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Ovarian cancer is one of the leading causes of cancer-related death among women. Resistance to the disease occurs in more
than 70% of the cases even after treated with chemotherapy agents such as paclitaxel- and platinum-based agents. The immune
system is increasingly becoming a target for intense research in order to study the host’s immune response against ovarian cancer.
T cell populations, including NK T cells and Tregs, and cytokines have been associated with disease outcome, indicating their
increasing clinical significance, having been associated with prognosis and as markers of disease progress, respectively. Harnessing
the immune system capacity in order to induce antitumor response remains a major challenge. This paper examines the recent
developments in our understanding of the mechanisms of development of the immune response in ovarian cancer as well as its
prognostic significance and the existing experience in clinical studies.

1. Introduction

Cancer is one of the leading causes of death in the developed
world outnumbering even heart disease in the United States
[1]. In turn, ovarian cancer remains the leading cause of
death among gynaecological malignancies and is the fourth
most common cause of cancer-related death among women.
Epithelial ovarian cancer is the main type of the disease
accounting for more than 90% of all malignant ovarian
tumors. According to the initial FIGO stage, the prognosis
of ovarian cancer varies; a 5-year survival reaches 90% when
the disease is confined within the ovary, but it drops to below
50% for the cases that cancer has spread outside the pelvis.
Ovarian cancer is usually diagnosed in advanced stages
(FIGO stages III and IV), and prognosis is generally rather
poor. Major established prognostic factors, apart from FIGO
stage of the disease, include tumor grade, histologic subtype,
and the volume of disease remaining after cytoreductive
surgery [2]. Nevertheless, the value of these factors in

a population with advanced stage and usually high-grade
tumors is limited.

Current treatment of advanced ovarian carcinoma
includes debulking and chemotherapy, mainly the combi-
nation of the use of paclitaxel and platinum agents and at
least 70% of the patients treated with the above combination
initially respond to treatment. Intraperitoneal drug admin-
istration has substantially improved the survival of patients
who have minimal gross disease remaining after surgery and
can also tolerate the side effects of aggressive treatment [3].

Despite the significant advances in surgery and chemo-
therapy, the disease is more likely to relapse in about 70% of
the cases [4] with resistance being prevalent in most cases.
As a result, new ways of treating the disease are currently
being explored focusing on the biology of cancer and more
specifically within the ovarian tumor microenvironment.
Therefore, clinical research has focused on molecular mark-
ers, which are related either to the behaviour of the disease or
the response to chemotherapy in order to define the outcome
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Figure 1: VEGF exerts its signalling effect via its receptor VEGFR.
VEGF, mainly the VGEFA isoform exerts its effects via binding its
receptor VEGFR (mainly VEGFR2). It is a powerful angiogenic
factor that holds a pivotal role in tumor progress and metastasis.
It comprises an attractive target for possible agents that will block its
function and therefore enhance patients’ survival. ID: Intracellular
domain, ED: extracellular domain, TD: Transmembrane domain.

in these patients and establish furthermore potential targets
for therapy.

Oncogenesis in all types of cancer, including ovarian can-
cer, is a process that involves multiple molecular pathways,
which regulate important functions of cancer cells. In 2004,
the Baltimore group proposed a model for the division of
epithelial ovarian tumors into two rather broad categories
termed type I and type II, that correspond to two main
pathways of tumorigenesis [5].

The major groups are genes involved in apoptosis and cell
cycle regulation, genes encoding for growth factors and genes
involved in angiogenesis. The prognostic and predictive value
of several factors implicated, in these pathways, has been
recently studied. Genetic alterations in associated genes, such
as mutations of p53, malfunctioning genes of the BRCA
family (BRCA1 and BRCA2) in about 15% of inherited types
of ovarian cancer [6], malfunction of tumor suppressor genes
such as ARHI [7], the cyclinE/CDK2 and cyclinD/CDK4
complexes and the cell cycle regulators p27, p15, and p16
have all been studied in this context [8–11]. Although some
studies have reported relevant associations, the prognostic
role of these factors remains to be elucidated in full.

Angiogenesis is a critical function for the expansion of
a tumor and also for its metastatic potential, and it is influ-
enced by the tumor microenvironment [12]. Its significance
in ovarian cancer has been well established, and a number
of angiogenic factors have been identified. The vascular
endothelial growth factor (VEGF) holds a pivotal role in the
angiogenic process [13]. It is produced by cancer cells and
assists tumor progression and metastasis (Figure 1) exerting
a central role in the formation of ascitic fluid and metastasis
in the peritoneum. It is also related to the invasive and
metastatic potential of ovarian cancer [14–16].

Immune surveillance has long been recognized as an
important element of host anticancer response. Agents which
augment immune response as well as antibodies against
certain tumor antigens have been approved for the treatment
of different types of neoplasms. In the recent years, we have
witnessed important developments in our understanding of
cancer immunology. Many of these developments involve
ovarian cancer, and this paper will focus on them.

2. Cancer and the Immune System

The immune system responds to the presence of cancer anti-
gens. A key advance in recent advances in immunology has
been the elucidation of antigen-specific cell recognition and
destruction of target cells. Mutations can occur in common
antigens that are found in otherwise normal functioning
genes in the cell; these were initially termed the tumor-
specific antigens [17], and on those that can be found in
both normal and cancer cells called the tumor-associated
antigens (TAA) [18]. This terminology is still extensively
used but it has been termed as imperfect by researchers and
although still present in the literature, other modern antigen
classifications have emerged based on the antigens’ molecular
structure and source. More modern terminology divides
antigens into categories such as differentiation antigens
and overexpression antigens [19] and also viral antigens.
A distinct example of the latter category is Epstein-Barr
Virus Nuclear Antigen (EBNA-1), which is associated with
Burkitt’s lymphoma and nasopharyngeal carcinoma [20].
Identifying tumor antigens has been an ongoing process with
a number of techniques, having been employed, based on
several components of the immune system [21–24].

In contrast to early theories that a tumor could not
elicit an immune reaction, later experiments showed that
it actually does provoke the onset of an immune response
[25–27]. More specific studies have shown that both the
innate and adaptive “arms” of the immune system are impli-
cated in antitumor response [28, 29]. There is a number of
components of the immune system that have been implicated
with cancer cell elimination, equilibrium, and also escape
from immune surveillance; all three comprising what is
called “immunoediting” [30], a process that emphasizes in
the dynamic interaction of the immune system with cancer,
and it is present in almost all types of tumor including
ovarian cancer. It is a process that has been reinforced in the
last few years for its usage in cancer progress. Immunoediting
is divided in elimination, equilibrium, and escape. At first,
cancer is eliminated, rendered nondetectable, followed by
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a period of being kept in check by the immune system,
and finally cancer becomes clinically detectable when it
has escaped antitumor immunity. Thus the immune system
protects the host from cancer and it also plays a role
in “sculpting” immunogenicity, and this has actually been
experimentally shown [31].

Elimination and equilibrium are achieved via lympho-
cytes, mainly the T cell subpopulation [32]. In cancer
patients the “healthy” response against the tumor is counter-
acted by a suppressive, tumor-driven effect. This hypothesis
is strengthened by recent studies showing that the absence or
presence of T cells in colorectal cancer specimens more accu-
rately predicted the outcome than using standard prognostic
factors [33]. Other studies in different types of tumor, mainly
cervical and breast cancer, have also shown similar results
[34, 35]. These studies further confirmed the importance
of the immune response in prognosis alongside other more
established factors. Recent studies also support the case of
immunoediting by observing that tumor infiltration by lym-
phocytes is linked to tumor-associated immune response,
mainly showing that the presence of tumor infiltrating
lymphocytes may be associated with improved prognosis
and clinical outcome in cancer patients [36–38] including
ovarian carcinoma [39, 40]. These observations as well as
preclinical data also suggest that by enhancing the host
immune system, it may achieve tumor destruction and act
synergistically with other anticancer therapies.

Although the development of antitumor immune
response has been well established, there is also evidence that
tumors can escape destruction by suppressing the immune
system both within the cancer microenvironment and also
on a systemic basis. T regulatory cells (Tregs), for example,
that can suppress effector T cells action have been found in
the microenvironment of several types of tumor [41–43].
Similar effects on regulation of Tregs can also be brought
about in systemic modes of immunosuppression by tumors.
For example, an increase in blood Tregs content has been
observed in melanoma [44]. In colorectal cancer, increased
numbers of activated granulocytes [45] have also been
reported. Such cell types have shown to suppress tumor-
specific T cells in mouse models [46]. Other types of im-
munosuppression consist of the downregulation of Major
Histocompatibily Complex (MHC) and tumor antigen loss
[47]. They also include disruption of specific Natural
Killer (NK) cells employment that inhibit immune system-
mediated tumor destruction [41, 48].

3. Ovarian Cancer and Lymphocyte Response

Epithelial ovarian cancer is characterized by periods of
remission and relapse of sequentially shortening duration
until chemoresistance occurs [40]. Such patients are the best
candidates for immunological studies, since T cells’ presence
can be utilized as markers for disease progress and can be
evaluated at different stages of the disease. The progression
of cancer in the peritoneal cavity and the frequent formation
of ascites, which characterize advanced stages of ovarian
cancer, mainly stage IV, make this tumor a model for the
study of different lymphocytic populations. Ascitic fluid as

well as peritoneal metastases can be easily obtained through
paracentesis, laparoscopy, or open surgery, and cells can be
screened by various techniques such as flow cytometry or
immunohistochemistry.

It is believed that the presence or absence of specific pop-
ulations of T cells, which hold a central role in immunoedit-
ing within epithelial ovarian cancer tumors, is associated
with important differences in prognosis. Studies in paraffin-
embedded tissues have reinforced this notion and have
shown that the presence of tumor infiltrating lymphocytes
(TIL) such as CD3+ cells and increased number of cytotoxic
CD8 lymphocytes were associated with prolongation of
survival [49–51]. For example, in the case of CD3 TILs,
Tomšová et al. have shown that patients exhibiting higher
CD3 cell numbers had an improved overall survival of 60
months over 29 months for patients that had lower CD3 cell
numbers.

Elimination is also conferred by CD3+ CD56+ cells,
containing the NK-like T cytotoxic cells which have cytotoxic
properties against tumor cells and contain the highest
such property among effector killer cells in vitro [52, 53].
Experiments, using blood cells from lymphoma patients,
showed significant expansion of this cell population in ex
vivo conditions, which accounted for the 20% of a cytokine-
induced population that resulted in significant cytotoxicity
against cancer cells in vitro [54]. Frozen tissue has also
been used in immunohistochemical studies showing similar
results [55], where the presence of CD3+ cells was shown in
most cancer specimens. In this paper, immunohistochemical
studies also showed the presence of CD4+ and CD8+ TILs
with numbers that were closely related. Moreover, both types
of cells, CD4+ and CD8+, were both present or absent
in specimens examined. The 5-year progress-free survival
percentage for patients with the presence of TILs according
to Zhang et al. was 38%. Nesbeth et al. have recently shown
the positive effect of CD4+ T cells in ovarian cancer via the
use of a novel mechanism that recruits dendritic cells to the
tumor site that in turn activate tumor-specific CD8+ cells
which then mediate long-term protection [56].

The presence of CD3+ CD56+ cells in ascitic fluid taken
from advanced ovarian cancer patients has been shown to be
inversely correlated with the presence of vascular endothelial
growth factor (VEGF) [57]. In addition, low CD3+ CD56+
content was correlated with poor prognosis and platinum
resistance. NK cells’ rapid activation, and cytotoxic activity
without need for prior sensitization and the release of
cytokines such as IFN-γ, TNF-α, and IL-10, indicates their
importance [58]. Early studies have shown the efficacy of
NK cells against tumors when activated by cytokines [59, 60]
or when ex vivo stimulated lymphokine-activated killer cells
were adoptively transferred into patients [61, 62]. Recent
studies though have shown that the expression of mucin
(MUC) molecules on the ovarian cancer cell surface, namely,
MUC16 which is a carrier for the CA125 tumor marker, assist
in the avoidance of the tumor cells’ recognition by NK cells
[63]. Human Leukocyte Antigen (HLA) class I antigens that
can play a negative role in antitumor functionality of NK cells
are downregulated in ovarian cancer, hence making the use of
NK cells possibly quite important in ovarian carcinoma [64].
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This is enhanced by findings that the formation of ascites in
late stage ovarian cancer may be inhibited by Cd-1-mediated
activation of NK cells [65].

Another factor, termed programmed cell death 1 (PD-
L1) which is expressed on tumor cells, has been shown to act
as a prognostic factor. Its expression level has been shown to
be inversely correlated with CD8+ cell count rendering this
protein a factor of poor prognosis, since it has been suggested
to directly inhibit CD8+ cells [66].

Dendritic cells migrate in a transendothelial manner via
the use of L1 IgCaM molecule as has been recently shown by
Maddaluno et al. [67], an observation that may play a role
in tumor metastasis. L1 is a glycosylated protein that has
been recently reported to be expressed in 40%–70% of cases
of epithelial ovarian cancer and is associated with poor
prognosis [68].

In contrast to the augmentation of antitumor response by
the aforementioned populations, another specific subset of
T cells has been shown to play a key role in tumor immunity.
T regulatory cells (Tregs) play a key role in peripheral
tolerance. Since tumor-associated antigens (TAA) are self
antigens, they are subjected to control by peripheral tol-
erance. Tregs within the CD4+ CD25+ T cell population
are characterized by the expression of the FoxP3+ protein
[69, 70]. Humans bearing tumors show an elevated amount
of Tregs in their blood as well as malignant effusions [71, 72].
Sato et al. [69] identified cells in ovarian tumors expressing
both CD25 and FoxP3. Recently, the presence of Tregs in
ovarian cancer ascites in comparison to normal ascites
has been shown [72]. The presence of Tregs in ovarian
tumors has been associated with reduced overall survival
[73, 74]. More specifically, Curiel et al. showed for the
first time that CD4+ CD25+ FoxP3+ Treg cells correspond
to poor clinical outcome in epithelial ovarian cancer. The
same study also showed that CD4+ CD25+ CD3+ cell
populations were much more concentrated in malignant
ascites rather than nonmalignant ones and in blood. It was
also shown that CD4+ CD25+ cells were preferentially
concentrated in tumor mass rather than in tumor draining
lymph nodes. Furthermore, the presence of FoxP3 alone
was an independent prognostic factor for progress-free and
overall survival.

Therefore, Tregs depletion can be expected to lead to
more efficient treatment and better prognosis. Current ther-
apeutic agents may be useful in this respect. Classical cyto-
toxics, such as cyclophosphamide [75] as well as antibody-
based immunotherapy with Trastuzumab have been shown
to result in a substantial decrease in the number of Tregs
in cancer patients [76]. A recent study has shown selec-
tive accumulation of NK-T cells, activated CD4 and CD8
lymphocytes and also Tregs in ascites formed in ovarian
cancer [72], which complements previous evidence that
tumor-associated lymphocytes are indeed present in ascites
[70, 73, 77] and may be important for the immune response
against the tumor. These results indicate that the presence of
cancer cells can activate lymphocytes and could also result
in a parallel accumulation of Tregs that may inhibit CD8-
mediated immune response against the tumor as has been
suggested before [71, 78]. Recent studies also indicate that

in the case of epithelial ovarian cancer, local treatment with
interleukin 2 may play a role in converting Tregs into Th17
cells, a new player in the field of cancer immunotherapy,
with a concomitant relief of Treg-mediated immune sup-
pression and enhancement of antitumor immunity [79, 80].
Plasmacytoid dendritic cells (PDc) have also been shown
to contribute to immunosuppression in ovarian cancer by
inducing tumor microenvironment Tregs [81].

Another type of cells of the immune system, namely
macrophages, are also found in ovarian cancer [82, 83].
The presence of macrophages in tumors has been associated
with tumor growth and metastasis in rodents [84, 85].
Kryczek et al. [83] have shown that the B7-H4+ receptor
expression, which is a negative T cell regulator on tumor-
associated macrophages, in ovarian cancer, induces sup-
pression of T cells encompassing tumor-associated antigens
immunity.

Finally, since the increased concentration of autoanti-
bodies can induce the production of Tregs and clinical studies
have reported autoimmune paraneoplastic syndromes (dif-
ferent from autoimmune diseases) [86, 87], there may be
links between cancer and autoimmune disease that remain
to be elucidated in full. These studies may provide us with
a greater insight into Tregs activity and association with
ovarian cancer.

Lately, different populations such as vascular lympho-
cytes have shown the ability to form functional blood vessels,
and they may be proven to be an important target for
blocking cancer progression [88].

The identification of important subsets of lymphocytes
in tumors and ascites from ovarian cancer has led to the study
of possible immunomodulatory effects of current therapies.
Chemotherapy, in particular paclitaxel, may have a positive
effect on the immune response by directly downregulating
Tregs [89]. Tregs can also be suppressed by cyclophos-
phamide as has been exhibited in mouse models [75, 90],
and NK cells can be activated at the same time. The use
of gemcitabine, which is a nucleoside analog, reduced the
number of myeloid suppressor T cells, without reducing
cytotoxic cells such as NK cells [91]. Gemcitabine, in
association with oxaliplatin and interleukins such as IL-
2 and GM-CSF, can have a suppressive effect on Tregs
[92, 93]: therefore, it could possibly have a positive effect on
reducing drug resistance and influence prognosis and disease
outcome.

4. Cytokines, Growth Factors and Association
with Lymphocytes’ Mobility and Response

The composition of lymphocytic populations in blood,
ascites and tumors is regulated by various cytokines and
chemokines produced by the tumors or the components of
the immune system. A simple schematic representation of
these interactions is depicted in Figure 2.

A number of cytokines have been associated with a direct
effect on tumor cells, via surface receptors such as Toll-like
receptors [94], but mainly they have been attributed roles in
assisting the immune response of the body against tumors.
Host antitumor response results from the balance between
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Figure 2: Schematic representation of characteristic immune cells, growth factors, and cytokines interactions in cancer. Interactions between
growth factors such as VEGF, cytokines (e.g., TNFα) and T cells (e.g., NK, Tregs) are shown in this diagram. Tumor cells bring about the
production of cytokines that assist in the mobilization of T cells and induce the production of further cytokines, and they also utilize growth
factors such as VEGF to promote neovasculirisation implicated in metastasis. ↑means increase where ↓means decrease.

the T helper 1 (Th1) response, which potentiates immune
response and the T helper 2 (Th2) response with a shift
in favor of the latter characterising oncogenesis and disease
progression. Both Th1 and Th2 immune responses have been
associated with the production of cytokines such as Inter-
leukin 12 (IL-12), Interleukin 4 (IL-4), Interferon gamma
(IFN-γ), Tumor Necrosis Factor (TNF-α) (Th1 response),
and IL-10 (Th2 response) [16, 95–97]. These cytokines
can also be produced by cancer cells; they are present in
ascites and have been associated with prognosis in ovarian
cancer [71, 98–100]. Gradients between blood and ascites
may play a role in migration of leukocytes [101] and
factors that facilitate such movements may include L1 [67].
As a consequence, different lymphocytic populations are
involved in the two types of response: for example, CD3+
CD56+ cells are associated with Th1 whereas CD4+ CD25+
cells are associated with Th2 response.

The prognostic role of various cytokines has been
studied, but no absolutely firm conclusions can be drawn so
far. It is conceivable that cytokines involved in Th1 response
are expected to predict for better prognosis, while the
opposite is expected in those associated with Th2 response.
Interleukins in that respect have received much attention. IL-
2 initiates the activation of T and NK cells and is also essential

for the maintenance of self-tolerance through generation and
maintenance of Tregs [102] or by activation-induced cell
death [103] to eliminate self reactive T cells. Cytokines such
as IL-12 [104] and IL-21 [105] are currently considered for
their therapeutic potential in other types of cancer and may
have the same effect in ovarian cancer. In glioma, in the
case of IL-12, the cytokine is fused with normal glioma cells
and dendritic cells and administered to malignant glioma
patients [104]. IL-12 is associated with favorable prognosis,
and in this study, four patients exhibited a glioma reduction
of 50%. For IL-21, Dou et al. have shown that when the gene
expressing IL-21 is administered in rodents, it has a positive
antitumor effect in squamous cell carcinoma, and therefore
IL-21 may be associated with favorable prognosis. This has
further been enhanced by a recent study showing that the
antitumor effect is increased by human ovarian cancer cells
secreting IL21 alone or in combination with GM-CSF [105].
TNFα may also be associated with prognosis [72, 106, 107],
but reports on whether it is a signature of poor or better
prognosis vary. IL-6 levels have been shown to be increased
in ovarian cancer patients’ serum [108, 109], and it was
correlated with poor overall survival. Another cytokine that
was shown to be associated with the growth of cancer cells
and tumor proliferation is IL-1 [110, 111]. IL-15 has also
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been recently shown to activate CD8+ and NKT cells that
may inhibit tumor growth [112]. Further functional studies
are necessary to confirm the above results.

A cytokine that seems to be heavily involved in tumor im-
munosuppression is transforming growth factor beta (TGF-
β), a protein that affects proliferation, activation, and differ-
entiation of immune cells and inhibits antitumor immune
response [113]. In cancer cells, the production of TGF-β is
increased, which in turn increases the proteolytic activity
of cells and the binding to cell adhesion molecules in the
extracellular matrix. TGF-β can also convert effector T cells
into Tregs [114]. It has been reported that it can also promote
angiogenesis and that process can be blocked by anti-TGF-β
antibodies [115].

TNFα is produced by tumor cells and can induce
autocrine proliferation and disease progression in ovarian
cancer [107, 116, 117]. The autocrine action of TNFα may
have direct effects on tumor cell spread via acting on the
chemokine receptor CXCR4 and also stimulation of blood
vessel formation in the peritoneal tumor by inducing expres-
sion of VEGF and CXCL12 [118]. In contrast, TNFα levels
have also been inversely correlated with the presence of
CD4+ CD25+ cells, and have been shown to directly down-
regulate Tregs [119]. This might indicate a favorable effect of
this cytokine on prognosis and underlines the complexity of
the functions that each of these factors may possess.

A family of proteins called chemokines (CC) may also be
influencing cellular composition in biological fluids. Recent
studies have exhibited the detection of mRNA for CCL2,
CCL3, CCL4, and CCL5 in solid ovarian tumors by in situ
hybridization [120]. Moreover, CCL5 has been shown to be
secreted by CD4+ T cells, recruits CCR5+ dendritic cells
to the tumor location, and activates them through CD40-
CD40L interactions [56]. The newly matured dendritic cells
prime tumor-specific CD8+ cells thus providing with long
term protection.

In the protein-rich ascitic fluid, different chemokine
molecules have been shown to be expressed, with CCL2 being
the predominant one [121]. In addition, chemokine stromal-
derived factor-1 (CXCL-1) induced the migration of plas-
macytoid dendritic cells into the tumor microenvironment
in cases of ovarian cancer and induced delivery of survival
signals to PDC. In turn, the tumor microenvironmental PDC
induced IL-10 expressing Tregs [122], which is correlated to
poor prognosis and shorter progress-free survival. Tregs, and
IL-10 are associated with poor prognosis in many types of
cancer. In the case of Tregs it has been exhibited that CCL22
plays a central role in inducing influx of these cells into tumor
sites, and it binds CCR4 that is expressed on Treg surface
[123].

Interferon gamma (IFN-γ) plays a stimulatory role for
macrophages turning them from immunosuppressive to im-
munostimulatory cells [124]. It also skewed monocyte dif-
ferentiation from tumor-associated macrophages- (TAM-)
like cells to M1-polarized immunostimulatory macrophages.
Taken together these data show that IFN-γ overcomes TAM-
induced immunosuppression by preventing TAM generation
and functions.

Furthermore, cytokines such as interleukin 18 (IL-18)
[125] and stroma derived factor 1 (SDF-1) [126] have been
shown to be correlated with poor prognosis in ovarian cancer
patients, but further studies are required to fully evaluate
them in the tumor microenvironment and the periphery.

VEGF holds a very important role in the oncogenesis as
well as progression and prognosis in ovarian cancer [55, 127].
It is selectively accumulated in ascites and occurs in advanced
stages of the disease but not in ascites from cirrhosis [55, 57].
Up to now, this has been attributed solely to its angiogenic
properties. Recently, it has been suggested that VEGF also
exerts an immunosuppressive effect in cancer, as it was
correlated with low levels of IL12, inhibition of dendritic cell
maturation, low numbers of NK-T cells, and upregulation of
Tregs [58, 59, 128–130]. It can also induce expression of the
T cell cosignaling molecule B7-H1 on myeloid dendritic cells
(MDC). Barnett et al. [15] have reported that the blockage
of B7-H1 improved T cell-mediated immune response and
tumor clearance in an ovarian cancer mouse model. VEGF
exerts its effects via its receptor, VEGFR, mainly VEGFR2
[13, 131]. This type of receptor has the ability of activating
the mTOR protein through the Akt/mTOR pathway [131].
Inactivation of mTOR may lead to downregulation of IL-2,
thus conferring a direct negative effect in T cell proliferation
as well as cancer cell proliferation [132, 133]. Except cancer
cells, the VEGFR2 protein has been recently shown to be
expressed selectively on a subset of T cells, namely, the CD4+
FoxP3+ Tregs [134]. Since FoxP3high Tregs are associated
with poor prognosis, the expression of VEGFR2 on their
surface may be attributed with a more prominent role in
angiogenesis in the future.

The prognostic significance of VEGF in ovarian cancer
has received much attention recently. Several studies have
associated serum or plasma levels of VEGF with prog-
nosis [127, 135, 136]. Ascites VEGF levels may be more
informative, since it reflects the site of the most intense
disease activity. It has been shown that VEGF levels above
1900 pg/ml were associated with inferior survival in a series
of 41 patients with advanced ovarian cancer [57, 72]. These
results have been confirmed by a more recent analysis of
a larger series and longer followup (Figures 3(a) and 3(b)
show the updated results). Finally, in recent studies serum
Fas protein (sFas) levels and serum VEGF levels have been
found to be increased in ovarian cancer patients correlated
with a short duration of the relapse-free period [137].

5. Harnessing the Immune System for Cancer
Therapy: A Driven Response

In general, there are three approaches to harnessing the
immune system response in order to fight cancer: (1) use
exogenously administered antibodies, (2) elicit a humoral
and a cellular response, and (3) explore the activation and/or
generation of antigen-specific CD4+ and CD8+ cells. The
strategies which are in the more advanced stages of drug
development are the use of monoclonal antibodies and
cytokines. The other strategies will be discussed more briefly.

Antibodies with the potential to be used in cancer
treatment are often targeting either the tumor directly,
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Figure 3: Clinical data concerning patients undertaking chemotherapy. Progression-free survival (a) and overall survival (b) of 54 patients
with advanced ovarian cancer receiving first-line, platinum-based chemotherapy, according to VEGF levels in ascites. The lower levels were
associated with significantly longer progression-free (P = .0297) and overall (P = .0164). Median followup: 33 months.

the tumor microenvironment, or function as modulators of
immune response [138]. Another way is to target intra-
cellular pathway molecules by the use of cell penetrating
agents [139]. Antibody immunotherapy does not seem to
interfere with suppressor mechanisms that could limit its
treatment capacity. Antibodies usually act by the induction
of death pathways by engaging with receptors on cell surface,
antibody-dependent cellular cytotoxicity (ADCC), and the
blockade of tumor growth factors such as vascular endothe-
lial growth factor (VEGF). There is a growing number of
potential agents, mainly antibodies, currently undergoing
evaluation in clinical trials [140]. Such antibodies include
Trastuzumab [141], Oregovomab [142], Bevacizumab, and
Cetuximab [143, 144]. Published data are shown in Table 1.

VEGF, mainly the VEGF-A isoform, may be the more
promising therapeutic target. It is a powerful angiogenic
molecule that has been associated with tumor progression,
poor prognosis, and drug resistance in ovarian cancer.
In addition, it has immunosuppressive properties, as pre-
viously discussed. Recent data have suggested that an anti-
VEGF monoclonal antibody (Bevacizumab) is efficient in
platinum-resistant disease [145–147, 154]. By combining
paclitaxel and/or carboplatin agents with VEGF inhibitors,
such as bevacizumab, we may overcome resistance to chem-
otherapy. This hypothesis is currently tested in two ran-
domised studies [148, 149]. Both studies showed a significant
PFS prolongation by the administration of Bevacizumab.
Another monoclonal antibody already tested in a phase
III randomized study is oregovomab, which recognizes

an epitope on CA125. The formation of the oregovomab-
CA125 complex results in the development of CA125-specific
immune response [150]. The development of such response
has been shown to predict improved survival in a small phase
II study [151]. In the phase III study, although no survival
advantage was found when it was given as maintenance
after remission following first-line chemotherapy, subgroup
analysis showed that patients with low-volume residual
disease (<2 cm), Ca125 ≤ 65 IU/mL after the 3rd cycle of
chemotherapy, and CA125 ≤ 35 IU/mL at entry experienced
a 2-fold increase in median time to progress (TTP) [152].
The IMPACT study is currently evaluating the role of
oregovomab in this subset of patients.

The use of cytokines in cancer therapy has also been
evaluated. Certain cytokines, such as IFNs, can augment
antitumor response and were considered as promising agents
in cancer therapy. IFN-α, is approved for the treatment
of malignant melanoma and kidney cancer. It has been
shown that GM-CSF-secreting tumor cell immunotherapy
with VEFG-blocking agents prolonged survival of cancer
bearing mice [155, 156], while IL-2 and GM-CSF can have a
suppressive effect on Tregs [92, 93]. GM-CSF in combination
with recombinant IFN-γ1 and carboplatin in a phase II
trial has been recently shown to have a reasonable response
against recurrent platinum sensitive ovarian cancer [157]. All
these preclinical data suggest that the use of cytokines may be
efficacious in ovarian cancer. IFN is the most well-studied
agent. Several randomized studies, based on promising
phase II results, have been published during the last decade
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Table 1: Selected clinical studies of monoclonal antibodies used for the treatment of ovarian cancer.

Antibody
Mechanism of
action

Representative Phase II studies Phase III studies

Population Treatment Results Population Treatment Results

Bevacizumab
(Genentech/R-
oche)

Binds to VEGF
Antiangiogenic
Immunosuppre-
ssive

Refractory
(n = 32) [145]

Monotherapy
(n = 23) With
chemotherapy
(n = 9)

RR 16%
PFS 5.5 m
OS 6.9 m

First-line ICON
7 [146]

Carboplatin/Paclitaxel
versus
Carboplatin/Paclitax-
el/Bevacizum
ab

Median
PFS
17.3 m
versus
19 m,
P = .0041
10.3 m
versus
11.2 m
versus
14.1,
P < .00001

Refractory
(n = 44) [147]

Monotherapy
RR 16%
PFS 4.4 m
OS 10.7

GOG 218 [148]

Carboplatin/Paclitaxel
versus
Carboplatin/Paclitax-
el/Bevacizum ab
versus
Carboplatin/Paclitax-
el/Bevacizum ab
+ Bevacizumab
maintenance

Oregovomab
(AltaRex Corp)

Binds to CA125
Development of
a humoral and
cellular antitumor
response

2nd line
treatment
(n = 20) [149]

With
chemotherapy

Development
of T cell
response was
associated
with
improved
survival

Maintenance
after first-line
(n = 147) [150]

Oregovomab versus
placebo

Median
PFS
13.3 m
versus
10.3 m,
P = .71

Maintenance
after first-line
Residual<2 cm,
CA125 < 65
after 3rd cycle,
CA125 < 35 at
entry (n = 354)

Oregovomab versus
placebo

Awaited

Trastuzumab
(Genentech)

Binds to HER2
extracellular
domain

Recurrent
(n = 41) [141]

Monotherapy
RR 7.3% PFS
2 m

Pertuzumab
(Genentech)

Inhibitor of HER
dimerization

87% platinum-
resistant
(n = 123) [151]

monotherapy
RR 4.3% PFS
6.6 w

Cetuximab
(Bristol-Myers
Squibb)

EGFR inhibitor
First-line
(n = 41) [152]

Combination
with
paclitaxel/carb-
oplatin

PFS 14.4 m

Matuzumab
(Merck/Sero-
no/Takeda)

EGFR inhibitor
Platinum-
resistant
(n = 37) [153]

Monotherapy
RR 16.2 m
TTP 54d OS
13.3 m

evaluating the role of interferon in addition to first-line
therapy or as maintenance strategy. The results of these
studies are summarized in Table 2. The first study showed
a PFS but not OS benefit [158]. Nevertheless, the standard
of Cisplatin/Cyclophosphamide, used in that study has been
substituted by Paclitaxel/Carboplatin, and thus these results
are difficult to be viewed in the context of current practice
in ovarian cancer. Two randomized studies using the current
standard showed no benefit from the addition of IFNs in the
treatment of ovarian cancer [159, 160].

Methods to augment an immune response against tumor
antigens have also been explored [161, 162]. The most
studied have been vaccines or macrophage-activated killer

(MAK) cells. Within this context, IFN-γ has recently been
shown to reverse the immunosuppressive properties of
macrophages so its local administration could potentially
increase the efficacy of antitumor immunotherapies based on
the generation of effector T cells [163], an observation that
contradicts previous studies mentioned above where IFN-
γ showed no positive effect within the tumor microenvi-
ronment. Tumor antigens, synthetic tumor peptides, whole
tumor cells, tumor cell lysates, or anti-idiotypic antibodies
are among the list of initiators of an immune response
[161]. In some protocols, injection of synthetic peptides in
combination with GM-CSF is performed. In different pro-
tocols, dendritic cells (antigen presenting cells) loaded with
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Table 2: Selected clinical studies of cytokines for the treatment of ovarian cancer.

Cytokine Phase III studies

Population Treatment Results

IFN-γ First line (n = 148) [156]
Cisplatin/Cyclophosphamide versus
Cisplatin/Cyclophosphamide/IFNγ

3-year OS
58% versus 74% (P = .23)
3-year PFS
38% versus 51% (P = .031)

IFNa-2a Maintenance after first-line (n = 300) [157]
IFNa-2a versus
Observation

No benefit

IFN-γ First line (n = 847) [158]
Carboplatin/Paclitaxel versus
Carboplatin/Paclitaxel/IFN-γ

Median OS
Not estimated versus
1138d
HR: 1.45, P = .001

synthetic peptides, immunocomplexes of tumor-associated
antigens with antibodies [162] through activating Fcγ-R
[163], or fusion of dendritic cells with tumor cells are
utilized. Dendritic cells present antigens to CD4+ CD8+ cells
while delivering stimulatory signals necessary for effective
T cell activation. They can also directly downregulate an
immune response or induce immune tolerance [164]. Vac-
cines using either gene-modified dendritic cells or whole
tumor cells have also been explored [163, 165]. Peptide
vaccines have been used so far in a lesser extent since
they have some important limitations [166]. Although the
development of a specific immune response could be shown
in patients undergoing such approaches [167, 168], their role
remains investigational.

The ex vivo expansion of immunologically relevant
autologous populations have also been studied. MAK cells
have been used as a form of adoptive immunotherapy alone
or in combination with monoclonal antibodies [58, 169,
170]. MAK can reach tumor sites by intraperitoneal infusion,
but most studies are small and the role of this approach
remains undetermined. Using specific CD4+ and CD8+
cells against tumor antigens may provide another way of
fighting cancer. These cells need to be activated against
tumor antigens before being administered to the patient.
Activation can be achieved by either stimulating peripheral
blood mononuclear cells (PBMC) in vitro, or by ex vivo
expansion of TILs [162, 167]. Recently, the adoptive transfer
of T cells expressing chimeric NKG2D receptors can lead to
long-term, tumor-free survival in a murine model of ovarian
cancer [171]. Genetic modification of T cells is another
emerging approach but its application in ovarian cancer has
not been successful so far [165].

Agents such as oligodeoxynucleotides containing dinu-
cleotides with unmethylated CpG motifs (CpG-ODN) that
recruit and activate innate effector cells throughout the
abdominal cavity to the tumor site might control tumor cell
growth and ascites formation [172].

Reports for the implication of Tegs in suppression of
antitumor response in cancer development and prognosis
have already been discussed. There are currently clinical trials
using ONTAK in ovarian cancer patients, with encouraging
results [15, 173]. ONTAK is a fusion toxin that consists
of IL-2 genetically fused to the enzymatically active and

translocating domains of diphtheria toxin. It can deplete
functional Tregs, as shown by Curiel et al. [173] in ovarian
cancer patients (including one patient at stage IV), by 50%
in serum and it is considered to lead to better prognosis.
ONTAK is approved by the FDA to be used in the treatment
of CD4+ CD25+ Treg-mediated tumors.

6. Conclusion and Future Considerations

Both the innate and adaptive immune response can be of
great importance in the battle against ovarian cancer.
Throughout this paper, mechanisms of reaction of the
immune system against tumors were highlighted, stressing
the importance of such anti tumor response.

The prognosis of advanced ovarian cancer has been
improved in the recent years. Nevertheless, after the intro-
duction of paclitaxel in first-line treatment, no dramatic
advance in progress-free survival of the patients using
cytotoxic chemotherapy can be foreseen in the immediate
future. On the contrary, targeted therapies may hold a sig-
nificant promise, as shown in other neoplasms. The immune
response against the tumor may be a promising target,
especially after much recent data has associated various
elements with prognosis.

The previous decade was characterized by many attempts
to establish interferon as a standard in the treatment of
ovarian cancer. The failure of those attempts stresses the
disease’s complexity. At the moment, monoclonal antibodies
seem to be the most promising agents, currently tested in
phase III trials.

There is still much to clarify regarding the mechanisms
governing the development of host antitumor response in
order to find strategies to augment it. The interaction with
other important functions, such as angiogenesis, may imply
that more than one function needs to be blocked for achiev-
ing an efficient therapy. Further progress in basic research
in combination of the awaited results of large randomized
clinical trials will hopefully enrich our armamentarium
against ovarian cancer.
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