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Abstract

Camera trapping is a standard tool in ecological research and wildlife conservation. Study

designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low

detection probabilities by using non-random camera placement or baited cameras, which

may bias data, or incorrectly estimate detection and occupancy. We investigated the ability

of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study

design components were evaluated for their influence on wildlife detectability by iteratively

parsing an empirical dataset (1) by different sizes of camera arrays deployed (1–10 cam-

eras), and (2) by total season length (1–365 days). Four species from our dataset that rep-

resented a range of body sizes and differing degrees of presumed detectability based on

life history traits were investigated: white-tailed deer (Odocoileus virginianus), bobcat

(Lynx rufus), raccoon (Procyon lotor), and Virginia opossum (Didelphis virginiana). For all

species, increasing from a single camera to a multi-camera array significantly improved

detection probability across the range of season lengths and number of study sites evalu-

ated. The use of a two camera array increased survey detection an average of 80% (range

40–128%) from the detection probability of a single camera across the four species. Spe-

cies that were detected infrequently benefited most from a multiple-camera array, where

the addition of up to eight cameras produced significant increases in detectability. How-

ever, for species detected at high frequencies, single cameras produced a season-long

(i.e, the length of time over which cameras are deployed and actively monitored) detect-

ability greater than 0.75. These results highlight the need for researchers to be critical

about camera trap study designs based on their intended target species, as detectability

for each focal species responded differently to array size and season length. We suggest
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that researchers a priori identify target species for which inference will be made, and then

design camera trapping studies around the most difficult to detect of those species.

Introduction

Camera trapping (CT) has become a popular technique employed in the field of wildlife ecol-

ogy that offers researchers an opportunity to survey wildlife populations in an economic and

non-invasive manner over longer periods than traditional survey methods. As CT technology

has become more affordable and widely available, the range of applications for CT data has

dramatically expanded [1]. Qualitative CT studies offer a novel and unprecedented opportu-

nity to monitor rare and cryptic species [2]. Large-scale monitoring efforts using CT data have

become particularly prevalent in recent literature, with the majority of CT research focused on

questions of species occupancy (i.e., detection/non-detection information) or the relative

abundance of many species simultaneously [3, 4]. Remote cameras are a staple tool in both

ecological research and wildlife management.

The rapid expansion of CT technology in wildlife research has come with some noted pit-

falls and shortcomings. Inconsistencies in CT terminology paired with inadequate reporting of

study design considerations leads to potential confusion and an inability to compare findings

across CT studies [5]. For example, camera make, model, sensitivity, and positioning often go

unreported, despite these settings having meaningful impacts on conclusions that can be

drawn from collected data [6]. Disregarding how these variables influence data will limit the

ability for CT studies to accurately and consistently address ecological questions of abundance,

density, occupancy and multi-species interactions or community dynamics. The relative ease

of CT implementation compared to traditional survey methods (e.g., point counts, line tran-

sects) does not excuse lack of thoughtful consideration for study design. Researchers designing

CT studies must decide how to appropriately allocate resources to maximize both detection

probability and a return on investment. Deciding how many cameras to deploy and the length

of time cameras should be deployed (i.e., season length) are undoubtedly part of the study

planning and design, however the justification behind these decisions are rarely reported. It is

important that researchers a priori define their sites, the time period over which occurrence is

assumed to be closed to change (i.e., closure assumption) [7, 8], and the criteria that constitutes

detection of a species [9]. Further analytical designs must be considered for applications and

analyses that rely on repeated surveys, such as occupancy models [10]. The benefit (and diffi-

culty) of CT data is that cameras are able to monitor continuously within a user-defined study

period; however continuous data can cause analytical complications that should be addressed

in the study design. Ultimately, the rigorous design is balanced against decisions made about

costs of equipment, labor needed to deploy and process images, the need to meet model

assumptions of closure that are grounded in the ecology of target species, as well as an assumed

desire to gain maximum spatial coverage of an area while also ensuring reasonable detectabil-

ity of one or many species [9]. These study design decisions determine the type and strength of

inference that can be derived from collected data and could potentially lead to incorrect con-

clusions if not thoroughly considered.

Detectability, the ability to detect a species based on its presence within a surveyed area, is

of critical importance in any effort to monitor wildlife populations. Measures of occupancy,

abundance, and density are all influenced by species’ detectability, yet detectability is often

unaddressed or poorly handled in CT literature [6]. This is despite well-established analytical
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methods, such as occupancy modeling [8], which can address imperfect detection. Naive esti-

mates (i.e., those that do not account for detectability) of occupancy parameters can result in

severely biased results and ecologically incorrect conclusions [10, 11].

Equally important is how the choice of study design may impact estimates of detectability.

The detectability of species is a key feature frequently used in determining the optimal alloca-

tion of sites versus repeat visits in occupancy studies [12], but study design choices are also at

least partly responsible for the detectability of species. These study design considerations are

particularly relevant to CT studies which often use non-random camera placements to increase

detectability. Other efforts to increase detection probabilities include study designs with

increased length of survey seasons, increased number of camera days (e.g., [13], but see com-

ment by [14]), or the use of baits and lures. Here, we use multi-camera “arrays” consisting of

clustered, non-independent groups of randomly placed cameras within a site (i.e. properties of

interest separated by�10 km), and thus present a study design choice distinct from increasing

the number of (presumably independent) camera traps within a site, or placing two cameras

directly opposite one another to record individual identifiers.

Our objective was to evaluate how components of CT study designs influenced detectability

of wildlife species by iteratively parsing an empirical dataset over a range of study design

parameters. We were specifically interested in investigating how detectability was influenced

by (1) the size of a camera array, and (2) season length. We hypothesized that detectability

would increase asymptotically with increased number of cameras and season length for species

with presumed low detectability. Conversely, we hypothesized that changes in detectability

would be negligible for species that are detected frequently within our study sites. We discuss

the potential of using multi-camera arrays to improve detection beyond the standard single

camera while reducing some of the bias associated with non-random camera placement, par-

ticularly in regards to trade-offs between number of cameras and study season length.

Materials & methods

Our empirical dataset was generated from 40 wildlife cameras (Trophy Cam HD Essential,

Bushnell, Kansas) that were deployed as part of an ongoing study of mesopredator activity lev-

els between November 2014 and November 2015 in southeastern Connecticut, USA [15]. Two

1-ha areas were identified in each site and five cameras were deployed at random coordinates

[16] in each 1-ha area. Therefore, each of our 4 sites contained 2 5-camera arrays. Cameras

were placed at approximately 1 m height, facing away from any large objects or dense vegeta-

tion that would severely obstruct the camera image or cause false-trigger events. The distance

between cameras within each 1-ha area averaged 65.2�7.9 m. The average distance between

each 5-camera array was 589.3�137 m. Passive-infrared sensors were set to medium sensitiv-

ity, with three images captured per trigger event, and a trigger interval of one minute. We vis-

ited cameras monthly to exchange memory cards and batteries. To address independence of

camera observations, we defined an observation as a three-photo trigger event containing evi-

dence of wildlife presence, and we mandated that a half-hour had to have passed between

observations for them to be considered a unique detection [17–19]. This restriction was

applied across all cameras within the site (i.e., 10 total cameras). For example, if a raccoon was

observed 10 minutes apart at two different cameras in a site, this was considered a single detec-

tion at this site. Observations containing more than one individual of a species were still classi-

fied as a binary “presence” for that species in the dataset.

We selected species from our empirical dataset with a range of body sizes and differing

degrees of presumed detectability based on known life history traits. White-tailed deer (Odo-
coileus virginianus), bobcat (Lynx rufus), raccoon (Procyon lotor), and Virginia opossum
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(Didelphis virginiana) detections occurred at least once in every 1-ha area across all sites and

within each season during the year-long deployment of cameras. Therefore, we assumed all

four species were present at every site throughout the yearlong study and available for detec-

tion (i.e., occupancy = 1.0). Failures of CT arrays to capture study species indicated a lack of

detection (i.e., false absence) not a lack of occurrence (i.e., a true absence). Consequently,

detectability could be calculated directly from zeroes in our detection/non-detection data,

rather than inferring detectability as a nuisance variable obscuring true occurrence [7].

Monte Carlo subsampling allowed us to simultaneously evaluate study design components

by iteratively parsing data based on the size of an array and season length. As opposed to using

simulated detection histories to evaluate study design components, we instead drew specific

subsamples of the empirical dataset for each iteration. For each subsample, we randomly

selected a start and end date within the calendar year and assumed study years were compara-

ble so any simulated season that extended past Nov 2015 were completed by looping with

detection histories beginning in Dec 2014. Although the effect of replicate length (i.e., number

of days per survey event) on estimates of detectability was not explicitly evaluated, we recog-

nize that it has implications for occupancy modeling and other applications that require repli-

cated survey events [20]. As opposed to a study design consideration, how researchers choose

to separate continuous camera trapping data is an analytical consideration that has been the

focus of other studies [21] and should be further evaluated in the context of CT studies. The

potential effects of replicate length and number of replicates on detection probabilities were

incorporated by randomly selecting a replicate length between 1 and 28 days for each iteration

—a range of replicate lengths reported in CT studies [6]. The number of replicates was calcu-

lated by dividing season length by replicate length.

Our first objective was to evaluate the effect of array size per site on detection probabilities.

We subset the data by randomly selecting an array containing between 1 and 10 cameras per

site via Monte Carlo subsampling, and then summed the detections among cameras in the

array. Survey detection probabilities were calculated for each subsample using equation 1,

p = SP/(Nk), where p was the probability of detecting a species during a survey given its pres-

ence (henceforth referred to as “survey detection probability”), P was either 1 (detection) or 0

(non-detection) based on detection history during a survey replicate, N was the number of

sites, and k was the number of surveys [7]. To evaluate the effect of array size on detection

probability, we used Tukey tests for multiple comparisons while accounting for non-normality

and heteroscedasticity in the R [22] package multcomp. We determined significant differences

(p< 0.05) in detection probability between array sizes by generating 5,000 Monte Carlo sam-

ples per species.

It is important to distinguish between survey detection probabilities used to investigate the

influence of array sizes and the cumulative, season-long probability of detecting a species. For

objective two, we were interested in the influence of season length on detection probabilities

which was best addressed with cumulative season-long detection probability, for which we

used equation 2, p� = 1-(1-p)k, where p� was the probability of detecting a species at least once

across all replicate surveys in a season (henceforth referred to as “season detection probabil-

ity”), p was survey detection probability calculated from equation 1, and k was the number of

surveys. Relationships between season length, array size, and season detection probability were

fitted with 10 nonlinear functions for each species with equation 3, p� = A(1-e(-RS)), where A
was the horizontal asymptote of the season detection probability, p�, increasing at a rate of R as

a function of season length, S. Models were fit in R [22] using the base stats package and func-

tions NLS and confint. The University of Connecticut Institutional Animal Care and Use Com-

mittee exempted this research from further review (E15-003).
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Results

Independent observations of all focal species per camera ranged from 11 to 307 with 3,488

total unique detections from November 2014–November 2015. After one year, our four focal

species were detected at least once by all 10 cameras within a site. Individual observations typi-

cally contained unique detections from only one camera and therefore we did not have to

combine observations across cameras to satisfy independence assumptions frequently. Survey

detection probability increased with increased array size per site for all four focal species (Fig

1). Regardless of species, increasing the array size from one to two cameras significantly

increased detection probabilities (Tukey Multiple Comparisons, p< 0.05; Fig 1). The use of a

two camera array increased survey detection an average of 80% (range 40–128%) from the

detection probability of a single camera across the four species (Fig 1). For frequently detected

species, deer and raccoon, the survey detection probability increased significantly with each

camera up to array sizes of five and six, respectively. Alternatively, for infrequently detected

species, opossum and bobcat, survey detection probability did not increase significantly with

the addition of each camera beyond two, but increasing to array size of eight or nine still had

positive effects on detection probability. The array size where adding additional cameras to the

array no longer significantly improved survey detectability, was between eight and nine cam-

eras for all four species (Fig 1).

Increasing season length had a positive effect on season detection probability across all four

species and array sizes (Fig 2). However, a minimum array size of two cameras were required

to produce detectability curves with 95% confidence intervals overlapping 1.0 (i.e., maximum

detectability) for all four species. This point was reached with season lengths of 70 days for

deer, 226 days for raccoon, 250 for opossum and 267 days for bobcat. Increasing from a single

camera to a two-camera array had the largest effect on season detection probability across the

range of season lengths for all four modeled species (Fig 2).

Discussion

By simulating changes in the study design with empirical CT data, we demonstrated how the

use and size of camera arrays and the length of an active survey period can affect detection

probabilities. By modifying these two aspects of survey design, survey and season long detec-

tion probabilities can be optimized. When only a single camera was used at a site, increasing

season length often failed to contribute further increases in season detectability after 100 days.

Perfect season detectability was approached when camera arrays were used, although the bene-

fits of multi-camera arrays varied depending on the targeted species of interest. We did not

attempt to compare baited vs non-baited camera stations, or random vs non-random camera

placement in this study. Previous research suggests that non-random camera placement may

negatively influence the robustness of camera data, and that baiting cameras may offer no ben-

efits in increasing detection probability [23,24]. Others have found that any biases associated

with non-random camera placement may be irrelevant with enough cameras over a long-term

study [25]. Ultimately, we suggest ways to utilize camera arrays that reach high detection prob-

abilities and eliminate the use of bait and non-random camera placement. Our findings can

guide future CT studies by providing suggestions for resource allocation based on specific

research goals and objectives.

Desired survey or season probabilities of detection will vary by target species and study

objectives, but researchers should establish robust study designs based around achieving a pri-
ori defined detection probabilities. Minimum thresholds of detectability may be particularly

relevant for occupancy studies of species that are detected infrequently by remote cameras.

Perfect detection is unreasonable to expect in natural systems and is an inefficient study design
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goal. Statically robust estimates of metrics such as occupancy can be made with survey detec-

tion probabilities (p)< 1.0 [26]. However, single species data with low survey detection proba-

bilities (p< 0.15) and/or limited detection histories (i.e., few survey replicates) may lead to

highly uncertain occupancy parameters that provide poor foundations on which to make

inferences [7, 12, 27, 28]. Probabilities of survey detection > 0.40 are generally more than

Fig 1. Survey detection probability (p) by array size (number of cameras; 1–10) per site across four species (White-tailed deer,

upper left; Raccoon, upper right; Virginia opossum, lower left; Bobcat, lower right), calculated by randomly parsing a yearlong

data set by season and replicate length with 5,000 Monte Carlo iterations. Asterisks (*) indicate significant differences and letters

indicate non-significance between array sizes based on a multiple comparisons of mean survey detection probability accounting for non-

normality and heteroscedasticity (p < 0.05).

https://doi.org/10.1371/journal.pone.0175684.g001
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adequate for occupancy or abundance estimation [12, 29]. For opossum and bobcat, two spe-

cies with lower numbers of detections, increasing array sizes to ten still did not reach a survey

detection probability of 0.40. The constraints on inference that arise from low detection proba-

bilities extend to other methods of collecting detection/non-detection data [21, 26, 27] rather

than being unique to CT studies.

Fig 2. Season detection probability (p*) by season length (0–365 days) and array size (1, 2, 3, 5, 7, 10 cameras; lines) across four

species (White-tailed deer, upper left; Raccoon, upper right; Virginia opossum, lower left; Bobcat, lower right), calculated by

randomly parsing a yearlong data set with 5,000 Monte Carlo iterations. Lines represent best fit of nonlinear model in R using the NLS

package and grey indicates 95% confidence intervals estimated from R package confint. Only a subset of the total array sizes are displayed

to improve visual representation of data.

https://doi.org/10.1371/journal.pone.0175684.g002
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Camera trap studies often attempt to boost low survey detection probabilities, and therefore

season-long probabilities, by using non-random camera placement or baited camera sites,

which can lead to higher detection probabilities but biased data. Suggested targets for season-

long detection probabilities of focal species are less well established, but have meaningful

implications on the effort requirements (e.g., labor, budget) of a study. While season-long

detection reached probabilities of> 0.8 in some of our modeled scenarios, particularly by

using arrays with large numbers of cameras, we consider this degree of detection excessive and

unnecessary for a real-world CT study design to achieve. Inserting the minimum recom-

mended survey detection probability of 0.15 [30] and suggestion of three-replicate study

designs for occupancy modeling [10, 12] into equation 2, these criteria would result in a mini-

mum season-long detectability of 0.39. However, acceptable levels of survey detection proba-

bility should be explicitly addressed on a per-study and per-species basis in relation to the

research question of interest.

Single cameras used in CT studies are limited in their ability to achieve high season-long

detectability of small-bodied or cryptic wildlife species. Improving season-long detectability

for these species is particularly important if study objectives involve evaluating species richness

or biodiversity [28], i.e., detecting as many species within a given area as possible, because lack

of a priori consideration for detection probabilities would negatively bias these estimates. For

two of our modeled species, Virginia opossum and bobcat, data from a single camera produced

maximum season-long detectabilities of 0.13 and 0.14, respectively, even after 180 days. The

addition of a second, randomly-placed camera to create an array increased season detectability

over a 180-day survey to 0.86 and 0.54, respectively. In addition to improved detection proba-

bilities, the inclusion of a second camera to the array likely reduced the risk of lost data or fail-

ure to detect a species due to camera malfunction [1, 31]. While an intensive design with large

camera arrays may be unnecessary for some research objectives or scenarios, they may provide

utility for those researchers attempting to survey difficult to detect wildlife.

The use of camera arrays as opposed to single cameras per site can vastly improve data qual-

ity without the need to resort to biased sampling designs. For example, bobcat are a frequent

target of CT studies, have naturally low densities throughout their range (e.g., 0.25–0.42 bob-

cat/km2 reported by [32]), and are almost universally reported as having low detection proba-

bilities (e.g., survey detectability�0.027 reported by [33]), when detected at all [18, 34, 35]. In

our study, relatively high season long detection probabilities (>0.50) for bobcat and Virginia

opossum were always reached when arrays of�2 cameras were used with season lengths >200

days. Camera arrays consistently resulted in higher detection probabilities but there were spe-

cific scenarios when single cameras remained appropriate. Single cameras have been com-

monly used in published CT studies and are likely chosen to maximize spatial coverage of a

study [4]. In parsing our data to represent a single-camera study design, high probabilities of

detection were achieved in very short study seasons for a large-bodied and relatively frequently

detected wildlife species in our region, the white-tailed deer (e.g., 30–80 deer/km2 reported by

[36]). The likelihood of detecting white-tailed deer, given the known presence of the species at

a site, exceeded 75% in only 30 days using a single-camera array (Fig 2). Knowledge of deer

presence may be crucial for informing game management practices in both urban and rural

settings and CT technology has been proposed as a way to reduce bias and effort in surveying

local deer populations [37, 38]. In these situations, single cameras are seemingly adequate in

achieving high season long detection probabilities of a target species.

Long-term deployment of cameras using single cameras are perhaps the most frequent way

that researchers attempt to increase detectability, particularly if they are limited by the total

number of cameras available. This increases study length and results in reported seasons that

can last to more than a year [6]. CT methods typically quantify effort in camera-days and have
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therefore implicitly assumed that camera-days are equal; which would mean that one camera

deployed for a long period of time is equal to multiple cameras deployed for a shorter study

period. Our simulated scenarios indicated that increasing season length did not always result

in meaningful increases in detectability, and that where increases occurred, they were not

equal to those achieved by increasing array size (Fig 2). While season-long detectability curves

for our simulated arrays sometimes reached asymptotes quickly (usually around a 100-day sea-

son), for single cameras, these asymptotes were<0.15 for our two focal species with relatively

low probabilities of detection. Increasing season length to a year for these difficult to detect

species failed to provide increased detectability benefits when using a single camera. Commit-

ting resources to longer field seasons for these species would have resulted in relatively little

return on investment. Shorter seasons did not result in the sacrifice of meaningful detection

data and may be preferable when aiming to collect CT data as efficiently as possible. Rather

than forming study objectives around the detection of as many species as possible, researchers

may benefit from either designing studies specific to the targeted species or, alternatively, con-

sidering those species that are known to be difficult to detect when designing CT studies.

Aside from issues of efficiency, increasing season length and treating excessively long sea-

sons as a single survey has meaningful implications when addressing assumptions of closure,

i.e., no changes in occupancy between surveys [39]. Employing large season lengths in an

attempt to achieve sufficient detection probabilities may mask patterns of seasonal occupancy

in species with large home ranges that are capable of traveling large distances over the course

of a year. Even if a species does occur within a site continuously over long time periods, detect-

ability may vary substantially between seasons based on changes to vegetation structure and

changes in animal behaviors [27]. Long seasons may be appropriate if the intent is to study

changes in patterns from one season to the next, but less appropriate for judging presence or

absence of a species within a site because of violations of model assumptions. In our study, we

assessed detection probabilities over a range of season lengths, ranging from 2 to 365 days.

While it is possible that assumptions of closure are violated within a yearlong study, we chose

to include the maximum possible range of season lengths based on our data to reflect the

broad ranges reported in the CT literature [6]. Regardless, closure assumptions are closely tied

to the specific questions being addressed in a study and the ecology of the species involved

[40]. A study design that was highly efficient for detecting deer, requiring few cameras and

minimal time investment, would have resulted in low detection of bobcat (Fig 2)

Researchers must balance the desire to maximize overall detection probability and spatial

coverage given a limited number of cameras and days available for their study. The change

from a single camera to even a two-camera array will likely increase detectability during the

season but would reduce the number of sites being sampled by half. However, the increase in

both survey and season detection probability over short season lengths could allow researchers

to retrieve and relocate cameras, thus achieving greater spatial coverage of a landscape without

sacrificing data quality. As a hypothetical scenario, if a researcher has 40 cameras and a 90-day

field season, they would choose an array size which allows them to reach some desired mini-

mum season detection probability, say p� � 0.4. A traditional camera trap design with one

camera per site would maximize the study’s spatial coverage but would also result in low detec-

tion probabilities that would limit the ecological inference that could be made for Virginia

opossum and bobcat because they never reached p� > 0.2. A three-camera array would

increase season detection probabilities by 412% and 343% for Virginia opossum and bobcat,

respectively, reaching the season detection probability minimum but also reduce the number

of sites by a third. However, given a minimum season detection probability of 0.4, three-cam-

era array confidence intervals surpassed this target within 55 days for both Virginia opossum

and bobcat, which could enable the researcher to relocate the arrays and increase their spatial
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coverage to 32 sites if the study season could be extended to 110 days. These results suggest

that projects with a limited number of cameras may want to consider whether their research

question can be answered with a study design that uses camera arrays over short time periods

and move arrays to cover the desired spatial extent.

Efficiency and rigor of data collection is a common goal for researchers and managers. Ran-

domized CT arrays containing two or more cameras can greatly improve detection probabili-

ties (p� 0.15) within relatively short season lengths, which improves upon single-camera

study designs maintained over extensive timeframes. In addition to achieving greater overall

efficiency, camera arrays have the potential to dramatically improve the detectability of cryptic

and difficult-to-detect species over a shorter study period without resorting to biased sampling

designs. CT technology already shows tremendous utility in collecting wildlife data in a man-

ner that is minimally-invasive and requires reduced human labor. Combining this methodol-

ogy with a clearer justification of study design can result in rigorous data collection and a

broadly applicable tool for research and management.
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