction between the two

proteins. Scale bar, 5 mm. (B) A mutant b3 featuring three point

mutations, YFP-bTM, does not bind CFP-Rem265-C1PKC, as

reported by the dynamic sub-cellular co-localization assay. (C) Co-

immunoprecipitation assay indicates YFP-b2a associates with CFP-

Rem, and that this interaction is lost with YFP-b2aTM.

(TIF)

Figure S2 Exemplar raw data from flow cytometry
experiments used to determine the relative surface
density of CaV1.2 channels. (A) Confocal images showing

quantum dot labeling of cells transfected with a1C[BBS]-YFP+b2a

6 CFP-Rem (left) and a1C[BBS]-YFP+b2aTM 6 CFP-Rem (right).

Images are reproduced from Fig. 2A, B. Scale bar, 25 mm. (B)

Raw data from isochronal flow cytometry experiments showing

fluorescence intensity of QD655 versus YFP signals for cells

expressing a1C[BBS]-YFP+b2a+CFP-Rem (left) and a1C[BBS]-

YFP+b2aTM+CFP-Rem (right). 50,000 cells were counted for each

condition. Vertical and horizontal lines are threshold values set

based on isochronal experiments using untransfected and single

color control cells. Each dot represents a single cell. Dots have

been arbitrarily color coded to facilitate visualization of distinct

populations. Loosely, green dots represent a1C[BBS]-YFP-positive

cells that lack appreciable trafficking to the membrane (low QD655

signal), while red dots represent a1C[BBS]-YFP-positive cells that

display robust CaV1.2 channel trafficking to the surface (high

QD655 signal). Black dots in the bottom left quadrant correspond

to untransfected cells.

(TIF)

Figure S3 Histogram showing estimates of donor:ac-
ceptor ratio (ND/NA) for FRET experiments shown in
Fig. 3.

(TIF)

Figure S4 Visual evidence that Rem selectively binds
a1C N-terminus. (A) Representative confocal images showing

sub-cellular localization of YFP-tagged a1C intracellular domains

when expressed alone in HEK 293 cells. Aside from I–II loop,
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which autonomously targets to the membrane and nucleus, all

other a1C intracellular domains show mostly diffuse distribution

throughout the cell. Scale bar, 5 mm. (B) Top row, representative

images of YFP-Rem demonstrate that this protein is membrane

enriched when expressed in HEK 293 cells. Bottom row,

representative images showing sub-cellular localization of CFP-

tagged a1C intracellular loops co-expressed with YFP-Rem. Only

CFP-a1CNT demonstrated redistribution from the cytosol to the

plasma membrane when co-expressed with YFP-Rem. (C) Line

scan analyses of CFP fluorescence from cells co-expressing YFP-

Rem and CFP-tagged a1C intracellular loops. Membrane

localization of CFP-a1CNT and CFP-a1CI–II is evident from the

sharp twin peaks of fluorescent signal separated by (cytoplasmic)

regions with lower fluorescence intensity. Line scans were drawn

to avoid the nucleus and areas with clustered fluorescence. (D)

Relative membrane to cytosol fluorescence intensity ratios for

CFP-tagged a1C intracellular domains either expressed alone or

together with YFP-Rem in HEK 293 cells. Absence of membrane

targeting results in a ratio of one, while membrane localization/

enrichment of a protein yields a ratio greater than one. By this

analysis, only CFP-a1CNT showed an increase in membrane

localization when co-expressed with YFP-Rem. CFP-a1CI–II

showed a relative decrement in membrane localization when co-

expressed with YFP-Rem, perhaps reflecting a competition for

membrane binding sites.

(TIF)

Figure S5 Mapping the Rem binding site in a1C N-
terminus. (A) Schematic of a1CNT peptide fragments used to

map Rem binding site. (B) Co-localization pattern of specific YFP-

tagged a1C N-terminus fragments with CFP-Rem at the plasma

membrane suggests Rem binds the distal end of a1C N-terminus.

Scale bar, 5 mm. (C) Relative membrane to cytosol fluorescence

intensity ratios for YFP-tagged a1CNT fragments co-expressed

with CFP-Rem. Ratios greater than unity indicate membrane

targeting/enrichment of fluorescence signal. Line scan analyses

avoided the nucleus and clustered fluorescence signals from

cytosolic areas.

(TIF)

Figure S6 Lack of interaction of Gem, Rem2, and Rad
with a1C N-terminus. (A) Confocal images of YFP-a1CNT with

CFP-tagged Gem, Rem2, and Rad show little co-localization.

Scale bar, 5 mm. (B) Relative membrane to cytosol fluorescence

intensity ratios for YFP-a1CNT co-expressed with distinct CFP-

tagged RGK proteins. (C) Co-immuoprecipitation assay to probe

for a1CNT interaction with Gem, Rem2, or Rad provides no

evidence of an association.

(TIF)

Figure S7 Lack of interaction of Rad with a1C intracel-
lular loops. (A) Confocal images of mCherry-Rad and CFP-

tagged a1C intracellular loops and termini show no evidence of co-

localization. Scale bar, 5 mm. (B) Relative membrane to cytosol

fluorescence intensity ratios for YFP-tagged a1C intracellular loops

co-expressed with distinct mCherry-tagged Rad. (C) Co-immuno-

precipitation assays indicate no interaction between Rad and the

major a1C intracellular loops.

(TIF)
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