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A B S T R A C T   

The interest in proteomic studies of fermented food is increasing; the role of proteins derived from fermentation 
extends beyond preservation, they also improve the organoleptic, anti-pathogenic, anti-cancer, anti-obesogenic 
properties, and other health conferring properties of fermented food. Traditional fermentation processes are still 
in use in certain cultures, but recently, the controlled process is gaining wider acceptance due to consistency and 
predictability. Scientists use modern biotechnological approaches to evaluate reactions and component yields 
from fermentation processes. Pieces of literature on fermented fish and vegetable end-products are scanty 
(compared to milk and meat), even though fish and vegetables are considered health conferring diets with high 
nutritional contents. Evaluations of peptides from fermented fish and vegetables show they have anti-obesity, 
anti-oxidative, anti-inflammatory, anti-pathogenic, anti-anti-nutrient, improves digestibility, taste, nutrient 
content, texture, aroma properties, etc. Despite challenges impeding the wider applications of the metaproteomic 
analysis of fermented fish and vegetables, their potential benefits cannot be underestimated.   

1. Introduction 

One of the main pivots of human health is the type and quantity of 
diet they consume. Fish and vegetables are known health-conferring 
sources of food (Olovo, Udoekong, & Akan, 2021; Méndez & Pazos, 
2017); however, due to their high nutritional contents and water ac-
tivity, they are easily degraded, thus lowering their shelf-life and 
potentially becoming vectors for pathogenic microorganisms. As the 
world’s population burgeons toward the 9.6 billion projected mark by 
2050, the demand for food would also increase. To sustain the huge food 
demand and keep populations healthy, there must be sufficient healthy 
food supplies (Chaudhary, Bhalla, Patiyal, Raghava, & Sahni, 2021). The 
overproduction of food to meet huge demands could also lead to 

spoilage, especially in places without proper storage facilities. Microbes 
inherent in foods are versatile; some spoil foods, while others help 
preserve raw foods through fermentation processes, given suitable 
environmental conditions. Microbes self-perpetuate while interacting 
with food molecules. During fermentation, they elongate the end- 
products shelf life, improve their nutritional contents, aroma, taste, 
and texture relative to the raw food material (s) (Voidarou et al., 2021; 
Marco et al., 2017). According to Voidarou et al. (2021), Louis Pasteur 
defined fermentation as ‘life without oxygen’- a process that yields end- 
products like CO2, ethanol, organic acid, and other organic molecules: 
important health and industrial products. 

Fermentation processes can either be controlled (novel, modern, or 
industrial, with active allochthonous microbes) or uncontrolled 
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(traditional, natural, or spontaneous, with active autochthonous mi-
crobes) and result in the biotransformation of raw food components 
(Marco et al., 2017). The numerous possible end-products, their bio-
activities, and food security seem to be driving forces for the widening 
applications of fermentation processes in modern times. Functional 
microbes produce peptides that improve the organoleptic, preservative, 
digestive, anti-oxidative, probiotic, anti-microbial, anti-toxin, and anti- 
anti-nutrient outcomes in fermented foods (Voidarou et al., 2021; 
Sharma, Garg, Kumar, Bhatia, & Kulshrestha, 2020); these attributes 
make fermented end-products good natural therapeutics, and can be 
utilized to curb westernized diets-induced disease conditions like 
obesity and cardiovascular diseases. 

It is common knowledge that consumers of fermented products 
consume ‘live microbes’ and transformed molecules together; and that 
these components confer health (Voidarou et al., 2021; Marco et al., 
2017). Fermentation has surpassed the ‘preservation’ narrative; there-
fore, it is imperative to study these molecules, elucidate their charac-
teristics, interactions, and find possible applications, especially in the 
formulation of good foods. Proteomics biochemically measures low 
molecular weight compounds like peptides, amino acids, aldehydes, 

organic acids, and amines (Wang, Xia, Gao, Xu, & Jiang, 2017), helps 
monitor certain of these molecules as fermented food’s safety and 
quality biomarkers (Méndez & Pazos, 2017). There are numerous met-
aproteomic studies on fermented dairy and certain meat products, but 
works on fermented fish and vegetable products are scanty. Fish (un-
saturated fatty acids like omega fatty acids) and vegetables (bioactive 
substances like polyphenols) are known for their high nutritional con-
tents (Olovo, Udoekong, & Akan, 2021; Méndez & Pazos, 2017), 
fermentation can yield even healthier end-products. In this review, we 
outlined modern proteomic methods and their usefulness; reviewed 
literature works on fermented fish and vegetable peptides; microbes 
associated with fish and vegetable fermentations; and challenges 
encountered in proteomic studies. 

2. Metaproteomic analysis methods 

Studies on fermented food proteins- metaproteomic analysis allow 
for the accurate identification and quantification of proteins; and pro-
vides details on their authenticity, origin, biological activities, allerge-
nicity, and sensory properties. Scientists use information gotten from 

Fig. 1. Metaproteomic Studies of Fermented Food Peptides. Fig. 1A: The schematic workflows for the metaproteomics of fermented fish and vegetables. Fig. 1B: 
illustrates the bottom-up and top-down MS-based metaproteomics approaches commonly used in fermented fish and vegetable research; Fig. 1C: showcases the 
common software tools used for peptide and protein identification and quantification. 
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such studies either for descriptive or/and comparison purposes: 
descriptive analysis provides a crucial understanding of metabolic ac-
tivities of the microbial communities under specific conditions (Heyer 
et al., 2019), while comparative analysis simultaneously elucidates the 
taxonomic composition and functionality of microbial communities in 
different fermentation processes, and micro-ecology (Heyer et al., 
2019). The characterization of proteins occurs at genomic, tran-
scriptomic, and post-transcriptional levels, while their metaproteomic 
profiles fall under quality, quantity, and functions categories (Ji et al., 
2017). 

The quantitative approach provides the relative abundance infor-
mation of a specific protein while focusing on identifying and charac-
terizing the complete protein set present in the fermented food, 
including their post-translational modifications (PTMs). On the other 
hand, the functional approach deals with the functional interaction(s) 
between proteins or between a protein and other molecules. The qual-
itative properties of proteins are retrieved from either a non-assembled 
metagenome database, an assembled metagenome database, or a built 
taxonomy database (Geron, Werner, Wattiez, Lebaron, & Matallana- 
Surget, 2019). 

The workflow for the metaproteomic analysis of fermented fish and 
vegetables is as illustrated in Fig. 1a. It shows protein extraction from 
fermented foods and subsequent purification processes. Proteins diges-
ted into fragmented peptides are then analyzed with different high- 
performance separation techniques such as one-dimension and multi- 
dimension chromatography, two-dimension gel electrophoresis, and 
high-resolution mass spectrometry. These methods monitor protein 
compositions in fermented foods and the changes during the fermenta-
tion process (Ortea, O’Connor, & Maquet, 2016). Proteomic studies 
reveal processes that identified proteins go through and can be a useful 
tool for toxin, allergen, nutritional value, and storage authentications. 

2.1. Total protein extraction method 

Total protein extraction from fermented foods of interest is the first 
key step in metaproteomic studies. Factors like differences in cell wall 
structures and inherent microbial cell lysis resistance level affect protein 
extraction (Zhang et al., 2018). For fish and vegetable products, another 
important factor aside from the characteristics of the microbial com-
munity is the heterogeneity in salinity and alkalinity of fish and vege-
tables, respectively (Liu et al., 2021a). These microbial and food factors 
affect the kind and quality of the extractable proteins to varying degrees. 

The basic extraction protocol for proteins involves the physical 
disruption of cells, dissolution with buffer, purification by precipitation, 
and protein lysis. The buffer, precipitant, and lysate choices should be 
considered carefully as they are important for the release of proteins 
from fermenting microbes (Hayoun et al., 2019). Detergents such as 
sodium dodecyl sulfate (SDS) and 3-(3-Cholamidopropyl) 
dimethylammonium)-1-propane sulfonate (CHAPS) show high effi-
ciencies with protein lysis and improvements can be achieved when 
incorporated with grinding, bead beating, and ultrasonication (Kunath 
et al., 2019). However, important factors like substrates, products, and 
repeatability should be considered when choosing methods. 

2.2. Separation/purification of extracted proteins 

The separation and purification of peptides follow after the extrac-
tion process, and several methods can be employed just before analyzing 
the peptides with mass spectrometers. Some of the methods are: 

2.2.1. Gel-based separation 
Gel separation is one of the commonest methods used for protein 

separation, uses a 2D polyacrylamide gel electrophoresis/differential in- 
gel electrophoresis (2D-PAGE/DIGE), and yields about 2000 discrete 
protein spots after staining (Anguraj Vadivel, 2015). Protein expression 
herein is a factor of the spot size and intensity. Gel separations are done 

either in single (1D), two (2D), or three (3D) dimensions. The single 
dimension method of Gel separation bases on the protein’s molecular 
weight (using sodium dodecyl sulfate–polyacrylamide gel electropho-
resis SDS-PAGE). The two-dimension method bases on the protein’s 
isoelectric point (using immobilized pH gradient gel strips) and molec-
ular weight (SDS-PAGE). Although the 1D and 2D methods are common, 
their inability to detect post-translational modifications (as with fish and 
vegetable proteins) (Arya, Prakash, Sougrakpam, & Deswal, 2021) is a 
major setback. 

Colignon, Raes, Dieu, Delaive, and Mauro (2013) adverted the 
setback by developing the three-dimension method. The 3D uses iso-
electric focusing and sample fractionation followed by two consecutive 
separations with SDS-PAGE, with two different buffer systems. The 3D 
separation method evades the co-migration interferences that affect 
protein resolution while providing a wide range of applications in 
quantitative profiling of complex proteomes and identifying post- 
translational modification (Colignon et al., 2013). In addition, another 
method developed for easy peptide recovery uses a disulfide-containing 
analog of bis-acrylamide called bis-acrylylcystamine (BAC). Peptides 
released from the gel can be enhanced by adding tris-(2-carboxyethyl) 
phosphine (TCEP) for a complete dissolution with BAC-cross-linked 
acrylamide gel (Takemori, Takemori, Ishizaki, & Hasegawa, 2014). 
BAC gels can be used for improved complex membrane proteins recov-
ery before mass spectroscopic analysis since low quantity proteins 
cannot be detected. Incorporating BAC gel with 2D and 3D separation 
methods, protein recovery, identification, and separation resolution 
from in-gel digestion is improved. 

2.2.2. Gel-free separation 
Gel-free separation methods solve most of the limitations with the 

gel-based method and can also serve as a suitable complement 
depending on the fermented food type and target protein. The most 
common approach used is the multidimensional protein identification 
(MudPIT) with strong cation-exchange (SCX) fractionation, reversed- 
phase (RP) chromatography, and tandem mass spectrometer (MS/MS). 
MudPIT is an important tool in food proteomic researches and had been 
used in the study of pumpkin (Cucurbita maxima) and lettuce (Lactuca 
sativa) (Won et al., 2010). Another comparative approach is incorpo-
rating anion/cation exchange reversed-phase chromatography to chro-
matographically separate proteins (Quan, Feng, Lui, Shi, & Chu, 2017). 
This combination achieves a 2D separation. Wu, Li, Huang, and Zhang 
(2021) identified certain proteins with this method and reported that the 
method was efficient with a high degree of automation and accurate 
protein information. 

2.2.3. Other approach(es) 
There are other recently reported methods with efficient protein 

extract digestion yield and reduced application time. Two examples of 
these methods are the suspension-trapping filter-based approach (S- 
Trap) and solid-phase-enhanced sample preparation (SP3). The SP3 
method is more efficient in speed and peptide delivery (Hayoun et al., 
2019). However, other methods such as molecular imprinting, micro-
fluidic chip, magnetic separation, reverse micelles, and crystallization 
also have high precision and efficiency when combined with other 
separation technologies (Liu et al., 2020). 

2.3. Mass spectroscopic (MS) detection and analysis 

2.3.1. MS detection 
After the use of gel-based or gel-free methods to sufficiently reduce 

sample complexities, the peptides are mixed and analyzed using mass 
spectroscopy. In proteomic studies, the most used ionization methods 
are electrospray ionization (ESI) (Chen et al., 2017) and matrix-assisted 
laser desorption/ionization (MALDI) (Kailasa et al., 2020). However, 
electrospray ionization is employed more due to its high-throughput 
secondary spectra of peptides. Directly coupling liquid 
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chromatography (LC) with ESI–MS achieves a highly automated detec-
tion of peptides in fermented food (Liu, Qin, Mazhar, & Miao, 2021b; 
Ortea et al., 2016), whether targeted or non-targeted (Hart-Smith, Reis, 
Waterhouse, & Wilkins, 2017). 

Targeted quantitative metaproteomics has gained popularity when 
used with mass spectrometry-based protein quantification because it can 
detect and analyze specific sets of proteins with high sensitivity, accu-
racy, and reproducibility (Song et al., 2017). According to Hart-Smith 
et al. (2017), targeted proteomic assays can be accomplished through 
the acquisition of peptide MS/MS data using selected reaction moni-
toring (SRM), parallel reaction monitoring (PRM), or targeted data 
acquisition (TDA). Also, a targeted proteomic assay can be achieved via 
comprehensive data-independent acquisition (DIA) strategies, e.g., 
sequential window acquisition of all theoretical spectra (SWATH), 
which produces extractable quantitative data using 10,000 proteins 
assay libraries (Sim et al., 2020). 

Non-targeted quantitative proteomics has been explored more in 
foods. It is a more exploratory, data-dependent acquisition (DDA) using 
LC-MS/MS analysis. The highest abundance of peptide ions from full MS 
scans is selected for MS/MS (Yesiltas et al., 2021). Herein, highly 
abundant microbial proteins (>1% relative abundance by riBAQ) are 
selected for bioinformatic analysis, and the full-length sequences from 
microbial and food proteins were analyzed using EmulsiPred (htt 
ps://github.com/MarcatiliLab/EmulsiPred). Other methods that can 
employ non-targeted approaches include isobaric tags for relative and 
absolute quantitation (iTRAQ), and tandem mass tags or label-free. 
These methods were recently employed for the protein profiling of 
certain food substances (like commercial soybean milk and quinoa 
seeds) (Galindo-Luján et al., 2021). 

2.3.2. MS data analysis 
In proteomic studies, MS/MS is commonly used for protein identi-

fication compared with peptide mass fingerprinting. For fermented fish 
and vegetable proteins, the use of this procedure becomes important 
because there is limited information in the public database on related 
proteins. Fig. 1b shows the schematic illustration for the bottom-up and 
top-down MS-based metaproteomics approaches suitable for use in fer-
mented fish and vegetable protein researches. With the top-down pro-
teomics, intact or large protein fragments are directly subjected to gas- 
phase fragmentation for MS/MS analysis; by contrast, the bottom-up 
approach is widely used for protein identification by MS. Complex -
mixtures, or purified proteins are subjected to proteolytic cleavage; 
while MS or MS/MS is used to analyze resulting peptides. The commonly 
used software for peptide and protein identification and quantification 
are categorized based on their functions (Chen, Hou, Tanner, & Cheng, 
2020), as presented in Fig. 1C. SwissProt, NCBInr, PIR, and EMBL are a 
few public databases tools; however, they do not include fermented fish 
and vegetable peptide data. The unavailability of fermented fish and 
vegetable protein data increases the risk of misidentifying newly 
extracted peptides from these fermented foods. Available protein data-
bases are either generated from shotgun metagenomic data or are 
pseudo-metagenomics databases constructed from proteins obtained 
from a public database according to the microbial community structure 
obtained by 16S rRNA analysis (Muth, Renard, & Martens, 2016). 
Recently, transcriptome-derived protein databases are gaining 
increasing attention as manually curated food proteomics databases 
such as FermFooDb (https://webs.iiitd.edu.in/raghava/fermfoodb/) 
(Chaudhary et al., 2021). FermFooDb comprises 2205 entries with 
relevant fields like peptide sequence, Mass and IC50, food source, 
functional activity, fermentation conditions, starter culture, testing 
conditions of sequences in vitro or in vivo, type of model, and method of 
analysis. 

2.4. Bioinformatics analysis 

The bottom-up proteomic approach requires taxonomy-specific 

peptides for microbial community identification, quantification, func-
tional annotation, metabolic, and biological classification. Thus, bioin-
formatics data is an integral part of metaproteomics (Krutz, 2019); some 
analytical tools used include the Protein ANalysis Through Evolutionary 
Relationships (PANTHER); Database for Annotation, Visualization and 
Integrated Discovery (DAVID); Ingenuity Pathway Analysis (IPA, QIA-
GENs Redwood City, www.qiagen.com/ingenuity); Gene Ontology 
(GO); Cluster of Orthologous Groups (COG); and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (http://geneontology.org/) (Liu et al., 
2021b; Heyer et al., 2017). Also, the protein–protein interactions data-
bases, like the Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING); Molecular INTeraction database (MINT); IntAct, 
Microbial Protein Interaction Database (MPIDB) as extensively 
described by Calderón-González, Hernández-Monge, Herrera-Aguirre, 
and Luna-Arias (2016) are also used. Among the commonly employed 
bioinformatics tools, the GO provides controlled, structured vocabu-
laries and classifications that focus on the knowledge of gene products’ 
roles in cells. These gene products are classified either as cellular com-
ponents (CC), biological processes (BP), and molecular functions (MF) 
(Galindo-Luján et al., 2021). The COG represents a phylogenetic clas-
sification of proteins from completely sequenced genomes used to 
distinguish evolutionary relationships between orthologs and paralogs 
(Heyer et al., 2017), while KEGG analytical tool groups microbial genes 
and proteins according to their molecular levels and functional infor-
mation (L et al., 2021b). 

3. Proteomic analysis of fish and vegetables 

3.1. Proteomic analysis of fish 

Fish consumption is growing rapidly at an average annual per capita 
fish consumption rate of 9.0–17.8 kg (FAO, SOFIA, 2014). The high 
consumption volume is due to extensive outdoor fish cultivation that 
meets high demands at very cheap rates. Fish is a cheap source of food 
and contains a high amount of nutrients such as proteins, vitamins, 
minerals, long-chain polyunsaturated fatty acids (PUFs), eicosapentae-
noic (EPA), docosahexaenoic acid (DHA), peptides, selenium, and 
taurine; these nutrients help prevent and treat metabolic diseases 
(Méndez & Pazos, 2017). According to Jacek (2005), the high nutri-
tional content and water activity of fish becomes a disadvantage for its 
shelf-life. In addition, fish muscle proteins are heat-labile, have an 
abundance of proteolytic enzymes, and aids the proliferation and sur-
vival of psychrophilic microbes. These factors combined lower fish’s 
shelf life when compared to terrestrial animals’ meat. 

The shelf life of harvested fish can be extended either by salting, 
smoking, or drying; however, when left for extended periods, the ac-
tivities of co-functioning multiple microorganisms and their enzymes 
ferment the minimally processed fish- yielding unique organoleptic 
properties and extending the fish product’s shelf-life (Ji et al., 2017). 
The microorganisms and their enzymes convert certain organic mate-
rials into simpler compounds associated with unique aromas, texture, 
and flavour characteristics found in fermented fish products. There are 
two classifications for fermented fish according to Zang, Xu, Xia, and 
Regenstein (2019) (a) by the nature of their end products; (i) whole or 
sliced, but the fish still retains its structure, (ii) paste, here the fish is 
fermented in paste form, and (iii) sauce, here the fish is fermented in a 
broth or liquid and (b) by the fermentation method adopted; (i) tradi-
tional or spontaneous, here natural or autochthonous microbes bio- 
transform the fish and (ii) starter culture, here cultured or allochtho-
nous microbes bio-transform the fish. 

Different organoleptic outcomes for fermented fish, depending on 
countries of origin, fish types, and environmental factors (process) 
(Waisundara, Jayawardena, & Watawana, 2016). Modern sciences like 
microbiology and biotechnology help elucidate microbial bio- 
transformations of raw or minimally processed food items like fish. 
The bacteria Photobacterium profundum was the most abundant 
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identified microbe in fish fermentation studies conducted by Ji et al. 
(2017). Functional microbes involved in fermentative processes yield 
useful end-products during their primary and secondary metabolic ac-
tivities; their actions on fish could either be acidification (or carbohy-
drate catabolism) -that yields anti-microbial peptides (extends shelf- 
life), gelation of myofibrillar and sarcoplasmic proteins of the muscles- 
peptides that change the elasticity, cohesion, and hardness of end- 
products, and the degradation of proteins and lipids that yields myriad 
of peptides that allude to flavourful, tasty compounds and easily 
digestible and absorbable nutrients (Zang et al., 2019). Table 1 shows 
peptides identified from fermented fish. 

3.2. Proteomic analysis of vegetables 

Vegetables, just like fish products, are also considered a health- 
beneficial diet type; they have high nutrient and water activity con-
tent. These factors make them easily liable to microbial and enzymatic 
degradations (Sajjad, Rasool, Ahmad Fazili, & Ahmed Bhat, 2000), 
hence their short shelf life. Numerous works on plant-sourced foods 
show that they contain various bioactive substrates, either nutritive or 
anti-nutritive (Sharma et al., 2020; Awak, Udofia, Akan, Uffia, & 
Udoekong, 2017). Notwithstanding, the microorganisms involved in 
plant-food fermentation increase the nutritional contents of fermented 
plant products by (a) increasing the amount and bioavailability of nu-
trients and (b) enhancing the density of nutrients (Nkhata, Ayua, 
Kamau, & Shingiro, 2018). They enhance the density of nutrients by 
synthesizing promoters that aid with nutrient adsorption, influence the 
uptake of nutrients via the mucosa membrane, pre-digest the food 
components, and reduce or degrade the anti-nutrient contents of the 
parent food. Bacteria from the Lactococcus family are the most identifi-
able microbes associated with plant fermentation. 

According to Voidarou et al. (2021), fermentation, an age-long 
process, is gaining keen interest. Many beneficial end-product possibil-
ities are obtainable as long as microorganisms and food substrates are 
placed side by side in conducive environments (anaerobic). The end- 
products from vegetable-carbohydrate fermentation are as varied as 
many types of vegetables and varieties of fermenting microorganisms 
(Table 1). Plant carbohydrate fermentation entails accepting electrons 
by organic molecules (pyruvate or acetyl CoA) and reactions that lead to 
the formation of important peptides. Peptides from fermented vegeta-
bles can be used as microbial energy sources; howbeit, they are not the 
preferred energy molecule. Instead, they are used for the production of 
hormones, enzymes, and haemoglobin; needed for cell growth and re-
pairs, the normal functioning of the muscles, nerve signaling, and im-
munity (Marsh, Munn, & Baines, 2013), making plant-sourced peptides 
an important set of macromolecules for body functions. Fermented 
vegetable proteins are linked with decreased risk for metabolic diseases 
(Marsh et al., 2013); this is due to plant-sourced diets having very low 
saturated fats, cholesterol-free, good sources of antioxidants, high fiber 
contents, and haem iron. Table 1 enlists works with immunomodulatory 
benefits of peptides from fermented vegetables. 

4. Proteomics of microbes associated with fermented foods 

Metaproteomic studies of any fermented food give insights into mi-
crobial type, community interactions, typical roles, and expressed pro-
tein molecules (Ji et al., 2017). The demand for fermented products with 
high consistency by urban dwellers is turning food industries into 
controlled fermentation processes; however, rural dwellers still prefer 
traditional methods (Tamang et al., 2020, Tamang, Shin, Jung, & Chae, 
2016). About 90% of consumed fermented products are prepared un-
controlled in homes utilizing inherent food microbes. The mixture is left 
on its own or given conducive environmental conditions to thrive. 
Traditionally fermented foods are generally simple, require simple in-
gredients, minimal preparations, and processing (Marco et al., 2017); 
however, the diversity of fermenting microbial succession involved is 

very complex, notwithstanding. 
In every natural microbe-food substrate mixture, there is also a 

mixture of functional and non-functional microorganisms. The func-
tional microbes are responsible for the biotransformation of the chem-
ical constituents in food substrates (Tamang, Shin, Jung, & Chae, 2016). 
The fermentation process, whether traditional or industrial, follow three 
distinguished units of operations thus: (a) pre-treatment of the food 
substrates, which includes transportation, salting, grading, washing, 
sorting, mixing, etc. (b) the bioprocessing that utilizes suitable mi-
crobes/enzymes that bio-transform, synthesize, remove, degrade, etc., 
certain substrates and (c) bioprocessing atmosphere, that includes 
cooling, freezing, and heating. 

Stability in the composition of microbes is an important factor, as 
alterations in their diversity during the process might yield noticeable 
differences in organoleptic properties/quality- even with the same food 
substrate. Therefore, to have consistent, high-quality, safe, and good 
sensory fermented end-product(s), the microbial composition must be 
stable and resilient (Marco et al., 2017). Modern fermentation has 
progressed towards end-product consistencies, with certain process 
modifications. Portions of previously fermented foods (like fruits or 
malted cereals with fermenting microbes) can be added to raw food 
substrates or new food batches to initiate fermentation. This method 
termed back slopping is frequently used to standardized microbial fer-
mented end-products (Tamang et al., 2020). Standardized starter cul-
tures allow for consistent fermented end-products, reduced spoilage, 
increased food safety, and ensures large-scale production of fermenta-
tion end-products (Tamang et al., 2020). Just as with those functional 
microorganisms in traditional/natural fermentation, starter microbial 
cultures transform the raw foods and yield more desirable/healthier 
end-products. 

Fermented foods (fish and vegetables inclusive) are studied using 
different methods. The principal is the conventional microbiological 
culture-dependent methods, where isolates are identified using pheno-
typic and biochemical characterizations. However, microbes are now 
identified using molecular methods like metagenomics and massive 
sequencing. Lactic acid bacteria (LABs), such as Leuconostoc, Lactoba-
cillus, and Weissella species (Chen, Chen, and Lei, 2017), are the prom-
inent bacterial species that help ferment vegetables. According to Lee, 
Jung, & Jeon (2015), genomics and other technologies have been used 
to study the dynamic microbial communities and metabolic changes 
during fermentations. The functions of the peptides make fermentation 
end-products a vital patterned food type. Yang, Fan, and Xu (2020) 
identified about 2,175 proteins in fermented Siniperca chuatsi, 1,217 of 
which were involved in metabolic pathways, while 352 were associated 
with amino acid metabolism. Certain microbes such as Streptococcus sp., 
Bacillus sp., Escherichia sp., and Pseudoalteromonas sp. possess about 63 
amino acids that are degradation-related, all of which generate aromatic 
compounds. These compounds are responsible for the unique taste, 
flavour, and organoleptic attributes of fermented foods (Yang et al., 
2020). 

5. Challenges and future perspectives 

Some challenges hamper the application of metaproteomic analysis 
on traditionally fermented foods (fish and vegetables); these include but 
are not limited to the redundancy of protein identifications, impurities, 
and complexities of food samples, paucity of genome sequences essential 
for their protein identifications. Additionally, uneven distribution of 
species, extensive fluctuations in expression levels of proteins in mi-
croorganisms, and significant genetic varieties within microbial com-
munities are other major challenges in metaproteomic studies (Simon & 
Daniel, 2011). Furthermore, identifying proteins relying on a meta-
genomics database derived from the same sample and any sequence 
cross-contamination or submission errors onto the metagenomics data-
base may compromise homologous protein identification (Pible & 
Armengaud, 2015). Therefore, care must be exercised throughout the 
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Table 1 
List of Important Identified Peptides from Fish and Vegetable Fermentation Processes.  

Fermented Fish Products 

Fish Product Fermenting microbes Identified proteins and peptides Function Reference 

Siniperca 
chuatsi 

Photobacterium profundum Ornithine carbamoyltransferase, 
catabolic 

Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Photobacterium profundum Phosphoenolpyruvate carboxykinase 
[ATP] 

Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Vibrio parahaemolyticus Malate dehydrogenase Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Photobacterium profundum Ornithine carbamoyltransferase, 
catabolic 

Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Clostridium thermocellum Enolase Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Photobacterium profundum Ornithine carbamoyltransferase, 
catabolic 

Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Salmonella paratyphi Arginine deiminase Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Photobacterium profundum Phosphoenolpyruvate carboxykinase 
[ATP] 

Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Cupriavidus necator Triosephosphate isomerase Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Xylella fastidiosa Ubiquinone/menaquinone biosynthesis 
C-methyltransferase 

Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Acinetobacter baumannii Outer membrane protein Omp38 Energy metabolism and amino acid 
metabolism 

Ji et al. (2017). 

Siniperca 
chuatsi 

Vibrio tasmaniensis 50S ribosomal protein L1 Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Photobacterium profundum 60 kDa chaperonin Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Shewanella violacea Cold shock-like protein CspA Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Shewanella violacea Cold shock-like protein CspA Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Pseudoalteromonas haloplanktis Elongation factor Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Pseudoalteromonas haloplanktis 60 kDa chaperonin Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Vibrio campbellii DNA-directed RNA polymerase subunit 
beta 

Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Pseudoalteromonas haloplanktis Polyribonucleotide 
nucleotidyltransferase 

Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Vibrio anguillarum Flagellin Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Pseudoalteromonas haloplanktis 60 kDa chaperonin Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Bifidobacterium adolescentis tRNA-2-methylthio-N (6)- 
dimethylallyladenosine synthase 

Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Vibrio cholerae DNA-directed RNA polymerase subunit 
alpha 

Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Acinetobacter baumannii Chaperone protein DnaK Genetic information processing and 
cellular processes 

Ji et al. (2017). 

Siniperca 
chuatsi 

Acinetobacter baylyi 60 kDa chaperonin Genetic information processing and 
cellular processes 

Ji et al. (2017).  

Fermented Vegetable Products 
Vegetable 

Product 
Fermenting microbes Identified proteins and peptides Function Reference 

Pickled radish Lactiplantibacillus plantarum, 
Lactobacillus pentosus, 
Limosilactobacillus fermentum 

Hydrogen peroxide, diacetyl, acetoin, 
and bacteriocins 

Antimicrobial activity Damodharan, Palaniyandi, Yang, 
and Suh (2015). 

Sauerkraut Lactococcus lactis Bacteriocin-nisin, Anti-bacterial, anti-inflammatory, anti- 
carcinogenic, anti-oxidative, gut 
microbial and immuno- modulatory. 

Mir, Raja, and Masoodi (2018); 
Peňas, Martinez-Villaluenga, and 
Frias (2017); Ai et al. (2016); 
Noh, Seo, Park, and Oh (2016); 
Peñas et al. (2012). 

Leuconostoc mesenteroides Ascorbigen, Sulforaphane and 
Glucosinolates (isothiocyanates, nitriles, 
epithionitriles and thiocyanates) 

Anti-carcinogenic properties; good 
source of Vitamin C and E. 

Park, Kim, and Jeong (2017); 
Nugrahedi, Verkerk, Widianarko, 
and Dekker (2015); Peñas, Frias, 
Sidro, and Vidal-Valverde 
(2010). 

Indol-3-carbinol and Allyl isothiocyanate Anti-inflammatory properties Wagner, Boesch-Saadatmandi, 
Dose, Schultheiss, and Rimbach 
(2012). 

Phenyl isothiocyanate and allyl 
isothiocyanate 

Anti-oxidant properties Manesh and Kuttan (2003). 

D-phenyllactic acid Anti-bacterial properties Peters et al. (2019). 

(continued on next page) 
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Table 1 (continued ) 

Fermented Fish Products 

Fish Product Fermenting microbes Identified proteins and peptides Function Reference 

Lactobacillus paracasei HD1-7 Paracin 1.7 Anti-microbial properties Ge, Sun, Xin, Wang, and Ping 
(2016). 

Fermented 
cucumber 
(cucumber 
pickles) 

Lactiplantibacillus plantarum C19 Plantaricin C19 Anti-bacterial activity against Listeria 
grayi 

Mir et al. (2018). 

Pediococcus pentosaceus CRAG3 Dextran Anti-cancer properties Shukla and Goyal (2013). 
Lactobacillus, Pediococcus and 
Leuconostoc isolates 

Plantaricin A, pediocin, enterocin, nisin 
and mesentericin,A 

Anti-bacterial effect against pathogenic 
Listeria and Gram-positive bacteria 

Singh and Ramesh (2008). 

Leucine-proline-proline (0.30–0.33 mg/ 
kg), isoleucine-proline-proline 
(0.42–0.49 mg/kg), valine-proline- 
proline (0.32–0.35 mg/kg) andLysine- 
proline (0.93–1.5 mg/kg) 

Angiotensin-Converting Enzyme (ACE) 
inhibitory activities 

Fideler, Johanningsmeier, Ekelöf, 
and Muddiman (2019). 

Gamma-aminobutyric acid (GABA) Anti-hypertensiveImmune supportAnti- 
anxiety 

Moore, DuVivier, and 
Johanningsmeier (2021). 

Fermented 
olives 

Lactobacillus pentosus B96 Bacteriocins Anti-bacterial activity against Weissella 
mesenteroides 

Delgrado et al. (2005). 

Lactobacillus plantarum NC8 Bacteriocins Anti-bacterial activities 
againstHelicobacter pylori, 
Propionibacterium spp. and Clostridium 
perfringens 

Ruiz-Barba, Caballero-Guerrero, 
Maldonado-Barragán, and 
Jiménez-Díaz (2010). 

Lactobacillus plantarum Tyrosol and hydroxytyrosol Anti-microbial and anti-oxidant 
properties 

Benincasa, Muccilli, Amenta, 
Perri, and Romeo (2015). 

Fermented 
carrot 

Lactobacillus strains Bacteriocins Anti-bacterial activities against Bacillus 
cereus, Staphylococcus aureus and E. coli 

Joshi, Sharma, and Rana (2006). 

Lactobacillus rhamnosus GG (LGG) Free phenolics Anti-oxidants Hu et al. (2019). 
Lactobacillus plantarum Short-chain fatty acid (SCFA) Anti-diabetic Wan et al. (2019); Li et al. (2014). 

Kimchi Lactobacillus sakei Bacteriocin,Sakacin C2, benzyl 
isothiocyanate, indole compounds, 
thiocyanate and b-sitosterol. 

Anti-bacterial activities against 
Staphylococcus aureus ATCC 63,589 and 
E. coli.Anti-obesogenic, anti-cancerous, 
anti-inflammatory, anti-oxidant, anti- 
hypertensive, anti-ageing, anti- 
constipation, gut microbial and 
immuno- modulatory. 

Peters et al. (2019); Peňas et al. 
(2017); Ai et al. (2016); Noh et al. 
(2016); Peñas et al. (2012); Gao, 
Jia, Gao, and Tan (2010). 

Leuconostoc mesenteroides LBP-K06 Cyclo (Ser-Pro), cyclo (Tyr-Pro), and 
cyclo (Leu-Pro) 

Anti-microbial activity Liu, Kim, Kwak, and Kang (2017). 

Bacillus amyloliquefaciens CBSYD1 YD1(peptide rich in glycin) Anti-microbial activity against Gram- 
positive, Gram-negative, resistant 
bacteria, and Anti-oxidant activities 

Rahman et al. (2017). 

Leuconostoc citreum GJ7 and 
Lactococcus lactis BH5 

Bacteriocins Anti-microbial activity Rahman et al. (2017). 

Pediococcus pentosaceus Pediocins Anti-microbial activity Shin, Han, Ryu, Kim, and Lee 
(2008); 

Lactococcus lactis subsp. Lactis 
A164 

Nisin-like bacteriocin Anti-microbial activity against 
Staphylococcus aureus, Listeria 
monocytogenes and Salmonella 
typhimurium 

Choi, Cheigh, Kim, and Pyun 
(2000). 

β-sitosterol, thiocyanate and benzyl 
isothiocyanate 

Anti-oxidative, anti-carcinogenic, anti- 
inflammatory, anti-ageing, anti- 
atherosclerotic, anti-obesity, anti- 
constipation, anti-hypertensive and anti- 
diabetic and lipid-lowering activities 

Park et al. (2017). 

KIMCHI3-(40-Hydroxyl-30,50- 
dimethoxyphenyl) propionic acid 

Anti-inflammatory effect Jeong et al. (2015). 

Dichloromethane, chlorophyll, 
carotenoids, phenolics and vitamin C, 
capsaicin, quercetin, and 3-(4′-hydroxyl- 
3′,5′-dimethoxyphenyl) propionic acid 

Anti-oxidative activity Woo, Kim, Noh, and Song (2017); 
Hwang and Song (2001). 

Leuconostoc citreum Compound K Tumour suppressor Quan et al. (2011); 
Inziangsang Lactiplantibacillus plantarum IB2 Bacteriocin Anti-bacterial activity against 

Staphylococcus aureus S1 
Tamang, Tamang, Schillinger, 
Guigas, and Holzapfel (2009). 

Gundruk Lactobacillus spicheri G2 Bacteriocin Anti-microbial activity against 
Streptococcus mutans, Staphlococcus 
aureus, Listeria monocytogenes, 
Clostridium perfringens, Lactobacillus 
plantarum, Bacillus cereus and 
Leuconostoc mesenteroides. A good 
appetizer, source of Vitamins B and C, 
lactic acids, carotene, amino acids and 
minerals, anti-cancerous 

Karki, Ojha, and Panta (2016); 
Gautam and Sharma (2015); 
Tamang & Tamang (2010; 2009). 

Suan-Tsai Lactiplantibacillus plantarum JLA-9 Plantaricin Anti-bacterial activity against Bacillus 
spp. 

Zhao et al. (2016). 

Nozawana- 
zuke 

Lactobacillus curvatus and 
Lactiplantibacillus plantarum 

Interferon-gamma (IFN-γ) 
andInterleukin 10 (IL-10). 

Immunomodulatory activities Sandagdorj, Hamajima, 
Kawahara, Watanabe, and 
Tanaka (2019). 

(continued on next page) 
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entire process. 
Other concerns are adequate and comprehensive protein separation, 

meta-information from online sources, and redundant protein groupings. 
These also need attention as they can affect the outcomes. Advanced 
methods need to be employed for the extraction, identification, and 
verification methods of metaproteomic studies to be effective. Although 
omics technologies have offered unique datasets at a variety of molec-
ular levels (Lagier et al., 2018), metaproteomics and other omics ap-
proaches, on the other hand, cannot fully reveal the presence and 
growth of a microbial community. Due to the vast extreme complexities 
of samples from traditionally fermented fish and vegetables, systematic 
biology can provide a whole picture of activities and higher-level bio-
logical relationships by merging multi-omics data and bioinformatics 
technology to link cause and effect. Consequently, the molecular nature 
of biological activities is revealed (Cocolin et al., 2018), thereby 
obtaining new functional microorganisms as well as functional metab-
olites in fermented fish and vegetables. Furthermore, for effectiveness, 
metaproteomics is not a stand-alone technique, it should be combined 
with cytometry, microscopy, meta-transcriptomics, metabolomics, and 
metagenomics for thorough investigations and understanding of mi-
crobial populations and metabolic models (Vilanova & Porcar, 2016). 

Protein modification and interaction should be another point of in-
terest, especially with traditional fermentation (Gagnaire, Jardin, Jan, 
and Lortal, 2009). Additional researches into regulatory links between 
proteins’ post-translational modifications and metabolites, as well as 
proteins interactions, can help to elucidate the regulatory mechanisms 
of proteins and product quality in traditionally fermented foods. These 
interactions and modifications are capable of altering fermentation 
outcomes and processes. 

The development of advanced software tools with features to handle 
enormous datasets and are user-friendly can greatly improve meta-
proteomic analyses. The provision of cheaper metaproteomic analytic 
tools, just like DNA sequencing, would make analysis commonplace 
(Chiapello, Zampieri, & Mello, 2020) and enhance the listing of more 
novel proteins never before reported/explored in traditional or 
controlled fermentations. 

6. Conclusion 

Fermentation is an important process, not just because it preserves 
food. However, it further produces various molecules and metabolites 
that make the end-products healthier than the initial raw food sub-
strates, all thanks to versatile microorganisms and conducive 

environments. Some of the end-product proteins are signature organo-
leptic, preservative, and anti-microbial peptides. Therefore, increased 
detailed data from studies are needed to elucidate the microecology 
responsible for the production of peptides, their accurate identification, 
characteristics, and functions in fermented fish and vegetables (Tamang 
et al., 2020). The elucidation would enable a more controlled produc-
tion of these important peptides on a large scale. 

Fermentation is a process that will always be with us. With the arrays 
of microbes identified in fermented fish and vegetable products 
(although studies on fermented fish peptides are few), researchers can 
enlist important molecules associated with anti-microbial, anti-obesity, 
anti-oxidative, anti-hypertensive, even protein molecules that inhibit 
the activities of ACE- a host receptor that viral agents attach for host 
entry and replication. Nutraceutical firms can harvest these proteins and 
formulate them into good foods. Food and pharmaceutical scientists can 
solve the need for natural therapeutics to abate certain diseases via 
fermentation and harvesting these sets of peptides from healthy raw 
foods (fish and vegetables). 
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Table 1 (continued ) 

Fermented Fish Products 

Fish Product Fermenting microbes Identified proteins and peptides Function Reference 

Soidon Bacillus subtilis, Bacillus cereus, 
Bacillus pumilus, Lactobacillus brevis, 
Lactobacillus plantarum, 
Carnobacterium sp., Enterococcus 
faecium, and Pseudomonas 
fluorescens 

Amino acids Anti-oxidative, anti-cancer, anti- 
microbial, anti-ageing, and 
immunoregulatory, anti-obesogenic, a 
good source of vitamins C and E 

Thakur, Rajani, Tomar, and 
Panmei (2016); Jeyaram, Romi, 
Singh, Devi, and Devi (2010). 

Sinki Lactobacillus plantarum, 
Lactobacillus brevis, and 
Lactobacillus fermentum 

Amino acids Indigestion remedy, a good appetizer, 
cures stomach pains and diarrhoea 

Das, Patra, Singdevsachan, 
Gouda, and Shin (2016); Karki 
et al. (2016). 

Inziangsang Lactobacillus plantarum _ Anti-bacterial (Pseudomonas aeruginosa 
and Staphylococcus aureus), a good 
appetizer, and aids digestion 

Tamang and Tamang (2009). 

Khalpi Lactobacillus plantarum, 
Lactobacillus brevis and Leuconostoc 
fallax 

Bacteriocin and amino acids Improved palatability, a good appetizer, 
detoxification of virulent/toxic 
synthesis and degeneration of 
mycotoxins 

Behera, El Sheikha, Hammami, 
and Kumar (2020). 

Kanji Lactobacillus plantarum, 
Lactobacillus delbrueckii, 
Lactobacillus curvatus and 
Lactobacillus coryniformis 

_ Hepatoprotective, diuretic properties, 
uterine-stimulating, anti-tumour, 
improves appetite, digestion, anti- 
infection, has cooling and soothing 
properties 

Karki et al. (2016); Kingston et al. 
(2010); HALLIWELL (2007); 
Sura, Garg, and Garg (2001).  
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