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Abstract
We study the mechanism of human arm-posture control by means of nonlinear dynamics

and quantitative time series analysis methods. Utilizing linear and nonlinear measures in

combination, we find that pathological tremors emerge in patient dynamics and serve as a

main feature discriminating between normal and patient groups. The deterministic structure

accompanied with loss of complexity inherent in the tremor dynamics is also revealed. To

probe the underlying mechanism of the arm-posture dynamics, we further analyze the cou-

pling patterns between joints and components, and discuss their roles in breaking of the

organization structure. As a result, we elucidate the mechanisms in the arm-posture dynam-

ics of normal subjects responding to the gravitational force and for the reduction of the

dynamic degrees of freedom in the patient dynamics. This study provides an integrated

framework for the origin of the loss of complexity in the dynamics of patients as well as the

coupling structure in the arm-posture dynamics.

Introduction
Since the pioneering study of the phase transition emerging in human hand movements [1],
dynamics of human body movements has attracted much attention of physicists equipped with
dynamical systems theory and nonlinear dynamics. Widely studied topics include intermit-
tency [2] and criticality [3, 4] as well as the roles of sensory time delay [5, 6]. Nonlinear time
series analysis [7, 8] is also proved to be a useful method applied to various bio-signals includ-
ing human body movements, albeit still in its infancy. In particular, whether the deterministic
chaos is inherent in the motor system and assessable from the human body movement time
series is an extensively discussed subject [9, 10]. On the other hand, there was also an attempt
to understand the human body movement as a correlated random walk [11], which led to the
stochastic process modeling [12, 13]. It is thus regarded that nonlinearity, time delay, and ran-
domness are crucial components in the complex dynamics of human movements.

Among various human movements, postural sway dynamics in quiet standing has been
studied extensively via time series analysis and modeling. While the surrogate data method has
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confirmed that the center-of-pressure trajectory is characterized by a correlated noise [11],
nonlinear dynamics measures such as entropy are still considered to be promising for evaluat-
ing posture controls related to injuries [14]. As for the essential dynamics of postural sway, the
most well-known framework is the inverted pendulum model [15]. Another representative
example of human movements is the planar arm movement [16], which has been described by,
e.g., the minimum jerk model [17] and the minimum torque-change model [18].

There are also studies of the goal-directed arm-posture task [19]. Related to the task, most
widely discussed topic is the physiological and pathological tremors [20], which provide a
unique characteristic in arm-posture dynamics. In fact, controlling/minimizing the tremors is
directly related to the performance of target shooting [21] or microsurgery [22]. Therefore the
arm-posture and tremor dynamics has been extensively studied by means of linear and nonlin-
ear measures [23–27]. Due to its intrinsic complex nature, however, relatively little attention
has been paid to the essential dynamics of the arm-posture task and the emergence of tremors,
compared with postural sway or planar arm movement dynamics.

In this paper, we thus consider goal-directed arm-posture dynamics and analyze time series
measured from normal control subjects and stroke patients [28], focusing on the underlying
mechanism for the human motor system to respond to the environment and to retain dynam-
ical complexity. The unique characteristics of the normal arm-posture dynamics which this
study deals with are summarized as follows: First, it is in general aperiodic and distinct from
the dynamics of the gait [29] or hand movements [1]. Second, cooperation between joints is
tangible. Although postural sway dynamics is also accomplished by such cooperation between
various parts of the human body [30, 31], the joints in the arm are much more clearly seg-
mented and seem to perform in a highly organized fashion. Moreover, there exists an external
factor, the gravitational force, which perturbs and compels the system to react to it. Note that
the gravitational force affects the system asymmetrically in the arm-posture task, in contrast to
the postural sway dynamics. Analyzing the time series by means of various quantitative mea-
sures, we address these issues and suggest an integrated framework in which essential dynamics
of the arm posture is described.

Results and Discussion

Spectral Analysis and Pathological Tremors
There are five multivariate time series available, describing dynamics of the pointing rod, fin-
ger, wrist, elbow, and shoulder joints (hereafter, for convenience of notation, the end of the
pointing rod is also considered as a joint), where markers are attached. Each time series con-
sists of three components in the X-, Y-, and Z-directions. The coordinate system is illustrated
in Fig 1: The Z-axis is taken to be vertical whereas the Y-axis to be directed toward the target.
Note that the main goal of the arm-posture task is to maintain the rod in the Y-direction, i.e.,
to keep pointing the rod at the target. Therefore the dynamics in the Y-direction is irrelevant to
the task. We represent time series of the X-, Y- and Z-components of each joint as siaðtÞ (with si

= r, f, w, e, s for i = 1, � � �, 5, respectively, and α = X, Y, Z), where r, f, w, e, and s denote the end
of the rod, finger, wrist, elbow, and shoulder joints, respectively.

Examining the time series carefully, we recognize a substantial difference in the time series
between normal subjects and patients: The time series of the normal group are contaminated
by noise-like signals, notably in the high-frequency regime, even though they may not be the
manifestation of actual noises as discussed later. In contrast, those of the patient group appear
more or less smooth. To quantify the difference, we first compute the power and phase spectra
of the arm-posture time series, utilizing the fast Fourier transform (FFT) algorithm, and plot
the results of the rod joint in Fig 2. It is observed that the power spectrum of the patient time
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series exhibits peaks around 2 to 3 Hz; this suggests the oscillatory dynamics to be interpreted
possibly as the pathological tremor [32]. Note that similar patterns are also observed in the
data for other joints. Although the overall power-law behavior of the power spectrum tends to
obscure the period of the motion, one can expect that there might exist deterministic, low-
dimensional chaotic structure in the essential dynamics of the patients. We thus analyze the
time series in detail with the aid of the nonlinear time series analysis, to which the next section
is devoted.

Fig 1. Snapshot of the arm-posture task and directions of X-, Y- and Z-axes in the Cartesian
coordinate system.Green dots represent the location of the attached markers: (a) the end of the rod
ra � fs1aðtÞg, (b) the finger fa � fs2aðtÞg, (c) the wristwa � fs3aðtÞg, (d) the elbow ea � fs4aðtÞg, and (e) the
shoulder sa � fs5aðtÞg. The dot (f) indicates the location of the target.

doi:10.1371/journal.pone.0141996.g001

Fig 2. Average power spectrum of the time series of the position of the rod end. (a) X-component, (b) Y-
component, and (c) Z-component, measured in the normal subject group (green dotted lines) and in the
patient group (red solid lines). The straight line in (b), having the slope two, serves as a guide to the eye. In (d)
the phase spectrum of the time series rY of normal subject #1 is plotted.

doi:10.1371/journal.pone.0141996.g002
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In addition, the 1/f2 power spectrum, which is an indicator of the Brownian motion, is
observed in the Y-component time series of normal subjects, as shown in Fig 2b. On the other
hand, Fig 2d discloses rather an aligned structure of the phase spectrum. Simulating a random
walk and analyzing the corresponding time series, we observe similar but more scattered struc-
ture in the phase spectrum. We thus presume that the Y-component dynamics is distinct from
a pure random walk or Brownian noise.

Henceforth we use 0.5 Hz high-pass filtered time series to reduce the effects of low-fre-
quency dynamics, for we wish to focus on tremor dynamics. Even though the low-frequency
components have larger amplitudes, they may suffer from non-stationarity and disturb inspec-
tion of the fine structure of the dynamics.

Complexity of arm-posture dynamics
We now make a comparison of the complexity between the normal subject group and the
patient one, based on nonlinear dynamic measures such as the dimensional complexity [33]
and the multiscale entropy [34]. To compute those nonlinear measures, one should first recon-
struct the attractor embedded in the phase space. Here we adopt the Takens delay embedding
method [35] to obtain the reconstructed attractors, typical examples of which are shown in Fig
3. A short description of the nonlinear time series analysis measures considered in this paper is
given in “Materials and Methods: Nonlinear Time Series Analysis” section. Specifically, we
focus on the time series of the rod, because the definitive performance of the task should be
assessed by the dynamics of the end point of the rod.

Dimensional Complexity. In fact to define the complexity of a system is on the cutting
edge of complex system science and still remains controversial. Here we use the dimensional
complexity measure [33], which is a revised version of the classical correlation dimension [36],
as the complexity index in a naive manner. However, as well known, spurious values can be
obtained from the time series generated by a stationary linear stochastic process. It is thus nec-
essary to carry out the surrogate test, a standard method guaranteeing that the computed values
of a nonlinear measure are consequences of determinism inherent in the dynamics [37]. To
verify the deterministic structure of the time series, we employ the iterative amplitude adjusted
Fourier transform (IAAFT) surrogate method [38], which provides the exact amplitude distri-
bution as well as an almost exact power spectrum, and generate 100 surrogate data for each
bare time series.

We also adopt the automatic extraction algorithm [39] to avoid the intervention of subjec-
tivity, when determining plateaus from the plot of @ ln C/@� versus ln �, where � denotes the
threshold distance. The plateau extraction procedure is as follows: There are two parameters,
length and unevenness, quantifying the quality of the extracted plateau. The length is defined
by the number of data points in the plateau and the unevenness the difference between the
maximum and minimum values of @ ln C(�)/ln �, normalized by the maximum. We expect the

Fig 3. Reconstructed attractors. Typical examples from the time series of (a) normal subject #1 and (b)
patient #1 are shown. Embedding dimensionm = 26 and time delay τ = 5 have been used.

doi:10.1371/journal.pone.0141996.g003
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length of the extracted plateau to be long enough but the unevenness to remain small. Here it is
obvious that the unevenness of a plateau in general reduces as the length is decreased. We
therefore examine the unevenness as well as the location of the extracted plateau and the
dimensional complexity D2, varying the length from the longest one, to confirm the existence
of a convincing plateau along with appropriate criteria. Fortunately, consistent results are
obtained over a wide range of the length scale where the unevenness as well as D2 and the posi-
tion of the plateau remains stable. It is thus concluded that the unevenness rather than the
length provides consistent criteria. Accordingly, we relax the length limitation to guarantee the
plateau extraction and choose the longest one among possible plateaus whose unevenness val-
ues are smaller than 0.4. For surrogate time series, on the other hand, we consider unevenness
and length values less than 0.4 and larger than 0.1, respectively and extract plateaus succes-
sively for more than 90 time series in most cases.

Finally, Fig 4 presents, as an example, (a) the plot of @ ln C/@� versus ln � form = 26, with
emphasis on the extracted plateau, together with (b) the comparison of the dimensional com-
plexity D2 obtained from the bare and surrogate time series of the X-component of patient #1.
Embedding dimensionsm = 10, 12, 14, � � �, 26 have been employed in the computation.

Note here that there are limitation issues encountered in interpreting the results of D2. First,
we fail to determine D2 for six bare time series (Y-components of normal subjects #1 and #5, Z-
components of normal subjects #4 and #6, X-component of patient #2, and Y-component of
patient #5) due to a technical reason. In these cases, detected plateaus vary as the embedding
dimensions are altered. This may imply multiscale characteristics of the dynamics, which
remains beyond the scope of this paper. Second, there exists a fundamental limitation in the
dimensional complexity associated with the limited length N of the time series. Counting the
number of points forming the attractor (of diameter D) in the regime of ρ� �/D� 1 [see Eq
(3)] leads to the theoretical limitation value dmax = 2 logN/ log (1/ρ) [40]. As each time series
analyzed in this paper consists of N = 2000 points in length, the upper bound of dmax is given
by 6.60 if ρ< 0.1 is imposed as in Ref. [40]. Interestingly, the dimensional complexity D2 for all
in the normal group (but the Y-component of subject #1) turns out to be larger than 6.60. In
contrast, in the patient group, D2 exceeding this theoretical limitation is observed only in the
time series of the Y-component of #4 and the Z-components of #2, #3, and #5.

It is remarkable that all the results of normal subjects are accompanied with these imitation
issues; the obtained specific values could thus be spurious. In this regard, we infer that the
dynamics of the normal subjects does not correspond to low-dimensional chaos. It is

Fig 4. Plateau extraction and surrogate data test. (a) An example of the plateau extraction (from the X-
component time series of patient #1). Data points labeled by red circles depict the automatically extracted
plateau whereas the blue line corresponds to the dimensional complexity D2 computed from the plateau. (b)
The values of D2 obtained from the bare time series (red circles) and from the surrogate time series (blue
squares) are compared, with the error bars estimated by standard deviations.

doi:10.1371/journal.pone.0141996.g004
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conceivable that high-dimensional chaos is involved, which may not be distinguished from
noise in reality (or at least in our time series). In the case of patients, some time series also suf-
fer from the technical difficulties or the theoretical limitation. In sharp contrast to the normal
subjects, however, we apply the surrogate method, to confirm low-dimensional chaos in half of
the patient time series which are also free from theoretical and technical limitations (see
Table 1 for detailed values of D2 from bare times series of patients). Specifically, we verify that
the null hypothesis of a linear stochastic stationary process is rejected consistently with the
confidence interval at the 99% level of significance. Notably, we have failed to reject the null
hypothesis for every patient time series accompanied with the theoretical limitation.

Further, we compare the dimensional complexity of the patient group with that of the nor-
mal subject group. Due to the theoretical limitation for the normal-group time series, one may
argue that the result should not be interpreted as the dimension. However, we may still regard
obtained values as a practical index characterizing dynamical properties of the time series.
From this point of view, we analyze the values further even though one should be cautious to
give the physical meaning of the dimension. As summarized in Table 1, the difference in the
dimensional complexity is statistically significant for components in the X- and Z-directions. It
is thus confirmed that patients suffer the loss of complexity, compared with normal subjects.

Multiscale Sample Entropy. In addition to the dimensional complexity, we also consider
the multiscale entropy as a complexity index. In general, the entropy, measuring irregularity
and therefore predictability of the time series, does not serve as an adequate measure for com-
plexity: Specifically, a random time series has a large value of entropy even though it is in fact
not complex. In the multiscale entropy, on the other hand, effects from uncorrelated noise are
reduced effectively by increasing the scale factor.

Fig 5 shows the results obtained from the time series of the rod. It is observed that in sharp
contrast with the random case, the multiscale entropy in general increases as the scale factor τ
is increased. This indicates that the apparent irregularity in the time series has its origin in the
intrinsic rich structure rather than in simple randomness. Rather large error bars around the
scale factor τ� 10 presumably reflect the limitation on the length of the time series. Finally,

Table 1. Dimensional complexity of the stroke patient group compared with the normal group.

Patient X Y Z

# 1 4.895† 5.084† 5.960†

# 2 4.831 6.448 6.719

# 3 5.966 5.572† 6.734

# 4 5.657† 8.816 6.297†

# 5 6.584† 0.236 8.093

# 6 3.001 5.241† 3.904†

Patient Group 5.156±1.137* 5.233±2.563 6.285±1.254*

Normal Group 9.019±1.572 7.376±1.287 9.253±1.481

Comparing the results of bare time series to those of surrogate series, we confirm the low-dimensional

chaos in nine time series in the patient group, which are labeled by daggers (†). If we ignore the X-

component time series of patient #6, which suffers from the technical limitation, dynamics of each

component of patients #1 and #5 turns out to be low-dimensional chaos. The two lowermost rows display

the average values of the dimensional complexity, together with standard deviations. Comparing the values

of the patient group with those of the normal one, we confirm that the differences are statistically significant

(student’s t-test, p < 0.05) in X- and Z-components; these are labeled by asterisks(*). The embedding

dimension is again given by m = 26.

doi:10.1371/journal.pone.0141996.t001
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comparing the entropy between the normal group and the patient group, we confirm that the
time series of patients are more regular and predictable. This difference is relatively small in
the case of the Y-component, which is consistent with the result of dimensional complexity.

Coupling Patterns underlying arm-posture dynamics
In the previous section, we have considered the complexity of the arm-posture dynamics,
which displays significant reduction in the patient group. Since the motor system is highly
organized to control finely the body movement, the coupling between components may be cru-
cial for understanding the underlying mechanism bringing complexity into the system. In this
section, we thus probe the coupling between components and the organization structure of the
arm-posture dynamics, by means of phase synchrony, Granger causality [41, 42], and multi-
scale network analysis of multivariate time series [43], to elucidate the possible origin of the
impaired complexity in the patient group.

Phase Synchrony and Granger Causality between Joints. We first examine the coupling
between joints, by computing phase synchrony. More specifically, for example, if the elbow can
operate independently of other joints, the upper arm and the forearm can move irrespectively
of each other and therefore the phase synchrony should be weak. On the contrary, if a certain
joint is stiff, the movement of the precedent part of the joint may directly affect the following
part of the arm. To probe this view, we focus on the four nearest pairs (rod-finger, finger-wrist,
and so on) in the same direction. We further consider the difference Dsia of the time series
between adjacent joints rather than the original time series sia of each joint, to separate the iso-
lated dynamics of each joint. To quantify the phase synchrony, we introduce two order param-
eters c1ðDsia;Dsiþ1

a Þ and c2ðDsia;Dsiþ1
a Þ, measuring in and out-of phase synchrony, respectively.

The definitions of ψ1 and ψ2 as well as Dsia are given in “Materials and Methods: Phase Syn-
chrony” section. Note that the order parameters used in this section are defined as functions of
the time series of each joint, rather than those of two adjacent joints. In other words, the order
parameters serve as indices quantifying the operational independency of a certain joint from its
precedent joint.

As summarized in Table 2, patients display phase synchrony significantly stronger than nor-
mal subjects for the Y-components of the finger and the wrist (order parameter ψ1), Z-compo-
nent of the elbow (order parameter ψ2) and Z-component of the wrist (both ψ1 and ψ2). This
confirms that the couplings between joints of patients are in general stronger than those of nor-
mal subjects. In the normal case, one should be able to move the joints unrestrictedly, adopting
various strategies to control finely the rod. Then adjacent joints form diverse angles and direc-
tions depending on the given circumstance. On the other hand, if the joints are overly coupled
due to stiffness, they cannot help moving simultaneously to perform the task. Then the time

Fig 5. Multiscale entropy SE of the time series of the rod versus the scale factor τ. (a) X-component, (b) Y-component, and (c) Z-component. Below τ�
10, the multiscale entropy of the normal group (green) is observed to be higher than that of the patient group (red).

doi:10.1371/journal.pone.0141996.g005
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series of the adjacent joints are synchronized to each other, exhibiting enhanced phase syn-
chrony. Interestingly, in the case of ψ2, only the difference in the Z-components (of the wrist
and the elbow joints) are significant. Structurally, these joints can also move in the out-of-
phase way, and ψ2 apparently reflects the inherent symmetry more precisely.

Next, we consider Granger causality between the joints, which quantifies the amount of
unique information provided by a time series to forecast other series. Therefore, if the move-
ment of a joint causes changes of another joint due to the coupling, we generally observe signif-
icant Granger causality between their time series. Here we evaluate the isolated causality
measure GDsiþ1

a !Dsia
to quantify the dynamics of a certain joint, just like the phase synchrony

measure cðDsia;Dsiþ1
a Þ (see the definition in “Materials and Methods: Granger Causality” sec-

tion). Computing GDsiþ1
a !Dsia

, we obtain results consistent with those of the phase synchrony

analysis, as shown in Table 2. Namely, differences in the Y-component of the finger and the Z-
components of the wrist and the elbow are statistically significant. Note that we have not con-
sidered the opposite direction, i.e., GDsia!Dsiþ1

a
in the comparison of the Granger causality. In

some cases, e.g., ΔfY and ΔrY pairs in the normal subject group, the isolated causality measure
of the opposite direction turns out to be larger than that of the trivial direction. This observa-
tion may indicate rather a passive/complementary role of the upper arm compared with the
forearm in the arm-posture task, although detailed analysis is left for further study.

In addition, it is of interest to note that G(wY) is not significantly larger in the patient group
relative to the normal one. This seems to be in contradiction to the phase synchrony result
shown in Table 2. Obviously, one may expect both the phase synchrony and the Granger cau-
sality to take large values simultaneously, if the joints are coupled to each other with the time
delay inevitable in the motor system. This unexpected result turns out to be crucial in the loss
of complexity, which is discussed in full in the next section.

Multiscale Network Analysis of Multivariate Time Series. Heretofore we have discussed
the couplings between adjacent joints. To probe the overall behavior of the arm consisting of
several joints, one should take the multivariate nature of the time series into account. Recently,
various studies have been conducted, unveiling dynamic characteristics of multivariate time

Table 2. Phase synchrony and Granger causality between joints.

Dsi
a c1ðDsi

a;Ds
iþ1
a Þ c2ðDsi

a;Ds
iþ1
a Þ GDsiþ1

a !Dsiþ1
a

Normal Patient Normal Patient Normal Patient

ΔfX 0.45±0.09 0.49±0.21 0.16±0.09 0.28±0.23 0.19±0.11 0.16±0.13

ΔfY 0.093±0.055 0.29±0.09* 0.13±0.08 0.090±0.055 0.034±0.024 0.093±0.051*

ΔfZ 0.43±0.07 0.53±0.17 0.15±0.07 0.31±0.17 0.13±0.16 0.20±0.04

ΔwX 0.30±0.09 0.44±0.17 0.075±0.042 0.22±0.14 0.046±0.017 0.040±0.024

ΔwY 0.15±0.12 0.38±0.10* 0.14±0.11 0.13±0.10 0.022±0.015 0.036±0.021

ΔwZ 0.17±0.07 0.54±0.08* 0.07±0.04 0.30±0.09* 0.027±0.021 0.073±0.028*

ΔeX 0.34±0.05 0.25±0.10 0.11±0.05 0.10±0.04 0.015±0.003 0.027±0.014

ΔeY 0.094±0.038 0.19±0.10 0.10±0.09 0.16±0.12 0.011±0.008 0.030±0.024

ΔeZ 0.36±0.03 0.44±0.11 0.10±0.04 0.21±0.08* 0.013±0.005 0.053±0.014*

Order parameter ψ1 for in-phase synchrony, order parameter ψ2 for out-of-phase synchrony, and Granger causality G between joints are summarized.

Comparing the order parameters, we confirm that the Y-component fY of the finger, Y- and Z-components wY and wZ of the wrist, and Z-component eZ of

the elbow are coupled stronger to their precedent joints in the patient group. Consistently with the phase synchrony, isolated causality GDsiþ1
a !Dsia

, measured

from ΔfY, ΔwZ, ΔeZ, and their precedent joint (isolated) time series takes significantly larger values in the patient group. Asterisks (*) denote statistically

significant normal-patient group pairs (with student’s t-test p < 0.05).

doi:10.1371/journal.pone.0141996.t002
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series [43–47]. With the focus on the dynamic coupled behavior, we perform the multiscale
network analysis [43] using the isolated time series. To be specific, we compose three multivari-
ate time series consisting of four isolated time series of each component (e.g., ΔrX, ΔfX, ΔwX,
and ΔeX in the case of the X-component) and compute the clustering coefficient entropy Ec of
the inferred network from each multivariate series. The results of the Z-component are shown
in Fig 6. Notably, the difference between the normal group and the patient group is statistically
significant on every scale. Exactly the same results are also observed in X- and Y-components,
confirming the enhanced coupled behavior in the patient group.

Phase Synchrony and Granger Causality between Components. As the final outcome of
the coupling between joints, the arm-posture dynamics is realized as the time series of the rod
end. We may then elucidate the underlying structure of the emergent dynamics by probing the
coupling between components, e.g., between X- and Y-components, of the rod time series s1a �
ra (bare one rather than the isolated one Δrα). In this direction, we also evaluate the original
phase synchrony ψ(rα, rβ) and Granger causality Grα ! rβ rather than isolated measures, where
rβ is one of the X-, Y- and Z-components of the rod time series (obviously β 6¼ α). Note that the
dynamics of each component is accomplished in a different manner: Only X- and Z-compo-
nents are directly related to the performance while the Y-component remains free from the
task. Further, among X- and Z-components, only the Z-component is subject to the external
gravitational force. The results are summarized in Table 3.

We first analyze the phase synchrony to identify the coupling strength between compo-
nents. Comparing the order parameter ψ1, we find that patients have significantly stronger cou-
plings between X- and Y-components than normal subjects. Similarly, comparison of the order
parameter ψ2 manifests that the synchrony between X- and Z-components is stronger in the
patient group as well. It is thus confirmed primarily that the coupling between components is
stronger in the patient group.

Next, we examine the Granger causality between components. First, let us determine the
causal relation between the components by comparing Grα ! rβ and Grβ ! rα. For example, in
the case of the X-Y pair of normal subjects, GrY ! rX is significantly larger than GrX ! rY

Fig 6. Clustering coefficient entropy Ec inferred frommultivariate data versus scale factor τ. The
multivariate time series consists of Z-components of four isolated time series. The average value of the
normal group (green) is smaller than that of the patient group (red). The difference is statistically significant
(student’s t-test, p < 0.05) in every examined scales (τ� 15). Below τ = 5, every normal subject has a smaller
value of Ec than every patient, as manifested by the small error bars.

doi:10.1371/journal.pone.0141996.g006
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(student’s t-test p< 0.05), which demonstrates that Y-component dynamics is the Granger
cause of X-component dynamics. In this way, we can determine the direction of all three pairs
for normal subjects: rY is the cause of rX and rZ whereas rX is the cause of rZ. Note that the
Granger causality between X- and Z-components is rather small. This observation is also true
in phase synchrony as well [ψ2(rZ, rX) is small in the normal group as discussed above], indicat-
ing that X- and Z-component dynamics are decoupled in the normal group.

In the case of patients, on the other hand, Granger causality does not reveal any statistically
significant pairs. In consequence, we fail to determine the directions of couplings. Moreover,
the Granger causality is even weaker than the normal group (namely, the difference in GrY ! rX

is statistically significant), which appears contradictory to the phase synchrony result (as
ψ1(wY) and G(wY) of the patient group in the previous section). To resolve this contradiction,
we inspect the time series closely and conclude that the X- and the Y-components of the time
series are very similar to each other in the patient group. We also check that the Y- and the Z-
components are very similar as well if we take into accgqta the fact that the overall sign of the
Z-component is irrelevant to computing ψ2 (albeit weaker than the X-Y pair). In this case, the
Granger causality could have small values because the information flow between the time series
is negligible. Still, the phase synchrony could be large due to the similarity itself between the
time series. Therefore, it would be more appropriate to call the relation between the compo-
nents ‘locked’ rather than ‘coupled’. On the other hand, we cannot find any simple pattern in
the inspection of the bare time series of normal subjects.

Response Mechanism of Normal Subjects and Reduction of the Dynamic Degrees of
Freedom in Patients. We are now ready to describe the underlying mechanism of the arm-
posture dynamics. We stress here that the Y component plays a significant role in the coupled
dynamics of the system. As already stated, Y component dynamics is the cause of the dynamics
of X- and Z-components in the normal subject group. Also as one can confirm in Table 3, phase
synchrony of Y-X and Y-Z pairs is weaker than that in patients but relatively large if compared
with that of the X-Z pair. This unique feature of the Y component can be interpreted as a conse-
quence of the external gravitational force. Because the subject sustains the arm and the rod
against the gravity, fatigue is accumulated as time proceeds. Due to the task goal to maintain the
position of the rod, the subject should adopt an indirect strategy against the gravitational force:
shrinking the arm to reduce the torque acting on the arm rather than dropping the arm. As a
result, the Y-component time series which is left free from the task displays an overall decreasing
tendency. These decreasing patterns in the Y-direction while sustaining in the X- and Z-direc-
tions are actually accomplished by folding joints. To compensate the fluctuations originating

Table 3. Coupling/locking relations between components.

Normal Patient Normal Patient

ψ1(rX, rY) 0.30 ± 0.07 0.59 ± 0.17* GrX ! rY 0.051 ± 0.039 0.070 ± 0.040

ψ1(rY, rZ) 0.088 ± 0.057 0.12 ± 0.06 GrY ! rX 0.28 ± 0.06 0.14 ± 0.06*

ψ1(rZ, rX) 0.19 ± 0.05 0.23 ± 0.08 GrY ! rZ 0.36 ± 0.18 0.16 ± 0.08

ψ2(rX, rY) 0.087 ± 0.032 0.39 ± 0.22* GrZ ! rY 0.11 ± 0.06 0.13 ± 0.04

ψ2(rY, rZ) 0.32 ± 0.13 0.23 ± 0.15 GrZ ! rX 0.022 ± 0.012 0.043 ± 0.019

ψ2(rZ, rX) 0.082 ± 0.033 0.14 ± 0.04* GrX ! rZ 0.082 ± 0.051 0.057 ± 0.046

Phase synchrony and Granger causality between the three components. Asterisks (*) denote statistically significant normal-patient group pairs (student’s

t-test, p < 0.05). Compared with the normal group, phase synchrony is stronger while Granger causality is weaker in the patient group which indicates

‘locked’ relations between the components in patients.

doi:10.1371/journal.pone.0141996.t003

Loss of Complexity in ArmMovement Control

PLOS ONE | DOI:10.1371/journal.pone.0141996 November 4, 2015 10 / 17



from the Y-component dynamics, the X- and the Z-components should respond and accord-
ingly, causal relations are observed in the case of Y-X and Y-Z pairs. Even though the decreasing
pattern itself cannot be observed in the high-pass filtered time series, we conclude that the
underlying perturbation-response mechanism remains in the time series.

Such patterns are deteriorated, however, in the case of the patients because the components
are locked together. In other words, overall phase synchrony of components is strong while
Granger causality remaining small, because the three time series actually carry similar informa-
tion. We conclude that the rigidity of the system causes the reduction of degrees of freedom,
namely, the loss of dynamic components. The coupling relationship and the response mecha-
nism are illustrated schematically in Fig 7a and 7b.

Here one should be careful about the limitation inherent in the pairwise analysis. Specifically,
the direct coupling from the Y-component to the Z-component in the normal group is not dis-
tinguishable from the indirect coupling via the X-component. In fact, the coupling between X-
and Z-components is weak as indicated by the dotted arrow; accordingly, it is expected that the
effects via the X-component are small. For more clarity, we examine the multivariate Granger
causality measure from the Y- to Z-component, conditioned on the X-component time series.
Obtained values of GrY ! rZjrX and GrZ ! rYjrX are 0.32 ± 0.15 and 0.11 ± 0.07, respectively, with
the difference being statistically significant (student’s t-test, p< 0.05). This confirms that the
conclusion deduced from the pairwise analysis is indeed valid.

Summary and Perspectives
Analyzing the time series of normal subjects and stroke patients, we have recognized three
unique features of the goal-directed arm-posture dynamics. First, we have observed that the
dynamics of normal subjects is not periodic at all, as confirmed by the overall power-law behav-
ior of the power spectrum, while the oscillatory behavior of pathological tremors, identified as
low-dimensional chaos, emerges in the dynamics of patients. Second, we have quantified that
couplings between the joints of patients are stronger than those of normal subjects. Third, we
have addressed the way how the human arm responds to the gravitational force, which empha-
sizes the essential role of Y-component dynamics. Interestingly, totally different measures have
turned out to give consistent results, illuminating various aspects of the dynamical complexity.

We have also proposed a theoretical framework describing the arm-posture dynamics. In
the case of the normal subject group, joints and components are coupled appropriately to
respond to external perturbations such as the gravitational force. As fatigue is accumulated due
to the gravity, the individual shrinks the arm to minimize the torque and then adjusts finely
positions of the joints to perform the task. On the other hand, the dynamical components are
overly coupled in the patient group. These locked features cause the reduction of the degrees of

Fig 7. Schematic diagrams of the arm-posture dynamics. Shown in (a) and (b) are schematic diagrams
describing the conceptual coupling structures of normal subjects and stroke patients, respectively.

doi:10.1371/journal.pone.0141996.g007
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freedom and the emergence of 2 to 3 Hz tremors, which obscure the responses of the patients
to the environments.

Based on these findings, we now suggest that the normal arm-posture dynamics and the loss
of complexity representing the patient dynamics are emergent phenomena from the couplings
between joints. As well known in the field of statistical physics, the coupling strength is the key
ingredient tuning collective properties of a macroscopic system. In this perspective, we con-
clude that the dynamics and loss of complexity of patients is a consequence of the macroscopic
order arising from the pathologically strong couplings between joints. On the other hand, the
dynamics of normal subjects does not involve the ordered state, as manifested by the lack of
peaks in the power spectrum.

It is of interest to note the unusual property of the Y-component time series which plays a
crucial role in the response mechanism. On one hand, we observe the 1/f2 power spectrum
which is characteristic of Brownian noise. On the other hand, every Y-component time series
of normal subjects (except #1 encountering the technical problem) passes the surrogate test,
providing a quantitative evidence of the inherent nonlinearity in the dynamics (not discussed
in this paper). Provisionally, we conclude that Y-component dynamics reflects neither low-
dimensional chaos nor simple Brownian noise. Detailed analysis should illuminate the novel
feature of the Y-component time series. Its relation to the essential role in the dynamics, as well
as mathematical modeling and additional experiments for quantitative verification, is left for
further study.

Finally, we point out that there are several limitations in this work. First of all, the number
of subjects is somewhat small. Even though crucial differences between the normal group and
the patient group are already manifested unambiguously, analysis and comparison of larger
data would be of more benefit to revealing detailed structure. Second, the analysis suffers from
the shortage of the time series. In our experience, longer time series are apt to suffer from non-
stationarity because fatigue could affect the Z-component dynamics rather directly. Neverthe-
less, it could be possible to modify the experimental setup and to delay such fatigue effects.

Materials and Methods

Subjects
Six stroke patients and six normal subjects participated in the experiment. Participants were
recruited through the local senior center. Written informed consent of all participants was
obtained. All procedures involving human participants were approved by the University Insti-
tutional Review Board (Seoul National University, IRB No. 0806/001-001). Inclusion criteria
for stroke patients in the study consisted of the following: (1) absence of other neurological def-
icits; (2) currently not participating in another upper extremity rehabilitation program; (3)
diagnosis of chronic states having strokes more than 12 months ago; (4) cognitive competency
to give informed consent and to understand and follow practitioner’s instructions.

Upper-limb Posture Control Assessment
The experimental task was goal-directed arm posture, to sustain a rod pointing to a target in
front of the subject. Each subject performed the task as stable as possible for 30 seconds. Posi-
tions of the end point of the rod and joints of the subject were measured. Kinematic data were
collected by an optoelectronic motion capture system (Qualisys) with eight CCD cameras.
Spherical markers were placed on well-recognizable anatomical landmarks: on the shoulder,
over the lateral border of the acromion; on the upper arm in proximity of the elbow, over the
lateral humeral epicondyle; on the forearm in proximity of the wrist, on the styloid process of
the ulna; and on the hand dorsum, on the head of the second metacarpal, which are dubbed
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shoulder, elbow, wrist, and finger joints, respectively, in this paper. Two more markers were
placed at the end of the rod and at the target. For each subject, 20 second time series was
acquired with a sampling rate of 100 Hz and stored for off-line analysis.

Non-linear Time Series Analysis
Takens Time Delay Embedding. The first step of the nonlinear time series analysis is to

embed the time series in anm-dimensional phase space and to reconstruct the attractor of the
dynamics. Here we employ the Takens time delay embedding [35]. Such embedding was
shown mathematically to be possible in the case of the infinite-length time series form>

(2d + 1) where d is the actual dimension of the attractor of the dynamical system. For time
series {s(1), s(2), � � �, s(N)}, the delay embedding is performed as follows:

~sðtÞ ¼ ðsðt � ðm� 1ÞtÞ; sðt � ðm� 2ÞtÞ; � � � ; sðtÞÞ; ð1Þ
where τ is the time delay. Specifically, time delay τ = 5 and embedding dimensionm = 10, 12,
� � �, 26 have been used in this paper.

Dimensional Complexity. The revised correlation sum C(�) is defined to be [33, 36]:

Cð�Þ ¼ 2

ðN �WÞðN � 1�WÞ
XN
t1¼1

XN
t2¼t1þ1þW

yð�� jj~sðt1Þ �~sðt2ÞjjÞ; ð2Þ

whereW denotes the Theiler correction and jj� � �jj the appropriate distance in them-dimen-
sional space. In this paper, we have takenW = 5 and
jj~sðt1Þ �~sðt2Þjj � maxfjsðt1 � ktÞ � sðt2 � ktÞj : 0 � k � m� 1g. The dimensional complex-
ity is then given by

D2 ¼ lim
�!0

@ lnCð�Þ
@ ln �

: ð3Þ

Technically, if a plateau is found in the flow of @ ln C(�)/@ ln � plotted versus ln �, the value
at the plateau is identified as the correlation dimension D2 of the attractor.

Multi-scale Sample Entropy. The entropy is a traditional measure of the nonlinear
dynamics theory, elucidating regularity of a time series. We begin with the Reyni entropy [48]:

Kq ¼ lim
t!0

lim
�!0

lim
m!1

1

mt
1

1� q
ln

X
i1 ;���;im

pði1; � � � ; imÞ½ �q ð4Þ

Noting Eq (2), one obtains the relation [49]

Cð�Þ 	
X
i1 ;���;im

pði1; � � � ; imÞ½ �2: ð5Þ

With the aid of Eq (5), we can calculate the Reyni entropy of order two or the Grassberger-
Procaccia entropy, which provides a lower bound of the Kolmogorov-Sinai entropy, in terms
of the correlation sum [36]:

K2 ¼ lim
m!1

lim
�!0

K2;m ð�Þ ¼ lim
m!1

lim
�!0

1

t
ln

Cmð�Þ
Cmþ1ð�Þ

: ð6Þ

In general it is easier to compute K2 from the time series than the Kolmogorov-Sinai
entropy, and the method described above is favored in the time series analysis.

In the case of an experimentally measured time series, however, the limit process in the defini-
tion of the entropy is not possible due to the limitation on the length of the time series. Therefore,
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finite values ofm and non-zero values of � are used in practice. Based on the sample entropy [50],
one may introduce the multiscale entropy SE[34] by defining the re-scaled time series

yðtÞðtÞ � 1

t

Xt0t
t¼ðt0�1Þtþ1

sðtÞ: ð7Þ

As the scale factor τ is increased, components with short autocorrelations, which are usually
regarded as noise, become reduced. Therefore irregularity originating from randomness can be
eliminated, exposing bona fide complexity.

Phase Synchrony
To isolate dynamics of a single joint from that of other joints, we first extract the difference of
the time series between adjacent joints in the following way:

DsiaðtÞ � si�1
a ðtÞ � siaðtÞ: ð8Þ

Note that the isolated dynamics of joint i is realized by the difference between its own time
series sia and the time series si�1

a of the following joint i − 1. In this way, we extract dynamics of
each detached joint, eliminating the effects of its precedent joint. In particular, the phase syn-
chrony between the series Dsia and Ds

iþ1
a allows one to analyze whether dynamics of a certain

joint is free from dynamics of its precedent joint. To obtain the phase synchrony between joints

(see Table 2), we first calculate the phase �i
aðtÞ of the time series from the analytic signal

ziaðtÞ � DsiaðtÞ þ isi;Ha ðtÞ � Ai
aðtÞ ei�iaðtÞ, where si;Ha ðtÞ is given by the Hilbert transform

si;Ha ðtÞ ¼ 1

p
P
Z 1

�1

DsiaðtÞ
t � t

dt ð9Þ

with P denotes the principal value. Finally, we define the order parameters c1ðsiaÞ and c2ðsiaÞ
representing dynamic originality of joint i in the α-direction:

c1ðDsia;Dsiþ1
a ÞeiF1ðDsia;Dsiþ1

a Þ ¼ 1

N

XN

t¼1

eið�
i
a��iþ1

a Þ ð10Þ

c2ðDsia;Dsiþ1
a ÞeiF2ðDsia ;Dsiþ1

a Þ ¼ 1

N

XN

t¼1

e2ið�
i
a��iþ1

a Þ; ð11Þ

which measure the conventional in-phase synchrony and the out-of-phase synchrony,
respectively.

On the other hand, we use the bare time series of the rod end to compute phase synchrony
among the X-, Y- and Z-components (Table 3). In this case, we calculate the phase θα(t) of
the series rα(t) from the analytic signal zaðtÞ � raðtÞ þ irHa ðtÞ � AaðtÞeiyaðtÞ with the Hilbert
transform

rHa ðtÞ ¼
1

p
P
Z 1

�1

raðtÞ
t � t

dt ð12Þ

and compute the order parameters

c1ðra; rbÞeiF1ðra ;rbÞ ¼ 1

N

XN

t¼1

eiðya�ybÞ ð13Þ
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c2ðra; rbÞeiF2ðra ;rbÞ ¼ 1

N

XN

t¼1

e2iðya�ybÞ: ð14Þ

Granger Causality
For two (arbitrary) series u and v, the regression

uðtÞ ¼
Xq

k¼1

Au;kuðt � kÞ þ
Xq

k¼1

Av;kvðtÞ þ Zu;t; ð15Þ

and the reduced regression

uðtÞ ¼
Xq

k¼1

Bu;kuðt � kÞ þ xu;t ð16Þ

are carried out, where q is determined by the Akaike information criterion [42]. Then the
Granger causality Gv ! u from time serise v(t) to u(t) is defined as [42]

Gv!u � ln
Sx

SZ
ð17Þ

where Sη = cov(ηu, t) and Sξ = cov(ξu, t) are the residuals covariances of the regression models.
To probe the relation between the joints, we compute the isolated causality measure GDsiþ1

a !Dsia

using the isolated time series DsiaðtÞ and Dsiþ1
a ðtÞ, as shown in Table 2. On the other hand, the

coupling/locking relations between components are measured by the Granger causality Grα ! rβ

computed from the bare time series of the rod end (see Table 3).

Supporting Information
S1 File. Complete time series data. Columns A, B and C display 2000 data points (corre-
sponding to 20 seconds), respectively, of the X-, Y- and Z-component time series of the rod
end. Similarly, columns D, E, F / G, H, I / J, K, L / M, N, O tabulate 2000 data points of the X-,
Y-, Z-component time series of the finger / wrist / elbow / shoulder, respectively.
(XLSX)
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