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BET bromodomain inhibitors synergize with ATR
inhibitors in melanoma

This article has been corrected since Online Publication and an Erratum has also been Published

Somsundar Veppil Muralidharan1, Berglind Osk Einarsdottir1, Joydeep Bhadury1,2, Mattias F Lindberg1, Jin Wu3, Eric Campeau3,
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Metastatic malignant melanoma continues to be a challenging disease despite clinical translation of the comprehensive
understanding of driver mutations and how melanoma cells evade immune attack. In Myc-driven lymphoma, efficacy of epigenetic
inhibitors of the bromodomain and extra-terminal domain (BET) family of bromodomain proteins can be enhanced by combination
therapy with inhibitors of the DNA damage response kinase ATR. Whether this combination is active in solid malignancies like
melanoma, and how it relates to immune therapy, has not previously investigated. To test efficacy and molecular consequences of
combination therapies cultured melanoma cells were used. To assess tumor responses to therapies in vivo we use patient-derived
xenografts and B6 mice transplanted with B16F10 melanoma cells. Concomitant inhibition of BET proteins and ATR of cultured
melanoma cells resulted in similar effects as recently shown in lymphoma, such as induction of apoptosis and p62, implicated in
autophagy, senescence-associated secretory pathway and ER stress. In vivo, apoptosis and suppression of subcutaneous growth
of patient-derived melanoma and B16F10 cells were observed. Our data suggest that ATRI/BETI combination therapies are effective
in melanoma.
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Malignant melanoma (MM) is potentially curable if diagnosed
early but if the disease becomes metastatic it often is fatal.
Recent advances in the molecular and immunological char-
acterization of the disease have generated new promising
avenues of therapeutic intervention.1 First, the discovery of the
mutated BRAF oncogene2 enabled the development of targeted
kinase inhibitors that exhibited remarkable objective response in
patients with MM carrying the mutated BRAFV600 allele.3,4

Additional inhibition of the downstream MAPK pathway using
MEK inhibitors has further prolonged overall survival5 but inmost
cases relapses of lethal and therapy resistant clones emerge.
Multiple resistance pathways have been found,6,7 suggesting
new combination treatments that are tested in various clinical
trials. Second, the discovery of immune checkpoints8 enabled
the development of antibodies directed against CTLA4 and PD-1
(or its ligand PDL1), which show lower response rates but
generally more durable responses.9,10 Taken together, these
modern treatments have been successful, but to cure or make
MM manageable chronic, more and safe drugs are needed.
BET proteins are emerging targets for cancer therapy.11

BET proteins regulate transcription and appear to be utilized
during cancer progression to epigenetically reprogram both
blood and solid cancers.12 Small-molecule inhibitors of BET
proteins are in clinical trials but preclinical models already
suggest that combination therapies will be needed to further the
efficacy of BET inhibitors (BETIs). Indeed, we and other
investigators have recently demonstrated that inhibitors targeting

cell-signaling molecules, the proteasome, components of the
DNA damage response and HDAC synergize with BETIs to kill
B-cell malignancies.13–19 HDAC and BETI combination treat-
ment is also effective inmelanoma20 but whether any of the other
therapies would be effective is not known.
Ataxia-telangiectasia and Rad3-related (ATR) is a kinase

that belongs to the PI3-kinase-like family, which also includes
PI3K, mTOR, ATM and DNA-PK. ATR has a critical role in the
regulation of replication and is activated by replication fork
stalling. Known causes of stalling include UV-induced DNA
damage and nucleotide deprivation but also excess replication
fork firing exerted by oncogenic replication stress.21 When
ATR is activated it phosphorylates the checkpoint kinase Chk1
that work together with ATR to phosphorylate components in
the replication machinery to inhibit further replication. Hence,
inhibition of ATR or Chk1 is detrimental to cells experiencing
replication fork problems such as cancer cells expressing high
levels of the MYC oncogene.22–25

Both BETIs and Chk1 inhibitors have previously been
shown to have efficacy in cultured melanoma cells and Chk1
has even been suggested to be essential for the melanocytic
lineage.26 We have demonstrated that Myc-induced lym-
phoma cells undergoing replication stress, because of ATR
inhibition, are sensitive to BETIs.19 Herewewish to investigate
whether or not this finding can be extended to solid cancers.
By using cultured melanoma cells, patient-derived xenografts
(PDXs) and syngenic transplant models we show that the
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Figure 1 ATRIs synergize with BETi to kill melanoma cells and induce SASP/ER stress. (a and b) A375 cells (BRAFV600E) and MeWo cells (NF1− /−) were treated with
vehicle (0.1% DMSO), 10 μM VE821 (VE; AXON Medchem, Groningen, The Netherlands), 1 μM JQ1 (Cayman Chemicals, Ann Arbor, MI, USA), 10 μM RVX2135 (RVX) or
indicated combinations. The experiments were repeated twice in biological triplicates. Cells were imaged in a light microscope (a) or counted in a hemocytometer (b). (c) A375
and MeWo cells were cultured in the presence of vehicle (DMSO), 10 μM of RVX2135 (RVX) and/or the ATRI VE821 (VE; 10 μM) for 48 h, and were assayed for viability with
CellTiter Glo. Value to achieve synergy is shown with a dotted line. (d) A375 cells treated with vehicle, 10 μM VE821, 10 μM RVX2135 or both VE821/RVX2135 were analyzed by
qRT-PCR for indicated genes. (e) A375 cells treated as described above and analyzed by western blot analysis using indicated antibodies
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therapeutic combination targeting of ATR and BET proteins is
effective in melanoma.

Results and Discussion

BET bromodomain inhibitors synergize with ATR inhibi-
tors to induce apoptosis, and senescence-associated
secretory pathway in melanoma. Melanoma cells are
sensitive to the BETIs JQ1, iBET-151 and RVX2135
(Supplementary Figure S1 and shown by others15,27,28). To
assess the therapeutic effect of combined inhibition of ATR
kinase and BET protein we cultured the melanoma cell lines
A375 and MeWo in the presence of the ATR inhibitor (ATRI)
VE821 and/or RVX2135.15,19 Both compounds were antipro-
liferative as assessed by microscopy, CellTiter Glo (Promega,
Madison, WI, USA) measurements and cell counts
(Figures 1a–c). Combining the two generated profound effects

on the viability of the cells and combination index calculations
showed that the compounds synergized (Figures 1b and c).
In our previous study we showed that ATRI/BETI combination

therapy of B-cell lymphoma resulted in a gene expression profile
resembling that of senescence-associated secretory pathway
(SASP) and ER stress.19 Examining the melanoma cells treated
withATRIs/BETIs that had not undergone apoptosis it was evident
that the cells had large vacuoles or vesicles in their cytoplasm; this
was mostly evident in combination-treated cells but also seen in
ATRI-treated cells (Figure 1a). We therefore performed qRT-PCR
and western blot analyses on A375 cells and probed for
components of SASP/ER stress that we had found deregulated
in lymphoma cells responding to the combination treatment.
Indeed, the mRNA encoding the SASP cytokine Cxcl1, the ER
stress master regulator ATF4 and the SASP/ER stress regulators
SQSTM/p62 and DDIT3/CHOP were all induced by ATR and in
combination-treated cells albeit not in a synergistic manner
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Figure 2 ATRIs synergize with BETi to kill melanoma cells. (a) The melanoma PDX model M121218 was initiated by thawing a stock of cryopreserved melanoma tumor
cells,30 and injecting the cells subcutaneously into the flank of 10 immunocompromised NOD/SCID/IL2Rγmice (Taconic). Tumor sizes were measured bi-weekly using an caliper.
When the tumors reached 75–100 mm3 5 mice each were randomized to receive either oral and i.p. vehicle, or oral RVX2135 at 75 mg/kg b.i.d. and i.p. injection of AZ20
(MedChemExpress, Princeton, NJ, USA) at 50 mg/kg q.d. for 5 days a week. (b) Four hours after the last dose, tumors were excised and weighed. (c) A blood sample was drawn
from the saphenous vein of all mice before treatment and after 3 weeks of treatment. Plasma was isolated and used to determine the level of the melanoma marker S100B using
an ELISA kit from Abcam (Elisa kit from Abnova, Taipei City, Taiwan). (d) Single cells were derived by trypsinization of excised tumors from vehicle-treated or combination-treated
mice. The cells were lysed and their nuclei were labeled with 7-AAD. Sub-G1 content (apoptosis) was measured by flow cytometry. (e) Tumor pieces from M121218 PDXs treated
with vehicle or the RVX2135/AZ20 combination treatment were subjected to western blot analysis
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(Figure 1d). Western blot analysis confirmed that the combination
treatment synergistically induced p62 (Figure 1e; Supplementary
Figures S2A–C). The apoptotic marker cleaved PARP was
induced in A375 cells and MeWo cells (Figure 1e), but Bim and
the ER stress regulators CHOP and ATF4 (Supplementary
Figures S2C and D) were not. As the ER stress inducer
tunicamycin potently induced CHOP and ATF4 (Supplementary
Figure S2C) it is possible that BETi/ATRi change the rate of
translation or induce protein turnover, which would explain the
discordance between the RNA and protein levels of CHOP and
ATF4. Interestingly, GATA4, a component of SASP was down-
regulated (Supplementary Figure S2D), which could explain why
a full SASP phenotype was absent. Taken together our data
suggest that cultured melanoma cells are sensitive to ATRI/BETI
combination treatment and hence that this new treatment is
effective in more settings than Myc-induced lymphoma.19

ATRI and BET combination treatment can induce
apoptosis, SASP and ER stress in melanoma tumors in
mice. Cultured melanoma cells are grown in very different
conditions than melanoma cells in patients or in mice.29 We
recently developed a platform of highly characterized PDX
models.30 To test whether ATRI/BETI would work in a PDX
model end we had to use the bioavailable ATRI AZ20, as
VE821 is not bioavailable in vivo. In PDX model M121218 we
observed a robust reduction in subcutaneous growth and
tumor size (Figures 2a and b), a reduced serum level of the
melanoma marker S100B (Figure 2c), and a marked increase
of apoptotic cells in the excised tumor (Figure 2d). To
investigate whether apoptosis and SASP/ER stress was
induced by ATRI/BETI treatment also in vivo we subjected
excised tumors to western blot analysis (Figure 2e). As seen
in vitro and in lymphoma19 there was an induction of cleaved
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Figure 3 Combined ATR and BET inhibition reduces growth of patient-derived melanoma tumorgrafts in mice. (a) Growth of three melanoma PDX models, originally
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PARP, indicating apoptosis, increased levels of SASP/ER
stress marker DDIT3/CHOP and increased levels of phos-
phorylated H2Ax (γH2AX), a marker of double-stranded DNA
damage that often follows ATR/Chk1 inhibition.31,32

To investigate whether tumors from other patients would be
sensitive to the ATRI/BETI combination therapy we treated
three other PDX models. In two of these models models, the
combination treatment blocked growth resulting in smaller
tumors and induction of apoptosis (Figures 3a–c). In the fourth
model, derived from a lymph node metastasis of patient
M120903, the initiation of treatment resulted in adverse effects
and drug-related death and the need to decrease the dose of
AZ20 (Figure 3a). This is suggestive of tumor lysis syndrome
akin to what was observed in lymphoma-bearing mice with
large tumors treated with the ATRI/BETI combination
treatment.19

Finally, to test the effect of the combination in a mouse
model, which has immune cells we turned to a widely used
murine melanoma cell line, B16F10, which can be grown in
syngenic C57BL/6 mice. We first cultured B16F10 cells in vitro

in the presence or absence of ATRI (VE821 or AZ20) and/or
BETI (RVX2135 or iBET762). The cells were noticeably
sensitive to BETI, less to ATRI but very sensitive to the
combination therapy (Figures 4a–d), irrespective of which
BETI or ATRI that was used, suggesting on-target effects.
Again vacuole-like or lysosome-like structures were evident in
the combination-treated cells (Figure 4a), and long-term
culture killed the cells, whereas single-treated cells were
growth-inhibited (Figures 4b–d). We tested the effect of the
ATRI/BETI treatment in vivo, by injecting luciferase-expressing
B16F10 cells subcutaneously. One week after transplant,
mice were imaged and then treatment was commenced.
Because the single drugs were insufficient in vitro we tested
the combination treatment in vivo. Reassuringly, treatment
with the combination treatment reduced the luciferase signal
from the B16F10 (Figure 4e). Taken together our data suggest
that melanoma cells from humans and mice are sensitive to
ATRI/BETI combination treatment in vitro and in vivo and
hence that this new treatment could be effective in more
settings than Myc-induced lymphoma.
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Figure 4 ATRI/BETI combination treatment kills B16 melanoma cells in vitro and in vivo. (a) B16F10-luciferase cells were cultured in RPMI-1640 supplemented with 10% fetal
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To conclude, it is worth noticing that targeted therapies
directed against the mutated driver BRAF have potent yet
short-term effects and do not work in the half-of-all melanomas
that lack BRAF V600 mutations. Immune therapies have
longer effects but fewer patients respond. Therefore, addi-
tional therapies targeting the cancer cell’s engine, rather than
its driver, is needed. First, an obvious approach is to target the
transcription factors deregulated in the cancers, such asMYC.
The concept has been validated in many preclinical models33

but to date no effective therapy is present in the clinic. Second,
other interesting targets are those harnessing the genetic
stability – a known cancer cell vulnerability.34 Inhibitors of DNA
repair proteins, such as PARP,35 and checkpoint kinases, such
as Chk1 and ATR,23,25 are undergoing clinical development
alone or in combination with classical chemotherapy. Third, to
target epigenetic readers, writers and erasers is an additional
approach capitalizing on the epigenetic changes in cancer
cells that have been recognized for decades. Three HDAC
inhibitors (HDACI) and two DNA methyltransferase inhibitors
are already approved for various malignancies. Several BETI,
histone/lysine methyltransferase inhibitors and HAT inhibitors
are in various stages of development. Combination therapies
are an obvious approach but which therapies to combine,
when to combine and how to combine to maximize efficacy
and minimize side effects is still unknown. We have identified
two different possible combination therapies against Myc-
induced cancers, BETI/HDACI15 and BETI/ATRI (here and
Muralidharan et al.19). It appears as if the mechanisms are
broad, resulting in cell death and large changes in transcrip-
tional output. On the other hand, it remains to be found
whether or not there are selective events that are shared
between these two potent combination therapies that can be
further utilized in design of new therapeutic approaches.

Materials and Methods
Cell experiments. All cell lines were from Cell Lines Services (Eppelheim,
Germany). They were maintained in complete medium (RPMI-1640 supplemented
with 10% FBS, glutamine and gentamycin) and cultured at 37 °C with 5% CO2.
Viability following inhibitor treatment was monitored with CellTiter Glo.

RNA and protein expression. RNA preparation is carried out using the
Nucleospin RNA isolation kit (Macherey-Nagel, Düren, Germany). Following cDNA
synthesis using iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA) indicated
genes were amplified using a SYBR green PCR mastermix (Kapa Biosystems,
Woburn, MA, USA). Primer sequences are available on request. The ΔΔCT
method was used to calculate the relative expression.
For western blot analysis of protein expression, cell pellets or tumor pieces lysed in

lysis buffer as described before.25 A unit of 50 μg of protein was resolved on 4–20%
ClearPAGE gels (C.B.S Scientific Company, San Diego, CA, USA) and transferred to
nitrocellulose membrane (Protran, GE Healthcare Bio-Sciences, Piscataway, NJ,
USA). The membrane was blotted with specific antibodies. Antibodies against the
following proteins were used: phosphorylated ATR (GeneTex, Inc., Irvine, CA, USA);
cleaved PARP (Cell Signaling Technology, Danvers, MA, USA); ATR (Santa Crutz
Biotechnology, Dallas, TX, USA); ATF4 (Santa Crutz Biotechnology); CHOP (Santa
Crutz Biotechnology); phosphorylated H2Ax (γH2Ax; Merck-Millipore), p62 (Progen
Biotechnik, Heidelberg, Germany) and Actin (Sigma-Aldrich, St. Louis, MO, USA).

Mouse experiments. All animal experiments were performed in accordance
with EU directive 2010/63 (regional animal ethics committee of Gothenburg #36-
2014). The PDXs were obtained by injecting 2 × 105 cells mixed with equal volume
of Matrigel (Corning, NY, USA) subcutaneously at the flank of immunocompromised,
non-obese severe combined immune-deficient interleukin-2 chain receptor γ
knockout mice (NOG mice; Taconic, Ry, Denmark) as described previously.30

Tumors were measured with caliper at regular time points and tumor volume
calculated using the formula: tumor volume (mm3)= (length(mm)) × (width(mm))2/2.
B16F10-luciferase cells were transplanted by subcutaneous injection. Seven days
after transplantation, mice were injected with 100 μl of 30 mg/ml D-luciferin. Mice
were sedated in an isofluran administrating chamber and then placed in an IVIS
Lumina III XR machine (Perkin-Elmer, Norwalk, CT, USA).

Statistical analysis. Values are presented as mean± S.D. when data are
combined. For statistical analyses, we used Graphpad Software, Inc. (La Jolla, CA,
USA): multiple t-test or one-way ANOVA (with Sidak corrections) for tumor burden,
and the log-rank test for survival. All mouse experiments contained 3–5 mice
per group.
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