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Anaplastic lymphoma kinase (ALK) is a validated molecular target for non-small-cell lung
cancer (NSCLC). The use of tyrosine kinase inhibitors (TKIs) has led to significantly
improved survival benefits. However, the clinical benefits of targeting ALK using TKIs are
limited due to the emergence of drug resistance. The landscape of resistance
mechanisms and treatment decisions has become increasingly complex. Therefore,
continued research into new drugs and combinatorial therapies is required to improve
outcomes in NSCLC. In this review, we explore the resistance mechanisms of ALK TKIs in
advanced NSCLC in order to provide a theoretical basis and research ideas for solving the
problem of ALK drug resistance.
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1 BACKGROUND

Rearrangement of the anaplastic lymphoma kinase (ALK) gene creates potent oncogenic drivers in
patients with non-small cell lung cancer (NSCLC) occurring in approximately 3-7% of all cases. The
most common fusion partner is EML4 (echinoderm microtubule associated protein like 4)
(1). In addition, at least 20 other types of fusion genes have been discovered and reported, such
as TGF-ALK, KIF5B-ALK, and STRN-ALK. ALK+ NSCLC has been associated with the absence of
smoking, younger age, and adenocarcinoma histology (2). Tyrosine kinase inhibitors (TKIs)
targeting ALK have made significant breakthroughs in recent years such as extending patients’
survival periods with ALK-advanced NSCLC. To date, ALK TKIs have received approval from the
US Food and Drug Administration (FDA) and European Medicines Agency (EMA) to treat
advanced “ALK-positive” NSCLC. These ALK TKIs include crizotinib (first-generation), ceritinib,
alectinib, brigatinib (second-generation), lorlatinib (third-generation). Clinical trials demonstrated
remarkable responses within this patient population (Table 1). However, the clinical benefits of
ALK inhibitors (ALKi) are almost universally limited by the emergence of multi-drug resistance. In
this review, we analyze and summarize the mechanisms of resistance, as well as treatment strategies
after resistance, in order to provide better therapeutic strategies for clinicians.
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2 MECHANISMS OF RESISTANCE TO
ALK TKIS

Resistance is divided into primary and acquired resistance.
Primary resistance is defined as the de novo lack of treatment
response and can be seen after treatment with a TKI (23). While
the mechanism of resistance to ALKi is less well-understood, it
can be divided into two categories, on target or ALK dependent
alterations and off target or ALK independent alterations.

2.1 ALK Dependent Resistance
2.1.1 Secondary Mutations in the ALK Tyrosine
Kinase Domain
Resistance mutations in the ALKi account for 30-40% of all known
resistance mechanisms (24). These resistance mutations lead to
structural changes in the kinase domain that interfere with the
binding of the drug. A much broader spectrum of on-target
mutations has been identified in ALK-positive NSCLC treated
with ALK TKIs. Resistant mutations to crizotinib include
L1196M、G1269A、C1156Y、G1202R、I1171T/N/S、
S1206C/Y、E1210K、L1152P/R、V11180L、I1151T、
G1128A、and F1174V (25–28) (Figure 1). The most common
ALK mutations are mutations L1196M and G1269A, where the
deep binding pocket of ATP. G1202R was found in 2% of the
samples following crizotinib resistance and was the primary
mechanism of second-generation ALKi resistance (Figures 2A, B).

After the first-generation ALK inhibitors exhibit resistance
within NSCLC, many studies have shown that the sequential
second-generation drugs alectinib, ceritinib, brigatinib, and
ensatinib can achieve better curative effects and are superior to
chemotherapy (11, 15, 29, 30). Of note, the second-generation
TKIs alectinib and brigatinib are currently the preferred first-line
Frontiers in Oncology | www.frontiersin.org 2
therapies in Europe (31), while the third-generation compound
lorlatinib is also approved as initial therapy by the FDA and an
additional preferred first-line drug according to the current
NCCN guidelines (32) (Table 1). The progression free survival
(PFS) of alectinib was significantly better than that of crizotinib,
response rate (RR) and PFS of 92% and 34.1 months,
respectively. The G1202R mutation is the most common
secondary resistant ALK mutant in patients post-treatment
with second-generation ALK inhibitors, occurring in 21%, 29%
and 43% of patients treated with ceritinib, alectinib, and
brigatinib (33). It is speculated that although the second-
generation ALKi have increased activity, one of the costs was
the larger molecular volume of their compounds, which is
heavily dependent on the direct binding to the solvent front
region such as G1202 in order to increase its activity; thus,
“inducing” resistance mutations within this region. Resistant
mutations to alectinib include G1202R and I1171N. Tumor
mutation burden and heterogeneous tumor evolution might be
responsible for the rapid acquisition of alectinib resistance (34).
Resistant mutations to ceritinib include G1202R、F1174V、
T1151K、and T1151R (27, 35, 36), and to brigatinib include
D1203N, and E1210K (37, 38).

Lorlatinib is a reversible third-generation ALK and ROS1
inhibitor that can overcome multiple ALK resistance mutations
and penetrate the blood-brain barrier. Lorlatinib has strong activity
for commonmutations such as L1196M and G1269A. The G1202R
mutation is particularly important as it is the primary resistance
mechanism to ceritinib, alectinib, and brigatinib, whereas only
lorlatinib can inhibit the ALK G1202R mutation (Figure 2C) (39).
The whole exome sequencing of compound ALK mutations
occurring in several lorlatinib-resistant patients confirms the
stepwise accumulation of ALK mutations during sequential
treatment. Several of these ALK kinase compound mutations that
have been described include the L1196M/D1203N, F1174L/
G1202R, and C1156Y/G1269A mutations (40). Absolute IC50
values of crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib on
cellularALKphosphorylation inBa/F3 cells are depicted (33). InBa/
F3 cells, ALK F1174C and ALK I1171T appear sensitive to ceritinib
and alectinib, respectively; however, these mutations may not be
susceptible to these agents in vivo based upon prior clinical reports.
Therefore, we further combined clinical data at the cellular level in
Table 2, which can help with medication selection after resistance.
The objective response rate (ORR) was 69% in patients who had
received crizotinib or crizotinib plus chemotherapy (21),which
means that regardless of the previous use of several first or second-
generation ALKi or chemotherapy, the efficacy of lorlatinib as a
follow-up treatment is superior. Furthermore, the ORR of lorlatinib
and crizotinib as a first-line therapeutic for advancedALK+NSCLC
is 76% and 58%, revealing that lorlatinib has an advantage in regard
to efficacy (22).

When patients receive sequential ALKi treatment, the cancer
cells accumulate new mutations in addition to the previously
acquired mutations, making treatment more complex (33, 37, 40,
60). Takahashi, Ken reported a patient who underwent
sequential treatment with crizotinib, alectinib and lorlatinib;
thus, developing the double mutations I1171S and G1269A.
FIGURE 1 | Mutations in the anaplastic lymphoma kinase (ALK) kinase domain.
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Ceritinib and brigatinib have the potential to become the
therapeutic agents to treat this double mutation (61). Geeta G.
Sharma’s team reported a case of ALK-positive NSCLC with the
dual mutation ALK L1196M/G1202R after brigatinib treatment.
Lorlatinib was effective against theG1202Rmutation. Interestingly,
this patient’s L1196M/G1202R dual mutation also increased
primary resistance to lorlatinib, further limiting treatment
options (62). ALK D1203N was significantly more common at
relapse with lorlatinib than second-generation ALKi’s (63). In one
case of ALK-positive NSCLC, after the failure of continuous
treatment with crizotinib and alectinib, the mutation of the ALK
fusion gene L1196M was detected, and no other acquired drug
resistance mechanism was found. The patient developed resistance
to alectinib, but remained sensitive to ceritinib (64).

However, not all complex mutations increase the difficulty of
treatment (Table 3). Interestingly, some compound mutations
that lead to lorlatinib resistance led to re-sensitization of the first
or second generation ALKi (65). A patient receiving sequential
treatment for ALK-positive NSCLC was resistant to crizotinib
due to the mutation C1156Y in the ALK kinase region
(Figure 3A). Sequencing revealed the mutation ALK L1198F in
addition to C1156Y (Figure 3B). The L1198F mutation
developed resistance to lorlatinib through spatial interference
with drug binding. However, the L1198F mutation enhanced its
binding to crizotinib (Figure 3C), making it sensitive to the
C1156Y mutation. The patient was treated again with crizotinib,
resulting in the successful treatment of cancer-related symptoms
and liver failure (45). Other researchers have also demonstrated
that the L1198F mutation leads to conformational changes in the
inhibitor site as well as changes in the binding affinity of ALK to
crizotinib and lorlatinib (66).

For patients with drug resistance after ALK-TKI treatment, a
re-biopsy is recommended to provide optimal treatment.
Haratake N et al. retrospectively analyzed ALK-TKI treatment
patterns and clinical outcomes. Of the 71 patients treated with
ALK-TKI for NSCLC, 20 were re-biopsied, and 8 had secondary
drug-resistant mutations. The ORR of patients with ALK point
mutations receiving ALK-TKI was 88.9%, while patients without
the ALK point mutations receiving ALK-TKI or chemotherapy
Frontiers in Oncology | www.frontiersin.org 3
were only 20.0%. However, PFS in patients with secondary drug-
resistant mutations are relatively short, and their mechanism
needs to be further studied (67).

2.1.2 Amplification of ALK
ALK amplification occurs at a low frequency, but it is responsible
for acquired resistance to crizotinib. Katayama R reports a high
level of ALK amplification in 15 NSCLC patients with crizotinib
resistance (24).

2.2 ALK-Independent Resistance
2.1.1 Activation of Bypass Signaling Pathways
Activation of the bypass signaling pathways is the resistance
mechanism of ALK-TKIs, including EGFR signaling (42, 68),
amplification of KIT (24), IGF-1R-IRS-1 pathway (69), MAPK
(70), MET amplification (71–73), BRAF V600E mutation (73),
and the activation of the transcriptional co-regulator YAP (74)
(Figure 4). In addition, Recondo G et al. found a new bypass
mechanism caused by drug resistance due to NF2 functional
deletion mutations, increasing mTOR inhibitor treatment
sensitivity (40). Bypass activation is more common in patients
with sequential TKI than in patients with crizotinib alone (49).

The activation of the EGFR pathway is one of the mechanisms
of ALK-TKI resistance, such as crizotinib and alectinib. Ceritinib
and afatinib combinatorial treatment partially restored the
sensitivity to ceritinib (68). Afatinib may be a promising
treatment for overcoming ceritinib resistance in ALK or ROS1-
positive NSCLC cells by inhibiting the neuroregulatory protein
(NRG1) signaling pathway (75).

Increased expression of hepatocyte growth factor (HGF) and
its physiological receptor tyrosine kinase MET is associated with
acquired resistance to various TKIs. MET amplification was
detected in 12% and 22% of biopsies of patients using second-
generation inhibitors or lorlatinib, respectively. Patients treated
with second-generation ALKi during first-line therapy were
more likely to have MET amplification than those treated with
second-generation ALK inhibitors after crizotinib treatment
(76). Gab1 is a key effector in the HGF/MET signaling pathway
thatmediates alectinib resistance. The antidiabetic drugmetformin
A B C

FIGURE 2 | Spatial position of G1202R and ALK-TKI. (A) Structure of the stick representation of crizotinib (green) bound to ALK G1202; (B) Crizotinib bound to
ALK the G1202R mutation, showing steric hindrance; (C) Structure of the stick representation of lorlatinib (green) bound to the ALK G1202R mutation.
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combined with alectinib overcomes HGF/Met-induced alectinib
resistance by blocking the complex formation between MET and
Gab1, thus inhibiting Gab1 phosphorylation and activating the
downstream signaling pathway. These results suggest that
metformin combined with alectinib may help overcome alectinib
resistance caused by the HGF/MET signaling pathway activation,
improving the efficacy of alectinib (77).

Cerivastatin, a rate-limiting enzyme inhibitor of themevalonate
pathway, showed anticancer activity against ALK-TKI in vitro and
in vivo, accompanied by inactivation of the transcription-assisted
regulator YAP. Cerivastatin can significantly induce YAP-targeted
oncogenes (EGFR, AXL, CYR61 and TGFbetaR2) in drug-resistant
cells, providing a theoretical basis using YAP as a potential
therapeutic option in patients with acquired drug-resistant ALK-
TKI (74).
Frontiers in Oncology | www.frontiersin.org 4
2.2.2 Drug Efflux Pump
P-glycoproteins (P-gp) are highly conserved ATP-dependent
effluents encoded by the multidrug resistance 1(MDR1) gene,
also known as the ATP binding box subfamily B member 1
(ABCB1) (78). The central nervous system (CNS) is the primary
site of failure in most patients with crizotinib resistance. P-gp
efflux and limited diffusion of crizotinib results in limited blood-
brain barrier penetration (79). In contrast, alectinib is not a P-gp
substrate and can achieve higher CNS levels (80, 81).

2.2.3 Lineage Changes
Morphological changes are also one of the mechanisms of ALK-
TKI resistance in NSCLC. Many cases have reported drug
resistance due to the conversion to small cell lung cancer
(SCLC) or squamous cell carcinoma (SCC) after targeted
TABLE 1 | Clinical trials with anaplastic lymphoma kinase inhibitors.

Drug Clinical trials Line of therapy Control arm ORR IC-ORR PFS(m) OS(m)

Crizotinib PROFILE 1005
(3)

≥2 – 54% – 8.1 –

PROFILE 1007
(4)

Second line chemotherapy – – 7.7 vs 3.0 –

PROFILE 1014
(5)

First line Platinum doublet 74% vs
45%

NA 10.9 vs 7.0 59.8 vs
19.2

PROFILE 1029
(6)

First line Platinum doublet 87.5% vs
45.6%

NA 11.1 vs 6.8 –

Alectinib Phase I/II (7) ≥2 crizotinib-resistant – 22% 52% – –

AF-001JP (8) ≥1 ALK-TKI-naive – 93% – – –

Phase II (9) ≥2 crizotinib-resistant – 50% 57% 8.9 –

Phase II (10) ≥2 crizotinib-resistant – 48% 52% 8.1 –

ALUR (11) Second line Standard chemo 50.6% vs
2.5%

66.7% vs
0%

10.9 vs 1.4 –

ALEX (12) First line Crizotinib 82.9% vs
75.5%

81% vs
50%

34.8 vs 10.4 NR

J-ALEX (13) First line Crizotinib 92% vs
79%

NA 34.1 vs 10.2 68.6 vs
68

Ceritinib ASCEND-4 (14) First line Platinum doublet 73% vs 2-
7%

72.7% vs
27.3%

16.6 vs 8.1 NR

ASCEND-5 (15) Second line Standard chemo 39% vs
6.9%

35% vs 5% 5.4 vs 1.6 18.1 vs
20.1

ASCEND-8 (16) a. First line
b. Prior chemotherapy and/
or crizotinib

450mg or 600mg with food vs 750 mg fasted 78.1% vs
75.7%

– – –

Brigatinib ALTA (17) Second line 90 mg once daily vs 180 mg once daily with a 7-
day lead-in at 90 mg

46% vs
56%

50% vs
67%

19.6 vs 24.3 29.5 vs
34.1

ATLA-1L (18) First line Crizotinib 74% vs
62%

78% vs
26%

24.0 vs 11.0 NR

Ensartinib phase 1/2 trial
(19)

first-line or subsequent
therapy

225 mg once daily 69% 64% 9.0 –

eXalt (20) First line Crizotinib 75% vs
67%

54% vs
19%

25.8 vs 12.7 NR

Lorlatinib phase 2 study
(21)

first-line or subsequent
therapy

treatment naive (EXP1) 90% 75% – –

Previous crizotinib only(EXP2) 69% 68% – –

Previous crizotinib with previous chemotherapy
(EXP3A)

– –

previous non-crizotinib ALKi, with or without
chemotherapy (EXP3B)

33% 42% – –

two previous ALKi with or without chemotherapy
(EXP4)

39% 48% – –

three previous ALKi with or without
chemotherapy (EXP5)

– –

CROWN (22) First line Crizotinib 76% vs
58%

82% vs
23%

12-months:78%
vs 39%

NR
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therapy against ALK-positive adenocarcinoma (82–86). Deletion
of p53 and retinoblastoma (RB) genes is important for SCLC
transformation, although the transformation mechanism is not
fully understood (87). Mutations in the TP53 and PTEN genes
were also found in a patient with SCLC transformation (88). In
addition, a patient who underwent alactinib treatment developed
transformed SCLC. The levels of gastrin-releasing peptide
precursor and neuron-specific enolase in the patients were
increased, indicating SCLC transformation during the drug
resistance of ALK-tyrosine kinase inhibitors (83).

In addition to the conversion of adenocarcinoma to SCC or
SCLC, Koyama K. et al. reported a rare case of ALK-positive
adenocarcinoma that converted to NSCLC with neuroendocrine
differentiation. Histopathological examination of the tumor
following alectinib resistance revealed a poorly differentiated
carcinoma with insulinoma associated protein 1 (INSM1)
expression. The expressions of CD133, Bcl-2, and SOX2 were
positive when compared with the initial tumor. SOX2 expression
was significantly increased compared to that before treatment.
Immunohistochemical results of these markers associated with
tumor stem-like cells and neuroendocrine differentiation suggest
Frontiers in Oncology | www.frontiersin.org 5
that tumor stem cells play a role in the histological
transformation and acquired resistance mechanisms of ALK-
reposition-positive tumors (89). HER2 plays an important role in
regulating cancer stem cell phenotypes of ALK translocation
lung cancer, which is primarily mediated by HER2/HER3
heterodimers (90).

Epithelial-to-mesenchymal transition (EMT) is a
morphological change in which epithelial cells lose their
polarity and intercellular connections becoming more mobile
and invasive. Through EMT, tumor cells acquire mesenchymal
morphology and the ability to migrate and invade. There are four
pathways associated with EMT: proteoglycan in cancer, HIF-1
signaling, FoxO signaling, and extracellular matrix receptor
interactions, related to the drug resistance mechanisms of
crizotinib (91) (Figure 4). ALK mutants L1196M and EMT
were simultaneously detected in a patient with crizotinib
resistance. ALK L1196M primarily existed within the epithelial
tumor cells, suggesting that EMT and ALK mutations co-exist as
independent mechanisms of drug resistance. EMT was
associated with decreased expression of miR-200c and
increased expression of ZEB1, leading to cross-resistance of the
TABLE 2 | Resistant and sensitive mutations of 6 ALK inhibitors (S, sensitive; R, Resistance).

Variant Crizotinib Ceritinib Ensartinib Alectinib Brigatinib Lorlatinib

G1123S S R (41) S S (41) S S
I1151Tins R (24) R S S S S
L1152P R R S S S S
L1152R R (42) R (43) S S S S
C1156T R R S S S S
C1156Y R (44) R (45) S S S S (45),R (37)
I1171N R (33) S (46) S R (27) S (47) S,R (48)
I1171T R (49) S (46) S S,R (33) S S
I1171S R (33) – – R (33) S (50) –

F1174C R (51) S,R (33) R S (52) S S
F1174L R (49) S,R (33) S S S S
F1174V R (52) S,R (27) R S (52) S S
V1180L R S (53) S R (33) S (47) S
L1196M R (44) S (40),R (33) S S,R (33) S (47) S
L1198F S (45) R S R R R (45)
L1198P R (54) – – – – –

G1202R R (24) R (27) R (55) R (27) R (56),S (47) S (56)
D1203N R (54) R (40) R R R (37) R (40)
S1206C R S S S R S
S1206Y R (24) S (57) S S S S
E1210K R (49) R R (55) R R (38) S
E1407K – – – – R (37) –

F1245C R (58) R,S (58) R R R S
F1245V R (27) – – S (27) – –

G1269A R (59) S S,R (55) S S S
G1269S R (54) S R S S S
G1123D – – – – – R (37)
Octo
ber 2021 | Volume 11 | A
TABLE 3 | Compound mutations and Treatment recommendations.

Team Previous treatment Compound mutation Note

Crizotinib,alectinib,lorlatinib I1171S+G1269A Recommended drugs: ceritinib, brigatinib
Shaw AT et al (45) Crizotinib, lorlatinib C1156Y+L1198F re-sensitization: Crizotinib
Okada K et al (65) Alectinib, lorlatinib I1171N+L1256F re-sensitization: Alectinib
Okada K et al (65) I1171N+L1198F Compound mutations are more sensitive to crizotinib than I1171N single mutants
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A B C

FIGURE 3 | Spatial position of C1156Y, L1198F, and ALK-TKI. (A) Crizotinib and the resistance mutation C1156Y in the ALK kinase region; (B) L1198F developed
resistance to lorlatinib through the spatial interference of drug binding; (C) L1198F enhanced ALK kinase domain binding to crizotinib.
FIGURE 4 | The resistance mechanisms of ALK TKIs in advanced NSCLC and next treatment strategy.
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new generation of ALKi. The histone deacetylase (HDAC)
inhibitor overcomes this resistance by reversing EMT in vitro
and in vivo, suggesting that adding a new ALKi after
pretreatment with an HDAC inhibitor may help overcome the
co-occurrence of ALK resistance mutations and EMT (92).

Kang, J. et al. performed next generation gene sequencing
(NGS) on 42 crizotinib-resistant NSCLC patients. Two patients
were found to have acquired mutations in the DNA mismatch
repair gene POLE, leading to a significant increase in the tumor
mutation burden, possibly leading to a poor response to
crizotinib (93). Lai, Y. et al. investigated the resistance of
microRNAs (miRNAs) to the ALK TKIs NSCLC cell lines. It
was found that miR-100-5p makes EML4-ALK NSCLC cells
resistant to crizotinib and lorlatinib, and maybe a therapeutic
target for drug resistance (94).

The expression of the ATP-binding domain C-member 11
(ABCC11) in alectinib-resistant cell lines was significantly higher
than that in alectinib-sensitive cell lines. This indicated that
ABCC11 expression may be involved in the acquired drug
resistance of alectinib (95). In addition, the neuroregulatory
peptide U (NMU) may make NSCLC resistant to alectinib (96).

2.3 Primary ALK TKI Resistance
Progression of ALK-TKI within 3 months is considered primary
resistance. In theory, any of these mechanisms of acquired
resistance that existed before the use of TKI could also lead to
primary resistance (23).

BIM is a Bcl-2 (B lymphocytoma-2) -like protein 11 that
activates programmed cell death in cells. The study found that
patientswith BIMwithmissing polymorphisms had shortened PFS
and reduced objective response rate, which was an independent
predictor of patients treated with crizotinib and was related to
primary drug resistance (97). In addition, the low minimum allele
frequency (MAF) of the EML4-ALK rearrangement may also be a
mechanism of primary resistance to crizotinib (98).

Rihawi K reported a patient with primary resistance to
crizotinib. MYC amplification was a potentially new mechanism
of primary ALK-TKI, resistance and proposed as a potential MYC-
oriented inhibition strategy to overcome primary resistance of
advanced ALK-rearrangement NSCLC (99). Similarly, the results
of Pilling AB et al. showed a dual oncogene mechanism, in which
ALK positively regulates the MYC signaling axis, providing an
additional oncogene target (100).
3 DISCUSSION

The treatment of ALK-rearranged NSCLC with ALK TKIs has
significantly changed these patients’ outcome and quality of life.
However, all patients will inevitably progress in time. Clinicians
use imaging to determine whether a patient is resistant so that, if
possible, they can switch to the next generation of ALK-TKI
quickly. However, caution should be exercised in judging disease
progression, as radiological progression may either be non-
tumor cell proliferation and/or accumulation (101). In patients
who have received radiation therapy, sequential ALK-TKI should
Frontiers in Oncology | www.frontiersin.org 7
be recognized as radionecrosis of the central nervous system,
since treatment with the next generation of ALK-TKI may
increase its severity (102).

The brain is the primary site of failure with ALK inhibitors in
ALK-positive patients and is considered a sanctuary site owing to
the blood–brain barrier (BBB) (103, 104). ALK-rearranged
NSCLC patients exhibiting a history of prior ALKi treatment
are reported to harbor a high incidence of CNS metastases, i.e.,
from approximately 45 to 70%, suggesting that brain metastasis
is the most common form of failure with ALKi therapy. A
limitation of crizotinib is that relapse in the brain after
treatment was commonly reported (104). Next-generation ALK
inhibitors were designed to pass the BBB. The time to CNS
progression was significantly longer with alectinib than with
crizotinib (cause-specific hazard ratio, 0.16, 95% CI, 0.10 to 0.28;
rate of events of CNS progression, 12% with alectinib and 45%
with crizotinib), which is attributed to the expression of P-gp’s
on the luminal side of the BBB endothelium (9, 80, 105, 106).

Acquired resistance has become an important issue. Previous
investigations additionally presented the in vitro IC50 values for
all available ALK TKIs regarding the different mutations. The
findings illustrate that lorlatinib has the broadest activity against
the G1202R mutation (33, 107). However, whether ALKi is
sensitive or resistant is complex within the real world. For
example, G1202R has been detected in biopsy specimens from
patients with ALK-rearranged NSCLC who relapsed on
brigatinib, suggesting that its potency may be compromised
with this mutation; however, some cases were effective with
brigatinib treatment. This may result from the steric hindrance
between the side chain of G1202R and the extended
solubilization group of brigatinib (Figure 2).

The fusion variant background should also be taken into
consideration when interpreting ALK resistance mutations.
Among>15 EML4-ALK variants have been identified to date, the
five most common variants are variant 1 (v1; E13, A20), variant 2
(v2; E20, A20), variant 3 (v3; E6, A20), variant 4 (v4; E15, A20), and
variant 5 (v5; E2, A20). The two EML4-ALK variants that together
account for up to 70-80% of all EML4-ALK variants are v1 and
EML4-ALK v3a/b (108). The ALTA-1L analysis by variants was the
first validation of the significance of EML4-ALK variants in the
context of a prospective randomized phase 3 study (109). Table 4
shows the differences inPFSbetween variants 1 and3.That suggests
that theALK fusionvariantmayaffect clinical outcomes.The reason
for this difference may be relatively stable in short EML4-ALK
variants, which leads to accumulation and stronger carcinogenic
signaling, and their better interactions with cell skeletons, which
increases themigration capabilities ofV3-positive cancer cells (117,
118). However, themolecular basis for this association is unknown.
Besides, TP53mutations andV3 are independently associated with
enhanced metastatic spread, shorter TKI responses and inferior
overall survival in ALK positive lung adenocarcinoma (115).
Furthermore, ALK resistance mutations were significantly more
common in variant 3 than in variant 1 (57% v 30%; P = .023). In
particular, theALKG1202Rmutationwasmore common invariant
3 than in variant 1 (32% v 0%; P <.001). Among the patients treated
with the third-generation ALK TKI lorlatinib, variant 3 was
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associated with a significantly longer progression-free survival than
variant 1 (hazard ratio, 0.31; 95% CI, 0.12 to 0.79; P = .011) (112,
119). These results suggest that among the EML4-ALK v3 patients,
we shouldconsider introducingmore aggressive therapies earlier on
in the course of the disease (Table 4).

Interestingly, more patients are using second-generation TKIs.
However, in this final J-ALEX OS analysis, prolongation of OS in
the alectinib armwas not observed compared to the crizotinib arm.
This indicates that longer PFS does not translate into longer OS,
which gives clinicians something to think aboutwhenusingALKi’s.
Therefore, there is much debate about whether PFS can be
converted to OS, due to the following reasons. First, after the PFS
benefit, disease progressionmay be faster than in the control group
(120). Second, in a study that included 14 studies (N = 12567) in
patientswithadvancedNSCLCsubmitted to theFDAbetween2003
and 2013, a logarithmic scale scatter plot of the therapeutic effects
showed no association was observed between PFS and OS in all
studies (14, including the targeted studies) (R2 = 0.08; 95% CI 0-
0.31) (121).

To expand PFS and OS, it is crucial to think about evidence-
based treatment sequencing.EveryALKTKIhas its ownadvantages
and disadvantages (122). Therefore, a second biopsy is
recommended for gene sequencing when the patient is resistant
(123). However, repeated tumor biopsies to identify secondary
resistance mutations are invasive and in certain cases not feasible.
New tools are needed to evaluate tumor heterogeneity better and
Frontiers in Oncology | www.frontiersin.org 8
monitor tumor mutational profiles over time and throughout
disease evolution (124, 125). Circulating tumor DNA (ctDNA)
can be used as a strategy to identify therapeutic response and drug
resistance (107). In contrast to ctDNA, circulating tumor cells
(CTC) are either apoptotic or alive, but viable CTCs contain
tumorigenic cell clones with high relevance for metastatic
progression (126). Besides, copy number variation (CNV)
profiling and targeted panel sequencing from cell-free DNA
(cfDNA) were also performed to monitor ALK+ NSCLC (127).

Approximately30% of ALK-positive NSCLC patients resistant
to crizotinib are related to secondary ALK mutations or
amplification. Therefore, the next generation of ALK-TKIs
becomes sensitive to some mutations. However, nearly 40% of
patients with second-generation TKI resistance are no longer
dependent on ALK, so treatment opportunities for these patients
are limited. Third-generation ALK-TKI or pemetrexed-based
chemotherapy may be beneficial making loratinib more
effective in patients with ALK kinase domain point mutation
than those without ALK re-mutation (128). An effective long-
term strategy may be to pre-treat with third-generation ALK-
TKI in order to prevent the emergence of resistance (129). The
use of immunotherapies for ALK-TKI is still lacking (130, 131).
Although patients with advanced NSCLC showed a good
response to immune checkpoint inhibitors, this was associated
with high PD-L1 expression levels, a high mutant load, and a
history of smoking (132). However, ALK-positive patients tend
TABLE 4 | List of retrospective analyses comparing clinical efficacy of EML4-ALK variants and ORR and PFS in prospective phase 3 trial of first-line ALK TKIs.

V1 V3 P value References

ORR 72.7% 55.6% 0.214 Lei et al., Clin Lung Cancer 2016 (110)
PFS 11m 10.9m 0.795
PFS (crizotinib) 11.5m 8.7m 0.18 Noh et al., J Path 2017 (111)
PFS (1st line crizotinib) 8.9m 6.9m 0.163 Lin et al., JCO 2018 (112)
PFS (2nd-generation ALK TKIs post-crizotinib) 11.8m 7.9m 0.141

PFS (lorlatinib post crizotinib and 2nd-generation ALK TKIs) 3.3m 11m 0.011

PFS 7.9m 11.9m 0.285 Kron et al., Ann Oncol 2018 (113)
PFS (after 1st-line ALK TKIs) V1/2 39.3m 7.3m 0.01 Christopoulo et al., Int J Cancer 2018 (114)
PFS (after 1st-line chemotherapy) 15.2m 5.4m 0.008

OS 59.6m 39.8m 0.017

PFS (after 1st-line ALK TKIs) 16m 7m 0.031 Christopoulo et al., Int J Cancer 2019 (115)
PFS (after all lines of ALK TKI) 10m 7m 0.003

OS 59m 35m 0,026

PFS (crizotinib-treated) 12.2m 12.3m 0.2697 Li et al., Frontier Oncology 2020 (116)
PFS (baseline brain mets, crizotinib-treated) 10.7m 12.39m 0.6274

crizotinib ORR 66.7% 45.8% 0.2959 ALEX
PFS 7.4m 9.1m 0.8504

alectinib ORR 90.5% 83.3% 0.3538 ALEX
PFS 34.8m 17.7m 0.4226

brigatinib ORR 84% 84% – ATLA-1L (109)
PFS NA 16m –

ALK resistance mutations 30% 57% 0.023 Lin, J. J., J Clin Oncol 2018 (112)
G1202R 0 32% 0.001

G1202R lorlatinib lorlatinib – Horn, L., et al. J Thorac Oncol 2019 (107)
G1202Rdel brigatinib brigatinib –

G1269A brigatinib brigatinib –
O
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not to smoke, have a low tumor mutation load (133), and have a
poor response to PD-1 inhibition (134). Positive PD-L1
expression was associated with unfavorable clinical outcomes
in patients with ALK-positive lung adenocarcinoma receiving
crizotinib (135). ALK-positive tumors progressing with ceritinib
therapy are not immunogenic enough to respond to immune
checkpoint inhibitors (136). However, a successful
pembrolizumab treatment case of lung adenocarcinoma after
becoming resistant to ALK-TKI treatment due to G1202R
mutation was reported (137). Therefore, the potential benefits
of adding immunotherapy to ALK TKI therapy remains unclear.

Activation of bypass signals has emerged as another potential
strategy for combating ALK-TKI resistance. Leptomeningeal
Carcinomatosis (LMC) often occurs in ALK-positive NSCLC.
EGFR bypass activation is known to be the drug resistance
mechanism against ALK-TKI therapy. EGFR-TKI in vitro
resensitizes cells to alectinib and successfully controls the
progression of LMC, indicating the therapeutic potential of new
therapies targeting both ALK and EGFR for ALK-TKI resistant
LMC (138). In addition, apatinib can restore sensitivity to alectinib
by inhibiting the downstream ALK and anti-angiogenic signaling
pathway. Furthermore, reversing ALK-TKI and inhibiting
angiogenesis in combination with alectinib and apatinib, thus
inhibits ALK and VEGF R2 controlling the progression of the
EML4-ALK fusion gene lung cancers (139). Furthermore, PFS was
more severe in patients with TP53 co-mutations than in patients
with wild-type TP53, meaning the combination of proteasome
inhibitors with alectinib is a promising therapy for NSCLC with
ALK rearrangement/TP53mutations (49, 140).
4 CONCLUSION

Despite the significant efficacy of ALKi in ALK-positive NSCLC
patients, drug resistance is inevitable in some patients. Although
Frontiers in Oncology | www.frontiersin.org 9
the mechanism of drug resistance can be divided into ALK-
dependent and non-dependent, the specific mechanisms have
not been clarified, so there is urgency in developing strategies to
overcome or prevent drug resistance. With a growing
understanding of the mechanisms of drug resistance, a new
generation of ALKi is expected to be more effective in
overcoming and suppressing drug resistance. After drug
resistance, it is recommended to biopsy again to identify the
mutation site. Moreover, variants should also be of concern. In
addition, combination therapy is also an option. However, there
may be potential problems of increased toxicity or emergence of
new toxicities, so these combinatorial treatment regimens still
need to be explored. Furthermore, there is much debate about
whether PFS can be converted to OS. In targeted therapy, it
depends on the PFS1, 2, and 3. In patients with ALK fusion, the
first generation may be followed by second generation therapy,
or the second generation is followed by another second
generation therapeutic. In short, these new approaches are
promising at more effectively overcoming and suppressing
drug resistance, translating into more profound and more
prolonged responses in patients with ALK-driven cancers.
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