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INTRODUCTION 
 

Lysosomal storage disorders (LSDs) are a subgroup of 

inherited diseases caused by inborn errors of metabolism 

[1, 2]. In LSDs, lysosomal enzymes are impaired and 

their functional deficit leads to substrate storage [3]. The 

catabolic role of lysosomes consists in breaking down 

and recycling of several substrates such as sphingolipids, 

glycogen, glycosaminoglycans, and proteins [4]. 

Different acidic hydrolases, such as glycosidases, 

lipases, sulfatases, phosphatases, peptidases and 

nucleases are involved in the lysosomal catabolic 

processes [5]. Pompe disease (OMIM # 232300) or 

glycogenosis type II or acid maltase deficiency is a rare, 

chronic and muscle-weakening, often fatal 

neuromuscular disease [6–8]. PD was described, for the 

first time, in 1932 by the Dutch physician Joanne Pompe 

in a 7-month-old child with general muscle weakness, 

who died from idiopathic cardiac hypertrophy. The 

association of the disease’s symptoms with the glycogen 

storage in all tissues was the first crucial observation [9]. 

In 1954 this disorder was classified as type II glycogen 

storage disease, but the correlation between this disorder, 

lysosomal storage, and enzymatic deficit was made in 

1963 when the biochemist Hers discovered acid maltase 

[10]. This enzyme hydrolyses the glycogen into glucose 

at acid pH. In the same period, a deficit of acid maltase 

and a storage of glycogen in lysosomes were observed in 

PD patients; thus PD became the first disease classified 

as LSDs, which is a group of 50 disorders [11]. 

 

PD is caused by a partial or total deficiency of acid 

alpha-glucosidase (GAA), which induces glycogen 

storage (Figure 1). Glycogen is an intracellular polymer 

of glucose residues linked by α 1→4 bonds in linear 

chains, and branches connected with α 1→6 bonds at 

branch points. GAA is synthesized as a membrane 

bound precursor, catalytically inactive, with an amino-

terminal signal peptide. GAA precursor is sequestered 

in endoplasmic reticulum [9] where it is N-glycosylated, 

in seven glycosylation sites [12, 13]. The sugar chain is 

modified in Golgi complex and transported into 

lysosomes, where amino and carboxyl termini are 

cleaved in a stepwise process. The phosphorylation of 
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ABSTRACT 
 

Pompe disease (PD) is a rare autosomal recessive disorder caused by mutations in the GAA gene, localized on 
chromosome 17 and encoding for acid alpha-1,4-glucosidase (GAA). Currently, more than 560 mutations spread 
throughout GAA gene have been reported. GAA catalyzes the hydrolysis of α-1,4 and α-1,6-glucosidic bonds of 
glycogen and its deficiency leads to lysosomal storage of glycogen in several tissues, particularly in muscle. PD is 
a chronic and progressive pathology usually characterized by limb-girdle muscle weakness and respiratory 
failure. PD is classified as infantile and childhood/adult forms. PD patients exhibit a multisystemic 
manifestation that depends on age of onset. 
Early diagnosis is essential to prevent or reduce the irreversible organ damage associated with PD progression. 
Here, we make an overview of PD focusing on pathogenesis, clinical phenotypes, molecular genetics, diagnosis, 
therapies, autophagy and the role of miRNAs as potential biomarkers for PD. 
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the mannose residues induces enzyme transport to 

lysosomes via mannose 6-phosphate receptor, and in 

this organelle GAA hydrolyses the α 1→4 glucosidic 

bond in glycogen at acid pH [14, 15]. GAA contains 

five domains: N1 includes residues from 80 to 136, N2 

from 137 to 346, C1 from 727 to 820, C2 from 821 to 

952. The catalytic site is composed of residues from 347 

to 726 with a barrel conformation. N2, C1 and C2 have 

β sandwich conformation [16, 17]. 

 

Glycogen is an important energy source during fasting, 

replaced in the fed state [18, 19]. A complex network of 

enzymes and regulatory proteins controls glycogen 

synthesis and degradation. The glycogen metabolism is 

also affected by mutations in genes encoding enzymes 

not involved in the classical metabolic pathways; this 

condition is referred to as “secondary glycogenosis” 

[20]. The deposits of glycogen induce a wide spectrum 

of clinical manifestations depending on storage site 

[17]. Recently, in LSDs, a growing number of studies 

reports a key role of epigenetic mechanisms such as 

DNA methylation, histone modifications, and 

microRNAs (miRNAs) [21–23]. In the era of precision 

medicine and liquid biopsy [24], the identification of 

new potential biomarkers in PD patients’ blood could be 

useful for an early diagnosis and monitoring of therapy. 

 

In this review we make an overview of PD, focusing on 

pathogenesis, clinical phenotypes, molecular genetics, 

diagnosis, therapies, autophagy and the role of miRNAs 

as potential biomarkers for PD. 

 

Clinical phenotypes of PD 
 

The clinical broad spectrum of PD depends on the age 

of onset. The severity of clinical manifestations, tissue 

impairment and age of onset correlate with the nature of 

mutations and the residual enzymatic activity levels 

[10]. PD is classified into two forms: Infantile Onset 

Pompe Disease (IOPD), considered as the classic form, 

and a late onset or non-classic form (Late Onset Pompe 

Disease, LOPD), which can occur at young or adult age 

[25–27]. IOPD is more severe than LOPD and begins at 

birth or within the first few months of life. It is 

characterized by cardiomyopathy and muscle weakness, 

and it can cause death in the first year of life [28]. A 

small percentage of patients show clinical signs with 

non-severe cardiomyopathy during the first year of  

life; this form of PD is referred to as non-classic IOPD 

[29, 30]. 

 

The signs and symptoms of IOPD are: delay or 

regression of motor development, alteration of intestinal 

tract with hepatomegaly and macroglossia, hypertrophic 

cardiomyopathy and ECG with short PR interval, high 

QRS complex voltage, arrhythmia and cardiorespiratory 

failure. PD children, suffered from “floppy baby” 

syndrome, are characterized by muscular hypotonia. PD 

patients, when affected by severe form, need a 

mechanical support to breathe. 

 

LOPD differs widely depending on patient’s specific 

conditions, resulting in a progressive muscle weakness 

which is responsible for the motor difficulties and 

respiratory failure over time [31]. The signs and 

symptoms of LOPD involve: (I) skeletal muscles with 

skeletal myopathy, exercise intolerance, weakness of 

limb muscles and low back pain; (II) respiratory  

system with breathing failure, sleep apnea, dyspnea  

and respiratory infections [32]. The gastrointestinal 

symptoms, such as: macroglossia, hepatomegaly, are 

rare. LOPD patients can also show central nervous

 

 
 

Figure 1. Schematic representation of GAA alteration that caused glycogen storage in lysosomes of PD cells. 
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system injury with brain alterations. A cohort study 

demonstrated that in PD the prevalence of vasculopathy 

and dolichoectasia of vertebrobasilar system is higher 

than 50% and aneurysms are detectable in more than 

10% of PD patients [33]. In LOPD patients, the most 

frequent symptoms at diagnosis are the musculoskeletal 

complications; 58,7% of patients manifest proximal 

muscles weakness of lower limbs [34]. PD incidence 

differs by ethnicity and geography; IOPD is 

characterized by a rapid progression, with a frequency 

of 1: 138,000 in white populations. PD incidence is 

estimated at 1 in 100,000 to 40,000 live births [35, 36] in 

the same population groups, but it is higher in specific 

population such as 1 in 15,000 in Taiwan [37] and 1 in 

2000 in French Guiana [38], where a nationwide new-

born screening (NBS) program was performed. 

Probably, in the countries where NBS is expected, the 

evaluation of PD incidence is more accurate than the 

others, in which only the diagnosed cases are reported, 

thus PD frequency might be underestimated. 

 

Molecular genetics of PD 
 

PD is an autosomal recessive disorder, caused by a 

pathogenic variant in both copies of GAA gene. GAA is 

localized on long arm of chromosome 17 (17q25.2-

q25.3), and consists of 20 exons: the first one is non-

coding, the other 19 exons encode a protein of 952 

amino-acids, with a molecular weight of 105-kDa [39, 

40]. The first exon contains 5’ untranslated sequences 

and is separated from the second exon by a large 

intron. The first start codon, ATG, is located  

32 nucleotides downstream from the beginning of 

exon 2 [41]. 

 

The mutational spectrum of GAA is very heterogeneous, 

genetic variants are often “private”, found only in a 

single family or in a small population [42, 43]. These 

variants can be: (I) point mutations, which can affect the 

protein functionality and stability or the splicing 

process, (II) small and large deletions and insertions. 

They cause the transcription of unstable mRNAs with 

consequences on: protein synthesis, post-translational 

modifications, lysosomal trafficking and in proteolytic 

nature of GAA. The most commonly reported missense 

mutations in PD occur in unexposed amino acid 

residues, causing structural misfolding, therefore PD 

can be considered a protein folding dysfunction [44]. 

 

In 2002, it has been reported that GAA variants were 

clustered in three critical regions of gene: exon 2, which 

contains the start codon; exon 10 and 11, which encode 

the catalytic site; and exon 14, which encodes for a 

highly conserved region of GAA protein [45]. However, 

several papers reported mutations in the whole gene 

[16, 46–48]. 

Pompe disease GAA variant database (http://www. 

pompevariantdatabase.nl/), last update in June 2019, 

reports 562 GAA variants, among these, 422 are disease-

associated and 140 are considered Genetic Variants of 

Unknown Significance (GVUS). Moreover, the 

database provides information on variant severity [49]. 

 

We carefully analysed the distribution of intronic and 

exonic mutations of GAA reported in this database. The 

variants distribution for each exon are reported in 

Figure 2A; as shown in the histogram, the major 

number of exonic variants are described in exon 2. 

 

Figure 2B shows the distribution of very severe variants 

for each exon. These mutations are mainly reported in 

exon 2, in which the 49 % of all variants were 

associated with the very severe phenotype. Moreover, 

these variants are principally associated with a classical 

infantile form of PD, as shown in Figure 2C. 

 

In Figure 3A, we reported the variant distribution for 

each intron: as shown in the histogram, several variants 

are described in introns 2, 4, 10 and 14. Figure 3B shows 

the distribution of very severe variants for each intron. 

These mutations are mainly found in intron 9, in which 

all the reported variants are considered very severe 

(Figure 3B). 

 

The most common mutation in Caucasian population is 

the intronic variant c.-32-13T>G (IVS1-13T>G). It 

causes a splicing defect that leads to exon 2 skipping, 

decreasing levels of synthesis (10-20%) of normal 

enzyme [40, 50]. Huie et al. described c.-32-13T>G 

mutation for the first time in a patient affected by LOPD 

[45, 51]. This mutation is located 13 nucleotides 

upstream of acceptor splice site of GAA in intron 1 and 

it is often associated with a second mutation in the other 

allele of GAA, which is usually more severe. The 

individuals homozygous for c.-32-13T>G were 

considered asymptomatic, but this hypothesis was 

proven to be incorrect. Patients with homozygous c.-32-

13T>G showed myalgia, exercise-induced fatigue and 

increase of creatine kinase (CK) serum activity, a 

generic marker of muscle damage [52]. 

 

Pompe GAA variant database indicates that c.-32-

13T>G mutation was found in 258 patients and 

associated with different variants in the second allele 

of GAA, which is necessary to confirm PD diagnosis. 

As shown in Figure 4, the 5,4% of PD patients have  

c.-32-13T>G variant in homozygosis. The most 

described mutations in the other allele associated with 

c.-32-13T>G are located in exons 2, exon 14 and 

intron 17: in particular, 3,1% of the c.-32-13T>G is 

associated with a deletion in exon 2, c.525delT; 2,7% 

with a deletion in intron 17, c.2481+102_2646+31del; 

http://www.pompevariantdatabase.nl/
http://www.pompevariantdatabase.nl/


 

www.aging-us.com 15859 AGING 

1,95 % with a point mutation in exon 14, c.1927G>A 

(Figure 4). 

 
GAA mutation’s distribution differs by ethnicity: in 

detail, del525T (exon 2) and c.925G>A (exon 5) are 

more frequent in Netherlands, but they were also found 

in other populations [53]. In Taiwanese patients the 

most common mutation is c.1935C>A (exon 14); while 

c.2560C>T (exon 18), is frequent in African American 

population. 

 

The association of two variants: c.1726G>A (exon 12) 

and c.2065G>A (exon 15), often present in cis, are 

known to cause pseudo-deficiency of GAA. The 

c.1726G>A affects both amount of GAA and its 

catalytic activity, whereas c.2065G>A slightly reduces 

GAA functionality. Patients with these mutations in 

homozygosis have low levels of GAA activity without 

clinical signs of PD and they do not develop the disease 

[47, 54]. 

 

Recently, three new pathogenic mutations were reported 

in unrelated patients with LOPD carrying c.-32-13T>G 

mutation. Two of these variants were identified for the 

first time: the nonsense, c.2074C>T (p.Gln692X), and 

the missense mutation, c.1082C>G (p.Pro361Arg) 

found in exon 15 and 7 respectively. The deletion 

c.1910-1918del (p.Leu637_Val639del) located in exon 

14, was previous considered as GVUS [55]. 

 

The frequency of mutations in homozygosis is low in 

Caucasian and Asian population, including Koreans and 

Chinese people [56, 57]. Since the symptoms of patients 

with LOPD are heterogeneous, the allelic diversity 

underlies the PD clinical heterogeneity and a different 

level of residual GAA enzymatic activity could deeply 

affect the disease phenotype [58]. 

 

In PD, as well as other genetic disorders, it is not 

easy to find a close correlation between genotype 

and phenotype. Up to 20% of mutations reported in 

GAA variant database are described without a strict 

correlation genotype/phenotype. PD patients with 

severe infantile form carry mutations that alter all forms 

of GAA causing low expression and enzymatic activity 

[47, 59]. The same mutations can be found in both 

infantile and late onset patients often with different 

incidence. Pittis et al. demonstrated that in two different 

 

 
 

Figure 2. Genetic variants distribution into GAA exons. Distribution of variants for each exon (A); distribution of very severe variants 
for each exon (B); association of the very severe variants with PD phenotypes. 
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groups of Italian patients, c.525delT variant was 

observed in 13,8% in IOPD and also in 3,8% in LOPD. 

The same authors reported different incidences of 

c.2237G >A in infants and adults, 3,4% and 10,3% 

respectively [59, 60]. A study on a large cohort of PD 

patients with a similar genotype reported that patients 

with c.-32-13T>G in combination with another 

mutation had different symptoms, suggesting the 

influence of secondary factors on disease progression. It 

was also shown that a deletion of gene encoding 

angiotensin-converting enzyme (ACE) caused an 

increase in type II muscle fibres and was associated to 

an early onset of PD, muscle pain, high levels of CK 

serum activity and a worse prognosis for patients with 

LOPD [60]. This study demonstrates that ACE 

polymorphisms are genetic factors able to modulate the 

clinical phenotype of PD patients. 

 

Diagnosis of PD 
 

Physicians diagnose PD after the exclusion of the most 

common pathologies; thus, a dangerous and often fatal 

delay of PD diagnosis is noticed. In new-borns, early 

diagnosis is very important because, without treatment, 

death occurs within the first year of life. An analysis of 

Pompe data registry shows a diagnosis delay for all PD 

patients [8]. 

 

The median delay of diagnosis is 1,4 months in IOPD 

new-borns with cardiomyopathy and other symptoms 

 

 
 

Figure 3. Genetic variants distribution into GAA introns. Distribution of variants for each intron (A); distribution of very severe variants 
for each intron (B). 
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developed during the first 12 months of life. In patients 

with the onset of symptomatology after 12 years old, the 

median delay is 6 years. In PD patients with the onset of 

symptoms during the first 12 months of life, without 

cardiomyopathy, the longest delay, 12,6 years, was 

reported. A similar delay was observed in PD patients 

with the symptom’s onset between 12 months and 12 

years. Therefore, the disease should be diagnosed as 

early as possible [26, 36]. 

 

Recently, it was proposed a diagnostic algorithm, 

indicating that low GAA activity tested on Dried Blood 

Spot (DBS) should be confirmed by biochemical assays 

on different tissues and/or by a genetic analysis to 

complete the diagnosis [61]. PD European consensus, 

suggests that combination of enzymatic assay with gene 

sequencing is the gold standard for PD diagnosis [62]. 

 

Enzymatic assay 
 

The GAA activity analysis on DBS is a non-invasive, 

rapid, specific and reliable tool for PD diagnosis  

[48, 63]. 

 

GAA enzyme measurement is altered by the activity of 

maltase glucoamylase (MGA), another α-glucosidase 

active at acid pH that masks GAA deficiency. A 

strategy to selectively measure GAA, in presence of 

MGA, is a competitive inhibition using maltose or 

acarbose. Among these inhibitors, it was demonstrated 

that acarbose inhibited MGA better than maltose in 

DBS assay [64]. Recently, the use up to 2mM of 4-

methylumbelliferyl-a-D-glucoside (4-MUG) in presence 

of acarbose in acidic conditions is indicated as a good 

method to test selective GAA activity by the report of 

the international consensus meeting on PD [62]. At 

acidic pH, the concentration of 3-9 µM of acarbose 

inhibits completely MGA without affecting GAA 

activity [64, 65]. Currently, two techniques are used to 

analyse DBS samples: fluorometric method and liquid 

chromatography-tandem mass spectrometry (LC-MS-

MS). Both the two techniques are suitable to test GAA 

activity. A study on a large number of DBS 

demonstrated that GAA activity tested by MS is more 

accurate than fluorometric assay, to distinguish PD 

patients from individuals heterozygotes for one GAA 

mutation or with pseudo-deficit [66]. 

 

Genetic analysis 

 
GAA sequencing is used to confirm PD diagnosis and 

identify the pathogenic variants. GAA gene is highly 

polymorphic with several neutral variants. As 

aforementioned, the alterations of the gene include 

missense, nonsense and splice-site mutations, partial gene 

rearrangements, including small and large intragenic 

deletions and insertions. Sanger sequencing is the most 

common method to perform GAA gene analysis. 

 

 
 

Figure 4. Second mutation located in a second allele of GAA gene associated to c.-32-13T>G variant. 
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Since PD is an autosomal recessive disorder, PD patients 

have one mutation in homozygosis or 2 different 

mutations in compound heterozygosis. Multiplex 

ligation-dependent probe amplification (MLPA) analysis 

of GAA can be used to investigate the presence of large 

deletions [50], especially when a variant considered 

pathogenic or GVUS in heterozygosis were identified 

[67]. In patients with 2 different pathogenic variants, it is 

important to confirm the compound heterozygosis with a 

segregation study on relatives, in order to demonstrate 

that the two mutations are in two different alleles. 

 

Recently, different NGS approaches for diagnosis of 

patients with skeletal muscle diseases were described 

[68, 69]. Savarese et al. analysed GAA and other genes 

associated with muscle diseases in a large cohort of 

undiagnosed patients with a wide spectrum of clinical 

phenotypes ranging from isolated hyper-CKemia to 

mild or severe muscular impairment, a variable age of 

onset and disease progression. 

 

This mutational analysis identified pathogenic GAA 

variants in 10 patients and 7 relatives. Since the PD 

clinical signs overlap with the symptoms of other muscle 

disorders, GAA and other genes causing metabolic 

myopathies should be analysed in gene panels used for 

testing neuromuscular diseases, in order to identify PD 

patients that are potentially misdiagnosed [70]. 

 

In ‘t Groen and collegues indicated new molecular 

methods to validate PD diagnosis, when the standard 

procedures are insufficient. The authors performed 

extended molecular diagnostic analyses, such as a 

generic-splicing assay, minigene analysis, SNP array 

analysis, and targeted Sanger sequencing. These 

analyses allowed the identification of an exonic 

deletion, a promoter deletion, and a novel splicing 

variant located in 5’ UTR [71]. They reported, for the 

first time, pathogenic variants located in 2 critical 

regions for gene expression regulation: the promoter 

and 5’ UTR of GAA [49]. Nowadays, the aim of the 

researchers is to develop new tests for PD diagnosis 

able to detect new pathogenic variants and non-

Mendelian genotypes that are not identified with the 

routine diagnostic assays. 

 

Unspecific analyses 
 

Other unspecific laboratory parameters can be altered  

in PD patients, such as CK serum activity, aspartate 

(AST) and alanine (ALT) aminotransferase and  

lactate dehydrogenase; however, in PD patients  

these parameters can be unaffected. Therefore, the 

confirmatory tests (GAA activity and genetic analysis) 

have to be carried out in patients with a symptoms 

referable to PD [64]. A potential biomarker for 

glycogen storage diseases (GSD) is tetrasaccharide 6-α-

D-glucopyranosyl-maltotriose (Glc4), because urinary 

excretion of Glc4 is increased in different clinical 

conditions associated with enhanced turnover or 

glycogen storage. Recently, a rapid ultraperformance 

LC-MS-MS assay was developed to characterize 

glycogen-derived tetrasaccharide in GSD [72]. 

Although this test is sensitive and precise for a 

presumptive diagnosis, it is not able to differentiate the 

GSD types. This assay should be used in combination 

with the standard enzymatic and genetic analyses to 

confirm of PD diagnosis. Few papers indicate that PAS-

positive lymphocyte vacuoles can be used as diagnostic 

screening test for PD. The presence of glycogen-filled 

lysosomes in peripheral lymphocytes, detected by 

electron microscopy, and their vacuoles, observed by 

light microscopic in blood films of PD patients, was 

reported since 1977. Vacuolated lymphocytes were 

identified in blood films of patients with different 

pathologies, but the presence of periodic acid–Schiff 

(PAS)-positive vacuoles in lymphocytes was 

exclusively reported in PD patients, suggesting that 

their presence can be specific for PD [73, 74]. In PD 

patients, glycogen storage is found in lysosomes of all 

cells, including lymphocytes in peripheral blood. The 

detection of glycogen-filled vacuoles in lymphocytes by 

light microscopy on blood smears has been proposed as 

screening methods to identify PD patients among the 

individuals at risk of myopathy [73]. 

 

Muscle biopsy (MB) is used as an early diagnostic tool to 

evaluate muscle disease. The diagnostic value of MB in 

LOPD patients is rather limited, because different muscle 

groups and even fibers within the same muscle group, 

exhibit high variability. The visualization of a PAS 

positive vacuolar myopathy to identify LOPD can lead to 

false-negative results [75, 76]. However, histological 

identification of acid phosphatase-positive lipofuscin 

inclusions was suggested as a diagnostic marker for 

LOPD skeletal muscle. Lipofuscin accumulation caused 

by inefficient lysosomal degradation may in turn 

exacerbate both lysosomal and autophagic abnormalities. 

From the perspective of a clinician, MB is not reliable for 

diagnostic purposes, cannot be considered as a prognostic 

tool, and it exposes the patients to further discomfort and 

anesthesia risk. Considering the limits of MB, this 

procedure is not commonly used [77]. 

 

Since the limb-girdle weakness is a typical sign of the 

myopathy, the PD diagnosis can be challenging, 

especially without respiratory alterations. The patients 

with suspicion of PD often undergo electromyography 

(EMG) [78]. Early electromyographic studies indicated 

that electrical myotonia (EM) in axial muscles should 

raise the suspicion of PD, although it is also seen in 

other myopathies. Clinical and diagnostic findings in a 
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cohort of 38 patients with LOPD showed that 71% of 

PD patients had a myopathic EMG pattern, half of these 

patients had spontaneous activity including complex 

repetitive discharges [79]. Another study on 37 patients 

with LOPD reported that twenty-eight (76%) had EM in 

at least one muscle, and in these patients the paraspinal 

and proximal limb muscles were the most commonly 

involved. The tensor fasciae latae (TFL) was equally 

sensitive to the paraspinals for EM. Some patients had 

EM identified in the diaphragm. Overall, these data 

indicated that three-quarters of LOPD patients display 

EM on EMG. The EM detected in the diaphragm of 

LOPD patients could be also due to the paraspinal 

muscles and TFL [80]. Although EMG is not a specific 

test for PD diagnosis, it helps to make a complete 

diagnosis. 

 

The muscle magnetic resonance imaging (MRI) has an 

important role for the patients’ follow-up. Lollert et at 

indicated that the quantification of intramuscular fat in 

patients with LOPD by conventional MRI is useful for 

long-term follow-up of enzyme replacement therapy 

(ERT) [81]. 

 

For the follow-up of asymptomatic LOPD patients, it is 

important to detect muscle function alterations; 

although normal muscle function tests do not reveal the 

muscle structure integrity of these patients; muscle fiber 

loss and fatty replacement could have started without 

influencing the results of the tests yet. For this reason, 

quantitative muscle MRI (qMRI) has emerged as a 

valuable biomarker to follow up the progression of 

neuromuscular disorders. The qMRI is a non-invasive 

tool that quantifies the amount of fat in a muscle’s 

region of interest [82, 83]. In a study, 32 LOPD patients 

(22 symptomatic and 10 asymptomatic) underwent 

muscle MRI and were evaluated at the time of MRI and 

again after one year. Muscle MRI showed a significant 

increase of 1.7% in fat content of the thigh muscles in 

symptomatic LOPD patients. In contrast, there were no 

remarkable differences between muscle function tests in 

the same period of time. No significant changes either 

in muscle MRI in asymptomatic patients were observed 

over the year. To date muscle MRI is a useful tool for 

detecting changes in muscle structure in symptomatic 

LOPD patients and could become part of the current 

follow-up protocol in the clinical management [84]. 

 

To our knowledge, there are no papers that report the 

glycogen storage determination in blood by DBS to 

confirm PD diagnosis. 

 

Autophagy and PD 
 

The deficiency of GAA activity is responsible for the 

intra-lysosomal storage of glycogen in all tissues 

especially in skeletal muscle and cardiac tissue; 

moreover, an increase of autophagic material is 

observed in skeletal muscle fibres [85]. PD was the  

first GSD linked to autophagy (self-eating). Autophagy 

is an evolutionary preserved catabolic process that  

leads to intracellular components degradation [86].  

The autophagic process targets intracellular cytosolic 

components for lysosomal degradation and is important 

for sustaining cellular energy and metabolic 

homeostasis [87, 88]. 

 

Autophagy induces the formation of double-membrane 

vesicles, called autophagosomes, which incorporate 

cytoplasmic substances and then after fusion with 

lysosomes generate the autophagolysosomes, in which 

cargos are degraded by lysosomal enzymes [89]. 

 

The progressive storage of glycogen in lysosomes is 

responsible for a damage of their membranes, causing 

hydrolytic material dispersion in cytoplasm with the 

impairment of muscle contractile units. Autophagic 

pathway alteration caused further damage of muscle 

cells [90]. Recently, a specific form of autophagy of 

glycogen called glycophagy has been described. [91]. 

This process consists in degradation of cellular 

glycogen in autophagic vacuoles. Glycophagy plays a 

key role in maintaining glucose homeostasis and it is 

involved in glycogen sequestration, which is 

subsequently degraded by GAA. The breakdown of 

glycogen mediated by lysosomes triggers α-glucose 

release that can be rapidly used by cells [90]. The 

increase of autophagosomes and autophagy substrates, 

vacuolization and inappropriate lysosomal acidification 

were described in myotubes of patients and primary 

myoblasts of deficient mice, causing autophagy block. 

Moreover, autophagy influences GAA maturation and 

glycogen clearance [91–93]. 

 

Recently, it was reported that glycophagy modification 

is involved in PD and diabetic cardiomyopathy [94, 95]. 

Glycophagy can play an important role in pathological 

process of IOPD. In 2012 it was shown that stress-

induced autophagy of endoplasmic reticulum, in IOPD 

patients, is induced by inactivation of AKT in 

fibroblasts. Two years later, Shemesh and colleagues 

observed a significant decrease in mTORC1 activation 

in GAA-knockdown myoblasts (C2C12) and GAA-

deficient fibroblasts isolated from skin of IOPD 

patients. These data indicate that the decrease of 

mTORC1 activation could induce glycophagy. 

 

Therefore, in IOPD this process could have a 

protective role that prevents the increase of  

glycogen-rich lysosomes. In contrast, in LOPD, the 

autophagy deregulation plays an important role in 

pathophysiological process. Raben et al., in adult 
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patients, proposed that the massive storage of 

autophagic debris in muscles contributes to disease 

onset. Autophagy impairment was reported to affect 

vesicle trafficking and inhibit GAA maturation in 

LOPD; thus, glycophagy is involved in pathological 

process of LOPD. Literature data suggest that this 

mechanism could be a protective mechanism reducing 

glycogen-rich lysosomes storage in IOPD. The 

glycophagy modulation could be a new therapeutic 

strategy for IOPD. 

 

Moreover, calcium homeostasis, oxidative stress and 

mitochondrial abnormalities can contribute to tissue 

damage that occurs in PD. Genotype-phenotype 

correlation studies on patients with the same GAA 

mutations showed several clinical manifestations caused 

by the interaction with other genetic and non-genetic 

factors. Some symptoms of PD patients overlap 

mitochondrial disorders [96]. The autophagy 

dysfunction is associated with inefficient mitophagy and 

reduced mitochondrial function [90] that can affect 

neuromuscular system. Mitochondria are essential for 

aerobic respiration by producing adenosine triphosphate 

(ATP), their function is controlled by mtDNA and 

nuclear genome but mtDNA alterations can be 

influenced by nuclear genome mutations or vice versa 

[52]. It was hypothesized that mtDNA interacts with 

GAA, but experimental data suggest that mtDNA 

variants might have a secondary role in PD 

pathogenesis. Understanding the role of mitochondria in 

PD pathogenesis can be potentially useful in 

development of new therapeutic strategies [97]. 

 

miRNAs in PD 
 

Epigenetic studies may be relevant to understand the 

wide clinical heterogeneity observed in monogenic 

disorders, as LSDs. 

 

MiRNAs biogenesis pathway consists of different 

biochemical steps that convert the primary miRNA 

transcript (pri-miRNA) to mature miRNA biologically 

active. The mature miRNAs repress gene expression at 

specific target sites, which is dependent on 

complementarity between miRNAs and target sites. 

Each miRNA recognizes the 3’UTR of multiple mRNA 

transcripts and many miRNAs can recognize the same 

mRNA sequence [21, 98]. Ozsait and colleagues 

published the first correlation between LSDs and 

miRNAs [99]. Recently, the role of miRNAs in Fabry 

Disease (FD) was reported [100, 101]. Our research 

group identified a miRNA profile in plasma of FD 

patients, using high-throughput methodology. We 

selected miRNAs able to identify FD patients when 

compared to healthy controls. In particular, miR199a-5p 

and miR-126-3p are able to discriminate FD patients 

from control individuals with left ventricular 

hypertrophy. miR-423-5p and miR-451a could be 

suitable to study and monitor the cardiac involvement in 

FD patients [102]. 

 

Furthermore, the potential role of miRNAs in 

pathogenesis and progression of PD and as new 

biomarkers was also considered. 

 

Using a high-throughput technology as NGS, miRNAs 

expression was studied in muscle and heart of a PD 

murine model and plasma of PD patients, in order to 

identify tools able to evaluate the patient clinical 

conditions and the response to treatments. The study 

started with a global analysis of miRNA expression 

profiles in skeletal muscle and heart of PD mouse 

model. miRNAs were altered in different tissues and 

age, suggesting modifications related to disease 

progression. It was also performed a small RNA-seq 

analysis in plasma of 6 patients, selected from 52 with 

IOPD and LOPD stored in Italian and Dutch biobanks. 

In this group of patients, 55 miRNAs were differentially 

expressed, among these, 16 miRNAs were differentially 

expressed both in tissues from PD mice and in patient’ 

plasma. In particular, miR-133a was selected for 

quantitative analysis in plasma of 52 patients. MiR-133a 

levels were significantly higher in PD patients than in 

healthy controls and correlated with phenotype severity. 

In IOPD, miR-133a levels are higher compared with 

LOPD. miR133a was decreased in three infantile 

patients that showed a clinical improvement after the 

beginning of ERT [22]. Circulating miRNAs can be 

considered potential additional biomarkers of PD 

progression and response to therapy. 

 

In 2019, Carrasco-Rozas and colleagues performed 

miRNAs profile in serum of patients with LOPD. They 

analysed the expression of 185 miRNAs in serum of PD 

patients and controls and found 14 miRNAs differentially 

expressed between these two groups. Among these 

miRNAs, three were indicated as dystromirs: miR-1-3p, 

miR-133a-3p, and miR-206 showed different expression 

levels in serum samples from LOPD patients compared 

to controls. miR-1-3p, miR-133a-3p, and miR-206, 

increased in serum from LOPD patients, are involved in 

muscle regeneration [23]. 

 

Recently, it was reported the importance of including 

PD in differential diagnosis for patients with proximal 

muscle weakness. Twenty institutions in Latin America 

enrolled 2103 individuals with muscular dystrophy in 

whom a panel of 10 genes were investigated by NGS. 

Of these patients, 55,8% had genetic variants. Targeted 

intronic variants represented 2,9% of all pathogenic 

variants and GVUS; the major part of these intronic 

mutations was found in GAA. In the total population, 
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less than half of samples showed no genetic variants, 

almost a third had a GVUS (29,8%), and 16% received 

a confirmed molecular diagnosis (homozygous or 

compound heterozygous). In particular, 9 patients 

received a confirmed molecular diagnosis of PD. The 

genotypes found in the newly identified LOPD patients 

are in agreement with the global experience, since the 

majority of these patients were heterozygous for the 

common splicing pathogenic variant IVS1-13T>G 

[103]. These data indicate that NGS allows the 

sequencing of several genes simultaneously and the 

improving of the diagnosis of Mendelian diseases with 

different phenotypes, such as PD [69, 104]. 

 

Therapies for PD 
 

Enzymatic replacement therapies 
 

The discovery of lysosomal enzyme uptake pathway 

mediated by mannose-6-phophate (M6P) receptor can 

lead to the cross-correction, indicating the possibility to 

replace a lysosomal enzyme by its supplementation in 

the extracellular media. In 2006 the ERT with 

recombinant human acid alpha-glucosidase (rhGAA) 

was approved for clinical use in patients with PD in 

Europe and US [105, 106]. PD prognosis has changed 

dramatically with the marketing authorization of ERT 

based on recombinant GAA. RhGAA is administered 

intravenously every two weeks at a recommended dose 

of 20 mg/kg, but higher dose regimens (up to 40 mg/kg) 

are recommended in IOPD patients. 

 

ERT improves the cardiac and respiratory functions and 

contributes to extend the lifespan of IOPD patients. 

However, it is frequently associated with the 

development of neutralizing humoral immune responses 

against rhGAA that decreases treatment efficacy and 

survival. Skeletal muscle function is also enhanced by 

ERT. The clinical trials on LOPD indicates an 

improvement of muscle function as measured by 6-

minute walk test whereas long-term studies show that 

respiratory function is only stabilized [105]. Nowadays, 

in order to overcome these limits, a second generation 

of rhGAA with higher affinity for the M6P receptors 

(25) is under evaluation in a phase III clinical trial. 

Another rhGAA called ATB20, carrying M6P and bis-

M6P glycan residues, was developed and a clinical trial 

is ongoing in association with pharmacological 

chaperones (NCT03865836). Furthermore, a chimeric 

form of rhGAA containing a humanized Fab fragment 

derived from a murine antibody entered phase I/II 

clinical testing (NCT02898753) [107]. 

 

The limitations of therapy have encouraged efforts to 

enhance the efficacy of the current therapy and to 

develop new approaches including gene therapy. 

Gene therapy 
 

A possible alternative to ERT is the gene therapy; since 

PD is a monogenic disorder, it is an ideal target for gene 

replacement strategies [105]. 

 

In vivo gene therapy consists of the administration of a 

gene delivery vector, viral or non-viral, directly into the 

cells of patient. Gene therapy is currently being 

developed for treatment of genetic disorders [17]. To 

date, the studies using adeno-associated virus (AAV) and 

retroviruses demonstrated the feasibility of gene therapy 

for PD [108]. AAV vectors were administered into the 

bloodstream to target, indirectly, the muscle, liver, or 

multiple tissues. AAV vectors can be also injected 

directly into the muscle or the cerebral ventricles to 

target the central nervous system [109, 110]. 

 

Recently, the production of AAV vectors in large scale 

and the positive results reported in preclinical studies of 

AAV delivery in neuromuscular diseases encouraged 

studying the AAV vectors containing muscle-specific 

expression cassettes for GAA transgene. The results 

showed an efficient clearance of glycogen storage in 

muscle and the improvement of the muscle and the 

cardiac and respiratory functions. One limitation of the 

systemic route to target muscles is the use of high doses 

of vector [111]. Moreover, muscle specific expression 

of GAA can increase the risk to develop anti-GAA 

antibodies causing a possible immunotoxicity. Another 

strategy to develop gene therapy for PD consists in the 

stable expression of GAA in liver. It was demonstrated 

that adenoviral GAA transfer mediates the cross-

correction in skeletal muscles. The major limitation of 

this approach for PD is that hepatic gene transfer does 

not persist at long term [112]. 

 

In the era of genome editing, a potential therapeutic 

strategy for PD is based on the CRISP/CAS technology. 

This system relies on delivery of Cas9 protein and a 

RNA guide sequence to target and edit mutations in the 

genome. The gene can be edited by either non-

homologous end joining (NHEJ) or homology-directed 

repair (HDR). CRISPR system using NHEJ would not 

correct the site-specific mutations found in PD, in which 

restoring a functional full-length GAA protein would be 

preferred. The site-specific corrections via HDR or other 

methods, such as base editors, would be necessary. 

HDR-mediated CRISPR strategies are not very efficient 

in muscle cells because DNA repair proteins, required 

for HDR, are low expressed [113, 114]. 

 

Conclusion and perspectives 
 

LSDs, caused by deficiency of lysosomal acid 

hydrolases, often lead to irreversible damage in cells 
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and tissues, such as injuries to skeletal muscle, in PD. 

The affected organs can be excessively impaired at the 

time of diagnosis, hence it is necessary to reduce to 

diagnostic delay and start the treatment as early as 

possible. 

 

GAA enzymatic activity assay is used as a first-line 

approach for PD diagnosis, if the enzymatic activity is 

low or borderline, genetic analyses need to be 

performed. Since PD is an autosomal recessive disorder, 

the genetic analysis in affected patients shows one 

mutation in homozygosis or 2 different mutations in 

compound heterozygosis. It is well-known that 

mutations are spread throughout GAA; therefore 

sequencing is performed in the whole gene. If GAA 

enzymatic activity is low and the sequencing reveals 

one pathogenic or GVUS mutation in heterozygosis, the 

genetic investigation should be completed with MLPA 

analysis of GAA to rule out deletions or insertions of 

several nucleotides, or with others extended genetic 

analyses. In patients with low enzymatic activity and 2 

different pathogenetic variants, it is important 

confirming the compound heterozygosis with a 

segregation study on relatives, in order to demonstrate 

that the two mutations are in two different alleles. 

 

Another important test to complete the diagnostic panel 

could be the determination of glycogen in blood. The 

accumulation of this substrate should be significantly 

higher in PD patients compared to healthy controls and 

subjects with pseudo-deficiency. To our knowledge, the 

determination of the glycogen storage in blood by DBS 

is not still performed to confirm PD diagnosis. The 

future aim for PD diagnosis is the improvement of 

quantitative assay for glycogen determination in blood. 

In other LSDs, LC-MS-MS [115, 116] is an accurate 

and reliable method to evaluate accumulated substrates 

such as globotriaosylsphingosine (LysoGB3) in Fabry 

disease [117]. LC-MS-MS might be used for glycogen 

storage determination. 

 

The LSD study has made significant progress 

worldwide over the past three decades. The diagnosis of 

LSDs in asymptomatic or pre-symptomatic stage is 

considered a valid public health goal. PD inclusion in 

new-born screening (NBS) is becoming increasingly 

diffused [118–121]. Awareness of PD should avoid the 

diagnostic delay. The addition of LSDs to worldwide 

NBS will lead to an early diagnosis and avoid the 

diagnostic delay typical for these pathologies. 

 

As aforementioned, it was considered the potential role 

of miRNAs as disease biomarkers in PD. The major 

challenge of researchers, for PD diagnosis, is to identify 

new markers, measurable, objective and not influenced 

by variance between investigators. 

Using a high-throughput technology, miRNAs 

expression can be a tool to evaluate the patient clinical 

conditions and the response to treatments. 
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