
Article
A fine-grained network for
 human identification
using panoramic dental images
Highlights
d Our key idea is to promote the feature fusion of images and

tooth contours

d A novel attention module is proposed to localize

discriminative parts

d An improved loss is proposed to address easy samples and

hard samples
Chen et al., 2022, Patterns 3, 100485
May 13, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.patter.2022.100485
Authors

Hu Chen, Che Sun, Peixi Liao, ..., Yi Lin,

Zhenhua Deng, Yi Zhang

Correspondence
fanfei@scu.edu.cn (F.F.),
yzhang@scu.edu.cn (Y.Z.)

In brief

Panoramic dental images play a

significant role in identifying unknown

bodies. While tooth contours are

significant in classical methods, few

studies using deep learning methods

devise an architecture specifically to

introduce tooth contours into their human

identification models. Our model was

tested on a large dataset consisting of

23,715 panoramic X-ray dental images

with tooth masks from 10,113 patients,

achieving an average rank-1 accuracy of

88.62% and rank-10 accuracy of 96.16%,

which is much higher than other models.
ll

mailto:fanfei@scu.edu.�cn
mailto:yzhang@scu.edu.�cn
https://doi.org/10.1016/j.patter.2022.100485
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100485&domain=pdf


OPEN ACCESS

ll
Article

A fine-grained network for human
identification using panoramic dental images
Hu Chen,1 Che Sun,1 Peixi Liao,3 Yancun Lai,1 Fei Fan,2,* Yi Lin,1 Zhenhua Deng,2 and Yi Zhang1,4,*
1College of Computer Science, Sichuan University, Chengdu, Sichuan, China
2West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
3Department of Scientific Research and Education, The Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, China
4Lead contact
*Correspondence: fanfei@scu.edu.cn (F.F.), yzhang@scu.edu.cn (Y.Z.)

https://doi.org/10.1016/j.patter.2022.100485
THE BIGGER PICTURE DNA, fingerprints, faces, etc. have been used in human identification, but they are
susceptible to decay when people die. Teeth do not decay, so experts use teeth as an effective feature in
individual identification. In earlier times, experts did the comparation manually. Our model contains a
branch devised specially to extract tooth contour features, which have proved to be meaningful in previous
methods. With other improvements added, our model is able to identify the target person in 1,000 X-ray
dental images with an accuracy of 88.62. There also exist limitations. The proposed model rests on masks,
so in subsequent studies, we will perform unsupervised methods on teeth or other structures.
Compared with DNA, panoramic dental X-ray images are easier to access, so our model provides a feasible
approach for identifying unknown bodies if they took panoramic dental X-ray imageswhen alive, even if these
bodies are ossified.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
When accidents occur, panoramic dental images play a significant role in identifying unknown bodies. In
recent years, deep neural networks have been applied to address this task. However, while tooth contours
are significant in classical methods, few studies using deep learning methods devise an architecture specif-
ically to introduce tooth contours into their models. Since fine-grained image identification aims to distin-
guish subordinate categories by specific parts, we devise a fine-grained human identification model that le-
verages the distribution of tooth masks to distinguish different individuals with local and subtle differences in
their teeth. First, a bilateral branched architecture is designed, of which one branch was designed as the im-
age feature extractor, while the other was the mask feature extractor. In this step, the mask feature interacts
with the extracted image feature to perform elementwise reweighting. Additionally, an improved attention
mechanism was used to make our model concentrate more on informative positions. Furthermore, we
improved the ArcFace loss by adding a learnable parameter to increase the loss of those hard samples,
thereby exploiting the potential of our loss function. Our model was tested on a large dataset consisting of
23,715 panoramic X-ray dental images with tooth masks from 10,113 patients, achieving an average
rank-1 accuracy of 88.62% and rank-10 accuracy of 96.16%.
INTRODUCTION

The identification of individuals plays an important role in foren-

sics. Several biometric features, including DNA, fingerprints,

faces, and voices, have been used in human identification. How-

ever, these features are susceptible to decay in the natural envi-

ronment. In contrast, teeth are covered by enamel, which is the
This is an open access article under the CC BY-N
hardest tissue in the human body. Teeth do not undergo major

morphological changes after death, which makes teeth effective

features in matching antemortem and postmortem records.

Digital images are commonly used in human identification due

to their acceptable costs and accuracy. Early on, antemortem

and postmortem records were manually compared by experts

using dental restoration and toothmorphology,1,2 which incurred
Patterns 3, 100485, May 13, 2022 ª 2022 The Author(s). 1
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significant time costs with subjective errors. Then, automated

comparison systems were developed, and classical methods

were adopted. Jain and Chen3 used a semiautomatic contour

extraction method to address the problem of fuzzy tooth con-

tours and then retrieved the best match to a given postmortem

radiograph from a database of 100 images. Nomir and Abdel-

Mottaleb4 used integral projection to separate teeth, and the sig-

natures of vectors of tooth contours were compared. In recent

years, deep neural networks have been applied in this area

and have made substantial progress. Fan et al.5 built a human

identification system with a convolutional neural network using

panoramic dental radiographs. Lai et al.6 presented a network

that incorporated a channel attention module to selectively

emphasize channel information. Sathya and Neelaveni7 used

transfer learning and classified teeth into four classes, thereby

increasing the performance of the model. Wu et al.8 proposed

a multisupervision network with an attention-based mechanism

to obtain an attention mask for human identification. These pre-

vious studies substantially improved the accuracy and reliability

of human identification using dental images. However, these

deep-learning-based works used entire images as input and

processed the textural feature together with the contour feature

without distinction. Tooth contours have not been treated in

much detail but have been proved to be meaningful features in

previous methods.9–11

Fine-grained image classification refers to problems of distin-

guishing subordinate categories among basic categories.12 In

this paper, we treat the human identification problem as a fine-

grained classification problem since the targets are the same.

Moreover, fine-grained classification requires themodel to focus

on areas with different details but that are similar overall; in our

model, we adopted several methods to distinguish fine-grained

categories.

First, our model is composed of a basic branch and a mask

branch to pay strong attention at the part level. The basic branch

extracts the contextual deep visual features from the whole im-

age, while the mask branch processes the masks (i.e.,

segmented tooth contours) to obtain the mask features. The

mask features cooperate with the contextual features to

generate the weighted features. The mask features can be

seen as weights of the basic features, similar to convolutional fil-

ters in dynamic filter networks.13 They enhance the correlation

between bilateral networks, guide themodel to pay strong atten-

tion to the fine-grained tooth contours, and adjust the training

procedure automatically. Second, as a supplement to the strong

attention mentioned above, to learn discriminative parts inside

and outside of masks automatically, an improved attention

mechanism is contained in the basic branch. The mechanism

can also ease the constraint of the local receptive field brought

by the convolution operation. Furthermore, to distinguish similar

individuals (hard samples), inspired by LCANet,6 we improved

the ArcFace loss14 and propose an improved loss function (dy-

namic ArcFace loss) as the loss function of the basic features

and weight features.

Themain contributions of our work are summarized as follows:

(1) we propose a bilateral network model based on masks and

feature fusion to solve the individual identification problem using

dental panoramic X-ray images. The network architecture of this

model is uncomplicated, and a large number of experiments
2 Patterns 3, 100485, May 13, 2022
have proved that it achieves better results than previous

methods. (2) An attention module is devised that is simple but

effective and can be easily used in other existing models without

modifying their backbones. (3) We present an improved loss

function (the dynamic ArcFace loss) that adjusts the loss in the

training process using learnable parameters and generates

more discriminative features. Our conclusions are confirmed

by further experiments. On the test set, which is composed of

1,000 individuals, our model achieves a rank-1 accuracy of

87.81% and a rank-10 accuracy of 96.67%, and the accuracy

is 82.92% when the false acceptance rate (FAR) is one in

10,000. The average rank-1 and rank-10 accuracy rates of the

5-fold cross-validation experiment are 88.62% and 96.16%,

respectively.

RESULTS AND DISCUSSION

Related work
Fine-grained models

Fine-grained classification models are designed to distinguish

between multiple subcategories, among which the differences

can be subtle. Part-based R-CNNs15 extract features from

whole-object and part detectors and handle classification issues

using methods borrowed from object detection. Wei et al.16 pro-

posed a mask-CNN model for aggregating contextual and part

attributes based on part-annotated fine-grained images. Yang

et al.17 proposed a self-supervision mechanism consisting of a

navigator network, a teacher network, and a scrutinizer network

to localize informative regions automatically while optimizing

these networks in a pipeline. Our bilateral network infuses infor-

mation derived from the tooth contour mask into the main

contextual feature and trains branches together.

Attention modules

By using attention modules, networks are able to determine long-

range dependencies and examine more meaningful areas. The

global attention mechanism proposed in the nonlocal network18

contains a self-attentionmodule that models multilevel global de-

pendency relationships. GCNet19 soon followed. GCNet com-

bines the channel attention mechanism (SE block) in SENet20

and the global attention mechanism in the nonlocal network18 to

propose a global attention mechanism global context (GC) block

that derives contextual information to achieve global dependency

modeling. Built on the SE block, the channel attention module in

LCANet introduces a structure composed of BN-PreLU-

Conv1*1-Dropout (LCANet module), which keeps the channel

interaction in a proper range and promotes convergence. In our

model, an LCANet model is used in the lateral branch of the GC

block, resulting in an enhanced learning capability.

Cosine loss function

Solving the human identification problem on a large dataset

deeply relies on devising a proper loss function. Early biometric

vision tasks used the softmax loss as the loss function of the

model. Subsequently, improved loss functions based on the

softmax loss function to better distinguish features have been

proposed. Among these improvements, Wen et al.21 proposed

the center loss to learn the intermediate features of each individ-

ual to reduce the intraclass gap, and Kemelmacher-Shlizerman

et al.22 proposed the L-softmax loss by adding angular con-

straints to the features to improve the discernibility of features.



Figure 1. An overview of our network
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Subsequently, Liu et al.23 improved the accuracy of the

L-softmax loss on the open set recognition task by normalizing

the weight parameters and proposed the A-softmax loss.

Wang et al.24 proposed a cosine loss to improve the softmax

loss. The cosine loss adjusted the features and weights through

L2 normalization and added angular constraints to features.

Then, the ArcFace loss proposed by Deng et al.14 improved

the cosine loss and changed the angular constraint of the feature

from the cosine value to the angular value comparison so as to

reduce the intraclass gap and expand the interclass gap. Our

improved loss function adjusts the weights automatically to bet-

ter learn the distribution of hard samples.

Methods
Bilateral-branch network

In this part, we illustrate a bilateral-branch network model, which

pays strong attention to tooth contours. The basic branch ex-

tracts the basic features, and the mask branch extracts mask

features to enhance the identification from a more fine-grained

perspective. The framework is shown in Figure 1.

Basic branch. To excavate the features concerning tooth

morphology from the mask, we combine the original tooth image

and its corresponding tooth segmentation map (i.e., mask) using

the channel axis and use the combination as the input of the

basic network. Then, the model extracts the contextual features

from the original image and local tooth contour features from the

mask. Note that unless otherwise specified, the convolutional

layer in the basic branch is composed of a normal convolutional

layer, batch normalization (BN), and an activation function (para-

metric rectified linear unit [PreLU]25). After being sent to the

network, the input first goes through a convolutional layer with

a 3 3 3 convolutional kernel and 64 channels and then is down-

sampled by maximum pooling. Next, it goes through four convo-

lutional modules (I, II, III, IV). Each module is composed of BN

and two convolutional blocks (each convolutional block is

composed of two convolution layers with a 3 3 3 kernel size),

and the numbers of channels of the blocks are 64, 128, 256,

and 512 in sequence. In addition, after the convolution modules

(II, III, IV), a convolutional layer with a step size of 2 and a 1 3 1

convolutional kernel is added to complete the downsampling

operation (only a normal convolutional layer and BN are used

in the downsampling convolutional layer). Due to the local recep-
tive field of the convolutional neural network, the deeper the

network is, the more features fade. To alleviate the harm caused

by the local receptive field, two methods were adopted to

enhance feature propagation. First, each convolutional block in

the above four convolution modules adopts a head-to-tail

feature fusion strategy to enhance feature propagation and

reuse parameters. In addition, at the end of each convolutional

block, an improved attention mechanism is included. It models

the global contextual dependencies in the feature map better

and strengthens the ability to obtain key information in the

feature map. Subsequently, a structure composed of BN and

dropout is added at the end of all convolutional layers to adjust

the distribution of features. Finally, a fully connected layer is

used to extract the 1,024-dimensional deep visual features of

teeth. The flowchart is shown in Figure 2A.

Mask branch. Due to the importance of tooth contours in clas-

sical human identification methods,3,4 we devise a specific mask

branch to make full use of the morphological characteristics of

teeth. Given a tooth segmentation image (i.e., mask) determined

by convolutional neural network (CNN) corresponding to a pano-

ramic dental image, there are only two different pixel values in the

segmentation image: a value of one for the pixels in the target

area of the tooth, and a value of zero for the background area.

That binary distribution strengthens the mask branch such that

it can capture the slight feature distribution changes in different

masks accurately. After passing to the mask branch, the mask

image goes through four convolutional blocks, and each convo-

lutional block is composed of two convolutional layers with

a 3 3 3 convolutional kernel. Each convolutional layer is

composed of a normal convolutional layer, a group normalization

(GN) layer and an activation function (PReLU) structure. The

numbers of channels of the four convolutional blocks are 64,

128, 256, and 512, respectively. A 1 3 1 convolutional kernel

with a step size of 2 is set after each convolution block to down-

sample the feature map. Finally, two fully connected layers are

used: one obtains the 1,024-dimensional mask features and in-

teracts with the basic features, and the other predicts the class

(mask logit) and calculates the mask loss directly. Our branch

network replaces traditional BN with GN and utilizes the trait

that GN adjusts the data distribution within the channel group

to improve the characterization capabilities of mask features.

The flowchart is shown in Figure 2B.
Patterns 3, 100485, May 13, 2022 3



Figure 2. Flowcharts

(A) Model architecture in basic branch. (B) Model

architecture in mask branch.
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Feature fusion. In dental panoramic X-ray images, the back-

ground area is much larger than the target area; additionally,

due to different formal clinical treatments, many individuals

have similar tooth characteristics. As shown in Figure 3, different

individuals have lost the same teeth and have had new teeth im-

planted, which easily leads to a higher similarity of the character-

istics excavated by themodel. In the last subsection, we devised

a mask branch that extracts the mask features to better collect

the morphological information of teeth. Until now, our branch

networks have been two separate units. To strengthen the

connection between the two branches, motivated by Kumar

et al.,26 we adopt an elementwise feature fusion strategy. This

strategy performs elementwise multiplication on the features ex-

tracted by the basic branch and mask branch. Furthermore, the

human identification problem can be treated as a fine-grained
4 Patterns 3, 100485, May 13, 2022
classification problem with small sam-

ples. This feature fusion strategy can

help the network discover more discrimi-

native visual features from tooth images

in each subclass (one person) and

overcomes the existing challenging

small-sample problem. The practical sig-

nificance of each part of the model will

be proved by ablation studies in the

experimental section.

GC-BN-PReLu-Conv1x1-Dropout

attention module

The attention mechanism has become a

feasible approach to fine-grained image

recognition.27 Since directly repeating

convolution layers would lead to ineffec-

tive modeling of the long-range depen-

dency,19 GCNet proposes the GC block

(as shown in Figure 4C) to model the

global context. Specifically, the GC block

utilizes a context modeling module (as

shown in the red box of Figure 4C) which

contains a Conv 1*1 and a matrix multipli-

cation to form a global context feature.19

However, the GC block projects channel

features into a one-dimensional space,

which may omit information in other di-

mensions28–30 and cause weak global in-

teractions among the global context fea-

tures in the human identification task

with dental images. As shown in Fig-

ure 5B, we visualized the attention map

(heatmap) of the GC block for different

positions. It was observed that the re-

sponses in the surrounding background

and the target tooth region were analo-

gous and salient, indicating that global

context features are indiscriminative for
different positions. To statistically verify this observation, we

analyzed the SD value of attention weights in different positions

in Table 1) and determined that the value is small, indicating that

attention weights learned by the GCblock are similar for different

positions, which further verifies that the GC block is inefficient in

modeling the long-range dependencies.

Inspired by LCANet,6 in which the BN-PReLu-Conv1x1-

Dropout (BPCD) block can capture interactions, we attempt to

develop an efficient attention instantiation by developing the

BN-PReLu-Conv1x1-Dropout module at the context modeling

module to aggregate the global context features and reach a

new instantiation of the general framework, which is referred to

as theGC-BPCDblock. Specifically, the BPCDmodule can be re-

gardedasvector concatenation-basedattention.6Comparedwith

the original context modeling module (as shown in Figure 4C), the



Figure 3. Similar radiographs of two

different individuals, who have lost the

same teeth at the same place and had new

ones implanted
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BPCD module can strengthen the globe interactions and feature

aggregation by repeatedly refining the global context features,

producing more effective long-range dependencies. Specifically,

the coefficient of the negative part is not constant, which can

improve the model fitting with minimal overfitting risk.

Our module is formulated as

zi = xi +W2RELU

 
LN

 
W1

XNp

j = 1

eWkxjPNp

m=1e
Wkxm

fðxjÞ
!!

;

(Equation 1)

where fð,Þ denotes

fðxÞ = BNðPReLuðWxÞÞ: (Equation 2)

For Equation 1, xi = fxigNp is the input feature, where Np = H,
W is the number of positions in the feature map. Wk represents

the parameters in Conv 1x1 before softmax; fðxjÞ denotes

LCA module(Equation 2); and eWkxjPNp

m=1
eWkxm

denotes softmax.

PNp

j = 1
eWkxjPNp

m=1
eWkxm

fðxjÞ corresponds to the context modeling part

in Figure 4D, and the remaining W2RELUðLNðW1ð,ÞÞÞ denotes

the transform part in Figure 4D, where W1 and W2 are parame-

ters of two Conv 131 s. xi + ð,Þ denotes the residual part.

For Equation 2, equation denotes the BPCD part in Figure 4B,

and W is the parameter of Conv 1x1.

To prove the effect of our attention module, we choose three

images randomly and then calculate the SD of the channel

attention values in the GC-BPCD module and GC block

separately. The results of the proposed model are shown

in Figure 5C and Table 1. The responses between the sur-

rounding background and the target tooth region are different
Figure 4. Architecture of channel attention blocks
(A) SE block. (B) BPCD block. (C) GC block. (D) Proposed GC-BPCD block.
and the SD value is higher, which indi-

cates that the proposed GC-BPCD block
strengthens the modeling of the long-range dependencies and

enables better recognition performance. More experiments are

discussed later in the experiment section.

Dynamic ArcFace loss

In the last two subsections, part-level strong attention and soft

attention have been established to focus on discriminative parts,

and then to promote fine-grained feature learning. In this subsec-

tion, an improved loss is devised to improve the discernibility of

features at the object level. For a better comprehension of our

dynamic ArcFace loss, in this section, we first review the design

of the ArcFace loss and former loss measures.

Revisiting ArcFace loss and the former. The softmax loss,

known as the most classical loss function in biometric recogni-

tion, can be expressed as

L1 = � 1

N

XN
i = 1

log
eWT

yi
xi +byiPn

j = 1e
WT

j
xi +bj

; (Equation 3)

where xi is the feature of the ith sample of the yith category and

has a dimension of d,W˛Rd3n denotes theweight parameter,Wj

denotes the jth column of W, bj˛Rn is the bias, N is the batch

size, and n is number of categories.

Despite its simplicity, the softmax loss fails to help the model

extract unique features. The following cosine loss performs the

corresponding improvement, and it is expressed as

L2 = � 1

N

X
i

log
esðcosðqyi ;iÞ�mÞ

esðcosðqyi ;iÞ�mÞ +Pjsyi
escosðqj ;iÞ; (Equation 4)

W =
W�

kW�k; x =
x�

kx�k; cosðqj; iÞ=WT
j xi;
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Figure 5. Heatmaps

(A) is the original image, and (B) and (C) are heatmaps generated by different models using (A). (B) is generated by GCNet, (C) is generated by our poposedmodel.
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where qj is the angle between Wj and xi. The cosine loss adjusts

feature xi and weight Wj using L2 normalization and adds a re-

striction m on the angle.

Subsequently, the ArcFace loss further improves the cosine

loss, and the restrictionon thecosine isdirectlychanged to restric-

tion on the angle as

L3 = � 1

N

X
i

log
esðcosðqyi +mÞÞ

esðcosðqyi +mÞÞ +Pj = 1;jsyi
escosqj

; (Equation 5)

This increases the interclass distance and decreases the intra-

class distance. Taking a binary classification problem as an

example, qi represents the angle between weightWi and feature

xi in category Ciði = 0; 1Þ. Assuming that a certain feature be-

longs to category 0, then the ultimate goal of the cosine loss is

to make cosðq0Þ�m > cosðq1Þ. The cosine function is monoton-

ically decreasing in the range of ð0;pÞ, so increasing the angular

constraint m forces the model to learn from the features that

have larger interclass distances and smaller intraclass dis-

tances. Similarly, the ArcFace loss applies constraints directly

to the angular value in order to make cosðq0 +mÞ > cosðq1Þ,
which further increases the interclass distance and decreases

the intraclass distance. The ArcFace loss experiment proves

that the ArcFace loss improves the performance and is better

than the cosine loss. However, as shown in Figure 7, our exper-

iment reveals that there is a definite increase in the ArcFace loss

that makes the training procedure more difficult, and the loss re-

mains basically unchanged at approximately 0.1 in the late stage

of training. Huang et al.31 show that the ArcFace loss does not

pay enough attention to difficult samples, which relatively in-

creases the loss from simple samples, thus stabilizing the loss

value since the model has fully learned the distribution of simple

samples.

Dynamic ArcFace loss (improved loss). To solve this problem,

inspired by focal loss,32 we seek to reduce the loss produced

by those easy samples. The formula of our loss function is ex-

pressed as

L4 =

0
@1� esðcosðqyi +mÞÞ

esðcosðqyi +mÞÞ +Pj = 1;jsyi
escosqj

1
A

2

3L3; (Equation 6)
Table 1. SD values

Module GC block Proposed model

Images 7.12 11.18
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where L3 is the ArcFace loss (defined in Equation 5).

In the training procedure, our dynamic ArcFace loss sup-

presses easy samples with large losses while promoting hard

samples with small losses by increasing their loss values, thus

encouraging the model to learn hard samples automatically.

Different from curricular loss, the proposed dynamic ArcFace

loss adjusts the weights of samples outside of the log function

and is iteration agnostic. Different from focal loss, we introduce

cosine similarity for human identification tasks and set g to 2 un-

der the objective of robustness. Different from ArcFace loss, dy-

namic ArcFace loss is equipped with a flexible mechanism to

address the difficulty of samples. All parts of the proposed loss

function are devised to repair the former drawbacks. The perfor-

mance of dynamic ArcFace loss also outperforms ArcFace loss

and curricular loss, as Figure 7 shows.

The final loss is an aggregation of the dynamic ArcFace loss

and L1 loss.We use the dynamic ArcFace loss in the optimization

of basic features Lbasic andweight features Lweight. Formask loss,

since the mask logit in Figure 1 is a direct prediction of individ-

uals, we choose the L1 loss. The final loss can be expressed as

Lfinal = Lbasic + Lweight + lLmask (Equation 7)

where l is the hyperparameter and is set to 0.1. This is done

because, at the beginning of the training procedure, Lmask fluctu-

ates extremely and, if it is set to 1, the model will not converge.

More improvements will be given in the section ‘‘experimental

procedures.’’
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Yi Zhang (yzhang@scu.

edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d We have produced and used human data (dental images) in this study,

so, due to ethical consideration, we are not able to release the dataset

publicly. However, interested researchers can ask the lead contact for

access to the data. Codes for panoramic dental images are available

at https://github.com/BreezeHavana/FGHINet.

d All original code has been deposited at Zenodo under the DOI 10.5281/

zenodo.6223257 and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

mailto:yzhang@scu.edu.cn
mailto:yzhang@scu.edu.cn
https://github.com/BreezeHavana/FGHINet
http://10.5281/zenodo.6223257
http://10.5281/zenodo.6223257


Figure 6. Softmax loss curve

Best viewed in color.
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Ethics statement

All study participants provided informed consent, and the study design was

approved by an ethics review board.
Data acquisition and hyperparameters

All the panoramic X-ray dental images used in our experiments, which were

taken before and after oral clinical treatment, were collected from the West

China Hospital of Stomatology and the Peking University Hospital of Stomatol-

ogy. The dataset contains tooth filling, root canal, and restorations. Images

derived from different devices do not affect the results. Our dataset consists

of 23,715 images from 10,113 patients. The dataset is randomly split into a

training set that consists of 21,575 images from 9,113 patients and a test data-

set composed of 2,140 images from 1,000 patients. The training set and test

set are completely separated from the individual axis; that is, if an image

belonging to an individual is chosen by the training set, all the images of the

individual should be collected in the training set, which is a concept borrowed

from human identification.22 For better generalization performance, we further

separate the test set into a register set and a validation set. If there areM total

dental images that belong to an individual, we randomly pick one for the reg-

ister set, and the other M� 1 images are the validation set.

Our device is equippedwithNvidiaGeforce 2080Ti; the cuda version is 10.2. A

total of 9 s is needed to train 100 iterations, and the training time is approximately

2 h. The inference time is 0.01 s per image. For preprocessing, We first crop the

image size to (2,100, 850) to exclude irrelevant areas and resize the scale from

(2,100, 850) to (128, 128) as the size of input image, thenwe reduce the influence

of artifacts in the original image using contrast enhancement, and finally we set

rectangles with a size of (15, 30) in the target area randomly to perform random

occlusion. This occlusion is performed to improve generalization and stability of
themodel. Themasks in our dataset are determined

by CNN. We choose stochastic gradient descent

(SGD) with a momentum of 0.9 and a decay of

0.0005 as our optimizer. The batch size is 16, the

dropout is 0.6, and the initial learning rate is 0.01.

The learning rate decreased by half every 30,000

steps, and all training steps are completed after

80,000 steps. In the testing procedure, we only

use the basic branch to extract 1,024-dimensional

features, use the cosine distance as the similarity,

and then rank them. More specifically, we sepa-

rately extract the features of images from the regis-

ter set and validation set by a trainedmodel, choose
an image from the validation set randomly, match its feature with the feature of

every image in the register set, and calculate their similarities. Then, we rank all

the similarities fromhigh to low. Finally, the identity of the image is determinedby

the image in the register set with the highest similarity.

Ablation studies in basic branch

In this section, we perform several ablation studies to prove the importance

of each part of the network. All the experiments are implemented without a

mask branch or feature fusion in this part.

Masks

Concentrating on the role masks play in our model, we abandoned the

other modified units mentioned above with only the basic backbone and

softmax loss left and used few images and a combination of images and

masks as input, respectively. As shown in Table 2, after we added masks

as supplemental information, the rank-1 accuracy increases by 4.47% and

the true acceptance rate (TAR) increases by 4.83% when FAR is 13 10�4.

The results prove that adding masks improves the performance, and the

accuracy is still low. Moreover, we visualize the training loss in Figure 6,

which indicates that our model converges fast regardless of whether

masks are added, and the main reason is that the softmax loss is easy

to optimize and converges fast.

Dynamic ArcFace loss (improved loss)

In this section, we continue to conduct experiments on the impact of our

improved loss, and the combination of images and masks is taken as the input

of the basic branch. Five other loss functions (L-softmax loss, A-softmax loss,

cosine loss, ArcFace loss, and curricular loss31) are adopted as comparisons

to verify the improved loss function in this chapter. As shown in Table 3, among

all loss functions, the cosine loss, ArcFace loss, and dynamic ArcFace loss

have better results than other loss functions because these three losses add
Figure 7. Loss curves of three different loss

functions

Best viewed in color.
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Table 2. With or without masks

Input

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

Images 34.47 57.63 26.39

Images + masks 38.94 63.52 31.22

Table 4. Attention modules

Attention module

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

SENet 51.14 75.53 41.15

CBAM 50.53 75.96 40.93

LCANet 68.60 89.04 60.14

ECA-Net 52.11 75.97 44.04

GCNet 64.74 85.96 57.63

Proposed module 75.53 90.87 67.82

ll
OPEN ACCESS Article
angular constraints to features, and it is beneficial for the model to learn fea-

tures with larger interclass distances and smaller intraclass distances. Further-

more, the ArcFace loss and dynamic ArcFace loss directly affect the angle,

thus achieving better results than the cosine loss. In addition, both the curric-

ular loss and the dynamic ArcFace loss improve the ArcFace loss. The differ-

ence is that, in different training procedures, the angular constraint weights are

determined by different numbers of iterations, and the weight increases as the

iteration number increases, which leads to a fast decrease in the loss. How-

ever, our dynamic ArcFace loss adjusts the weight by the similarity score of

the sample to reduce the loss of easily distinguishable samples, which is

why the dynamic ArcFace loss performs better than the curricular loss. We

also visualize the training losses of different loss functions, as shown in Fig-

ure 7. Figure 7 shows that, when the ArcFace loss is used in training, the

loss curve shows a significant decreasing tendency, which converges in the

later stage, but the final loss value is still high, indicating that there is still

room for optimization. Our dynamic ArcFace loss function not only maintains

the convergence of the original ArcFace loss but also pays more attention to

hard samples, thus reducing the final loss value of the model and further

proving that its self-learning weight can adjust the loss value in the network

training process. The curve of the curricular loss accelerates the convergence

of the model (the model converges after 30,000 iterations), but it does not

reduce the loss value as much as the dynamic ArcFace loss. It can be inferred

that the curricular loss has limited optimization effects on the model. In gen-

eral, the experiments above prove the superiority of the dynamic ArcFace

loss and prove the feasibility that the dynamic ArcFace loss can be used as

the loss function of our model.

GC-BPCD module

To determine the effect the GC-BPCD module has on the basic branch, we

performed several correlational experiments. We used the combination of

the mask and the original image as the input of the basic branch and dynamic

ArcFace loss as the loss function with the branch network and feature fusion

excluded.

Table 4 reveals that, among the six modules embedded in the basic branch,

the results of the LCANetmodule andGC-BPCDmodule exceed those of other

modules, while the GC-BPCD module offers superior performance with a

rank-1 accuracy of 75.53%. Compared with several other channel attention

mechanisms (except the GC-BPCD module), the attention module in

LCANet improves the ability of the channel attention mechanism in the original

SENet to capture the linear dependency cross-channels and can selectively

emphasize the key information that is effective for the recognition task. The

global attention mechanism in GCNet has shortcomings in global contextual

modeling and channel attention modeling. Our GC-BPCDmodule not only im-

provesGCNet’s ability tomodel the global contextual information in the feature

map but also fully captures the channel dependency between any two

channels.
Table 3. Different loss functions

Loss function

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

L-softmax loss 44.94 67.52 38.22

A-softmax loss 38.57 63.25 27.11

Cosine loss 47.46 71.93 38.77

ArcFace loss 56.58 79.47 47.91

Curricular loss 45.79 68.60 38.19

Dynamic ArcFace loss 65.96 85.26 57.10
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We further select three different images randomly from the training set and

use Grad-CAM for visualization. Figure 8 shows that the response areas ob-

tained by the attention modules in SENet, CBAM, and ECA-Net are relatively

scattered, while large-scale response areas appear in the target tooth area

and the background area (such as SENet and CBAM), and these modules

fail to exclude the interference caused by the background area, thus reducing

the rank-1 accuracy. The heat produced by the GCNet module is not focused

on target areas either, owing to the deficiencies the model has on contextual

modeling and channel attention modeling. The LCANet module has improved

the attention mechanism in SENet and focuses more attention on the tooth

area. Our GC-BPCD module inherits this tendency, aggregates the contextual

information of the target area, pays more attention to the target area, and pays

less attention to the background.

The architecture of our GC-BPCD module is quite clear and simple. It com-

pensates for the deficiencies of the global attention mechanism in the original

GCNet and strengthens its ability to capture channel dependencies. The ex-

periments above prove that the GC-BPCDmodule is a lightweight but effective

unit in recognition tasks.

Ablation studies in mask branch

In this section, we conduct more experiments to evaluate our mask branch.

The basic branch is added since the mask branch cannot work as a single

model, and the parameters in the basic branch are set to be consistent with

the final version.

Backbone

Table 5 shows the results of different backbones implemented in the mask

branch without feature fusion. Among these results, U-Net33 achieves better

performance than ResNet,34 probably because U-Net is designed specifically

for segmentation tasks and derives mask features more precisely. This finding

inspired us to design our mask branchmodel. Otherwise, themodel yields bet-

ter performance after we replace BN with GN, demonstrating that the repre-

sentation ability of the mask branch has been strengthened. Since the mask

branch uses a mask (which only contains two values) as input, GN adjusts

the local feature distribution and makes features extracted from masks more

discriminative.

Feature fusion

As shown in Table 6, after feature fusion is aggregated, a huge leap occurs

in the accuracy, which implies that the power of the mask branch is limited

if added directly. When we use elementwise multiplication instead of ele-

mentwise addition, the rank-1 accuracy increases by 6.67%. The element-

wise addition operation adds redundancy while multiplication emphasizes

features selectively. Weight features tighten the relationship between

basic features and mask features, aggregate them, and optimize features

together. They adjust the training procedure automatically and can be

seen as weights of basic features, similar to convolution filters in dynamic

filter networks.13

Loss function

The different choices of loss functions for the mask loss, including the L1

loss, softmax loss, and our dynamic ArcFace loss (improved loss), are

given in Table 7, while the basic loss and weight loss are fixed as the dy-

namic ArcFace loss. As shown in Table 7, the accuracy of the softmax loss

is lower than the accuracies of the other methods, while the L1 loss and

dynamic ArcFace loss achieve comparable performance. Moreover, the

type of loss function adopted in the mask loss affects the optimization of



Figure 8. Grad-CAM visualizations

The first row contains three different images, and in the following rows, each row contains three heatmaps correspond to different images.
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the basic branch. We visualize basic loss in Figure 9. The figure shows

that the convergence trends for all the loss functions are the same,

and the value of the L1 loss is lower. Additionally, the loss curve is

smoother than that in Figure 7, indicating that the training procedure be-

comes easier.

Other classification models

We then evaluate several other classification or identification models on our

dataset, and our model obtains the top accuracy. The results are shown in

Table 8. First, we compare our model with classical classification models,

including ResNet, ResNeXt,35 InceptionNet,36 DenseNet,37 and Efficient-

Net.38 Among these classical models, EfficientNet outperforms other

models, and the performance of InceptionNet and DenseNet is not satisfac-
Table 5. Backbones

Backbone module

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

ResNet 56.92 71.83 48.52

U-Net 61.30 74.11 53.38

Proposed 67.62 77.53 62.34

Proposed + GN 69.82 87.01 61.50
tory. The reason is that InceptionNet and DenseNet are deeper than the

others. DenseNet reuses parameters by concatenating channels in each

dense block but loses information when 1 3 1 convolutions are used, and

EfficientNet is embedded with the attention model in SENet, thus concen-

trating more on tooth areas.

Moreover, compared with the other four identification networks, our model

performs well. Ajaz and Kathirvelu39 and Oktay40 are two classical methods

applied on small datasets consisting of 200 images and have poor effects.

DenseNet is a deep learning model composed of a backbone network similar

to ResNet without dense connections, and its performance is not as good as

those of LCANet and our network. LCANet aggregates self-learning weight

features and attention mechanisms and has a better effect, but it does not

make full use of dental morphological information.
Table 6. Feature fusion

Feature fusion

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

No feature fusion 69.82 87.01 61.50

Elementwise addition 81.14 93.51 73.95

Elementwise

multiplication

87.81 96.67 82.92
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Table 7. Loss functions for mask loss

Loss function

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

Softmax 83.16 94.65 78.06

Dynamic ArcFace loss 86.05 96.23 81.32

L1 87.81 96.67 82.92

Table 8. Other models

Model

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

ResNet 54.21 77.72 42.97

ResNeXt 58.68 81.14 50.27

InceptionNet 48.77 75 39.03

DenseNet 44.56 71.05 34.32

EfficientNet 69.21 87.20 61.35

Ajaz and Kathirvelu 17.51 24.39 8.73

Oktay 26.75 47.37 18.00

DentNet 39.47 65.09 28.17

LCANet 78.86 92.81 72.67

Proposed 87.81 96.67 82.92

ll
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Cross-validation

To further evaluate our model, we perform 5-fold cross-validation, and

the results are shown in Table 9. The final average rank-1 accuracy is

88.62%, the highest rank-1 accuracy is 89.91%, and the lowest is

87.74%. All these data indicate that our model performs well and has

generalization ability.

Experimental conclusion

In the section ‘‘ablation studies in basic branch,’’ we perform ablation studies

in the basic branch. In the section ‘‘masks,’’ we explore the role of masks. With

other modified units abandoned, when masks are added, rank-1 accuracy in-

creases from 34.47 to 38.94 by four points and is still low. We substitute soft-

max loss with other loss functions in the section ‘‘dynamic ArcFace loss

(improved loss).’’ The dynamic ArcFace loss exceeds ArcFace loss by approx-

imately nine points, which proves that it fully exploits the potential of the added

masks. Next, we compare several channel attention modules. The proposed

model outperforms the LCA module by approximately seven points, possibly

because the proposed model fully captures the channel dependency between

any two channels. A detailed analysis is provided in the section ‘‘GC-BPCD

module.’’ The rank-1 accuracy reaches 75.53 when only the basic branch is

employed.

Ablation studies in the mask branch are performed in section ‘‘ablation

studies in mask branch.’’ First, in section ‘‘backbone,’’ we compare backbone

models (mask extractor in Figure 1). The accuracy of the proposed backbone

model is 69.82, which outperforms other backbonemodels. There is no feature

fusion (green part in Figure 1) at that stage, and the mask branch extracts fea-

tures of masks and makes predictions in categories. Owing to the large num-

ber of classes, the model is not very accurate in its predictions, so the accu-

racy decreases to 69.82 from its value of 75.53 in section ‘‘ablation studies

in basic branch.’’ Next, in section ‘‘feature fusion,’’ we perform different

methods of feature fusion. Elementwise multiplication bridges the gap be-

tween images and masks and increases the accuracy by a large amount to

87.81. We compare different loss functions for mask loss and achieve a higher

accuracy of L1 loss.

In section ‘‘other classification models,’’ we evaluate other classification or

identification models. In section ‘‘cross-validation,’’ we perform 5-fold cross-

validation and obtain an average rank-1 accuracy of 88.62.
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The aforementioned ablation studies prove the effectiveness of every

single part of our model. The usage of teeth masks is the highlight of the

proposed model, but a simple combination just trails the desired accuracy.

Directly concatenating masks with images (section ‘‘masks’’) or barely add-

ing lateral connections (section ‘‘backbone’’) does not fully utilize masks,

which limits the overall performance. Every part of the proposed model is

devised to address the fusion problem. There also exist limitations. Teeth

have an important role in the proposed model. The proposed model rests

on masks, and extra time is needed to draw masks of teeth. In subsequent

studies, we will perform unsupervised methods on teeth or other

structures.

CONCLUSION

Formal works on human identification with panoramic dental

images aim for classification but neglect the effect of dental

morphology. Based on this limitation, we propose a novel

fine-grained bilateral-branch network. Our key idea is to

promote the feature fusion of images and masks, thus to

help the model focus on meaningful tooth contours. A novel

attention module (the GC-BPCD module) is proposed to

localize discriminative parts, and an improved loss (dynamic

ArcFace loss) is proposed to address easy samples

and hard samples. Ablation studies prove that the proposed

model outperforms other identification models devised specif-

ically for the dataset and other general classification models.
Figure 9. Loss curves of three different loss

functions

Best viewed in color.



Table 9. Five-fold cross-validation

Number

Rank-1

accuracy

Rank-10

accuracy TAR(@FAR = 10-4)

1 89.91 96.57 83.90

2 88.68 96.32 83.88

3 87.74 95.67 83.43

4 88.43 96.08 86.27

5 88.34 96.17 83.23

Average 88.62 96.16 84.14
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Experiments elaborate that the proposed method is robust

and easy to converge.
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