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A B S T R A C T   

4H-pyrans have been prepared through a mechanochemical multicomponent reaction (MCR) of 
different aldehydes, malononitrile, and various 1,3-dicarbonyl compounds, catalyzed by an 
amine-functionalized metal-organic framework (MOF) Cu2(NH2-BDC)2(DABCO) as a heteroge-
neous catalyst with good to excellent yields.   

1. Introduction 

Pyrans are non-aromatic heterocyclic six-membered rings with a molecular formula of RC5H6O, including five carbon atoms, one 
oxygen atom, and two double bonds. The two isomers of the pyrans differ in the double bond position. In 2H-pyran (1), saturated sp3 
carbon is positioned at position 2, but in 4H-Pyran (2), it is at position 4 (Scheme 1). In 1962, 4H-pyrans were created for the first time 
through the thermal decomposition of 2-acetoxy-3,4-dihydro-2H-pyran, and their properties and applications were investigated [1,2]. 

Heterocyclic compounds, including tetrahydrobenzo[b]pyrans and their derivatives, have been studied for their potential me-
dicinal and pharmacological applications (see, for example, Scheme 2) [3]. They have attracted special attention, which can be 
attributed to their antioxidant [4], anticancer [5], antitumor [6] properties, etc. Tetrahydrobenzo[b]pyran-based compounds possess 
the potential for physical enhancers in treating neurological diseases such as Alzheimer’s and Parkinson’s diseases, Dawson’s syn-
drome, amyotrophic lateral sclerosis, Huntington, Schizophrenia, AIDS-associated dementia, and myoclonus [7]. Also, these com-
pounds are widely used in cosmetics and as pigments [8]. 

Various methods have been reported to prepare tetrahydrobenzo[b]pyrans and their derivatives. Generally, the basis of their 
synthesis is the three-component condensation of variable 1,3-dicarbonyl derivatives, CH-active compounds, and aldehydes. Various 
heterogeneous and homogeneous catalysts have been reported so far for this condensation reaction, including magnetite L-proline [9], 
DABCO-CuCl complex [10], trisodium citrate [11], cesium carbonate [12], ninhydrin [13], ionic liquids based on choline hydroxide 
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[Ch]+[OH]- [14] or DABCO [H2-DABCO][H2PO4]2} [15], starch solution [16], sulfonic acid functionalized silica [17], Fe(ClO4)3/SiO2 
[18], ClO4

− /Al-MCM-41 [19], poly(4-vinyl pyridine) (P4VP) [20], and silica-supported dodeca-tungstophosphoric acid DTP/SiO2 [21]. 
These methods may have disadvantages and problems, including using complex, toxic and destructive catalysts, tedious and chal-
lenging purification processes, low efficiency, and slow reaction rates. 

Crystalline compounds are known as metal-organic frameworks (MOFs), composed of inorganic moieties (metal ions/clusters) and 
organic linkers, creating a porous structure of different dimensions (Scheme 3) [22]. They have a low density, a large surface area, and 
a high proportion of catalytically active transition metals. Most often, metals in the lattice of MOFs act as Lewis acids. The solvent type, 
solvent concentration, opposite ion nature, metal-to-ligand ratio, metal quadratic geometry, pH, temperature, and the nature of guest 
molecules determine the MOF structure [22–28]. MOFs have many applications in drug delivery, sensors and luminescence, gas 
separation and storage, and catalytic reactions [29–40]. 

Mechanochemical reactions are considered nowadays as green methods of chemical synthesis. Among the others, ball-milling has 
been a widely accepted tool for solvent-free mechanochemical reactions in recent years. The ball milling method has numerous 
benefits over other procedures, including quick reaction times, solvent-free settings, high yields, and high atom efficacy [41]. Based on 
successful organic synthesis through ball milling in previous studies [42], Herein, we presented a three-component, solvent-free 
synthesis of 4H-pyrans derivatives using ball-milling with nanoporous Cu2(NH2-BDC)2(DABCO) as a heterogeneous catalyst with good 
to excellent yields (Scheme 4). These kinds of reactions can be considered as a base-catalyzed as well as an acid-catalyzed reactions. We 
have chosen Cu2(NH2-BDC)2(DABCO), to have a bifunctional catalyst, namely both a Lewis acid Cu2+, as well as Lewis base NH2 in a 
unique catalyst. The better activity of this catalyst has been shown in comparison to other catalysts. 

2. Experimental section 

2.1. Materials and reagents 

All chemicals, such as 2-aminoterephthalic acid (NH2-BDC), 1,4-diazabicyclo[2.2.2]octane (DABCO), metal salt Cu(OAc)2.H2O, 
aldehydes, and 1,3-dicarbonyl components were obtained through Sigma-Aldrich and Merck companies in reagent grade for direct use 
without additional purification. As eluents, EtOAc and n-hexane (1:1 or 1:2) were used for thin-layer chromatography (TLC). 

2.2. Instrumental 

Melting points have been measured using open capillaries (sealed at one end) using an Electrothermal 9100 instrument. FT-IR 
spectra were collected using a Shimadzu 8400S spectrometer. Spectra of 1HNMR were obtained using a Bruker 500 MHz spectrom-
eter. DMSO‑d6 was used as solvent at ambient temperature. Using an X’pert MPD, XRD observations were conducted. Philips 
diffractometer with Cu radiation source (λ = 1.54050A) operating at 40 mA and40 KV. A MM400 Retsch ball milling device with two 
10 mL jars and 7 mm stainless steel balls was utilized at a frequency of 28 Hz. 

2.3. Synthesis of Cu2(NH2-BDC)2(DABCO) 

With a molar ratio of 2:2:1, 0.6 mmol of Cu(OAc)2.H2O, 0.6 mmol of NH2-BDC, and 0.3 mmol of DABCO were forcefully grinded 
through solvent-free ball-milling (28 Hz) at ambient temperature for 2 h. This resulted in a green product washed three times with DMF 
(3 × 10 mL). Methanol was used for solvent exchange three times (10 mL each) at ambient temperature. In order to eliminate methanol 
molecules, the obtained powdered MOF was heated at 130 ◦C under a vacuum for 12 h [42]. 

2.4. Preparation of 2-amino-3-cyano-4H-pyran derivatives (5, 6, 8, or 9) zcatalyzed by Cu2(NH2-BDC)2(DABCO) 

In order to synthesize 2-amino-3-cyano-4H-pyran derivatives (5, 6, 8, or 9), a mixture of malononitrile (1 mmol), Cu2(NH2- 
BDC)2(DABCO) (0.04 g), 1,3-dicarbonyl components (1 mmol), and aldehyde (1 mmol) was grinded through ball-mill forcefully at 27 
Hz, at ambient temperature and solvent-free for the indicated intervals. After the reaction (monitored by TLC) was complete, the 
catalyst was separated by filtration, washed with (hot) ethanol, and dried for reuse. The product was obtained in pure form after 
evaporation of EtOH or recrystallization, if necessary. 

Scheme 1. 2H-Pyran and 4H-Pyran.  
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3. Results and discussion 

3.1. Synthesis and characterization of Cu2(NH2-BDC)2(DABCO) 

Following the previously reported procedure, a combination of DABCO, copper (II) acetate, and 2-aminoterephthalic acid in a 
molar ratio of 1:2:2 was grinded using a ball mill at ambient temperature without the use of any solvent to produce the metal-organic 
framework Cu2 (NH2-BDC)2(DABCO) [42] (Scheme 5). The synthesis was finished in less than 2 h, yielding a green powder. Various 
methods were used to characterize the resultant MOF, including X-ray diffraction (XRD) and Fourier transform infrared spectroscopy 
(FT-IR). 

The as-synthesized XRD pattern of Cu2(NH2-BDC)2(DABCO) is shown in Fig. 1a,b. The significant peaks at 2θ values of 8, 9, 11, 12, 
and 16 align well with the previously reported data [42]. Comparing the patterns demonstrated the successful synthesis of a pure 
Cu2(NH2-BDC)2(DABCO). 

To describe the vibrational modes of the MOF, FT-IR spectroscopy was performed. Fig. 2 depicts the FT-IR spectrum of Cu2(NH2- 
BDC)2(DABCO), NH2-BDC, and DABCO. The asymmetric COO stretch mode (νas) is observed at 1614 cm− 1, whereas CO symmetric 
stretching is observed at 1377 cm− 1. The absorption bands at 3359 and 3469 cm− 1 correspond to two NH stretching bands of –NH2 
groups. 

The average particle size of the synthesized Cu2(NH2-BDC)2(DABCO) samples were determined to be less than 100 nm based on 
scanning electron microscopy (SEM) images. (Fig. 3a). Transmission electron microscopy was utilized to examine the morphology of 
Cu2(NH2-BDC)2(DABCO) (TEM). As depicted in Fig. 3b nano-scaled and crystalline material was generated. It is also important to note 
that the ball milling approach produced nanoparticles with the consistent distribution. As seen in the TEM photos, the presence of 
square units indicates the production of Cu2(NH2-BDC)2(DABCO) frameworks, consistent with the SEM images confirming the nano- 
cubic shape. Cu was detected in the particles of Cu2(NH2-BDC)2(DABCO) using energy dispersive X-ray spectroscopy (EDS) (Fig. 3c). 

TGA was used to examine the thermal breakdown of Cu2(NH2-BDC)2(DABCO) at temperatures up to 500 ◦C at a heating rate of 
10 ◦C min− 1 in N2 flow (Fig. 3d). Cu2(NH2-BDC)2(DABCO) is stable up to 245 ◦C, and demonstrates distinct zones of weight loss 
commencing at approximately 110–150 ◦C (3.97% due to the loss of DMF and H2O. This step of the TGA study (starting at approx-
imately 245 ◦C) demonstrates the decomposition of linkers (Fig. 3d). The storage capacity of molecules in the pores and channels of 
MOFs was evaluated using the Brunauer-Emmett-Teller (BET) technique. Based on the findings, the Cu2(NH2-BDC)2(DABCO) specific 
surface area was 143.35 ± 3.5 m2g-1, mesopore diameter at maximum pore volume was 19.568 nm, and total pore volume was 0.629 
cm3 g− 1in Cu2(NH2-BDC)2(DABCO). These results show that the catalyst includes many pores and channels which can be effective in 
catalytic functions. The average crystal size which has been represented in Fig. 7 based on XRD calculation, was 95.2 nm. 

3.2. Catalytic properties of Cu2(NH2-BDC)2(DABCO) 

To evaluate the catalytic properties of Cu2(NH2-BDC)2(DABCO) in synthesizing 4H-pyran compounds, the three-component con-
densations of stoichiometric amounts of dimedone, 4-chlorobenzaldehyde, and malononitrile was studied. The findings data are re-
ported in Table 1. The model reactions were investigated in a variety of solvents, including EtOH, THF, and CH3CN, using Cu2(NH2- 
BDC)2(DABCO) loading of 0.04 g at 75 ◦C temperature. The use of acetonitrile and tetrahydrofuran solvents resulted in increased 
reaction time and reduced efficiency; however, using ethanol as a solvent caused reduced reaction time and increased efficiency. 

Scheme 2. Pyran-based natural and synthetic drugs in clinical use [3].  
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It was then examined how temperature affected yield and reaction time. It was shown in Table 1 that low temperatures reduce the 
efficiency and decrease the reaction speed. The solvent and reaction temperature zoptimization indicated that a higher yield could be 
achieved in EtOH using a reflux condition over a shorter period. The solvent-free condition has shown that the reaction was carried out 

Scheme 3. General scheme of MOF synthesis.  

Scheme 4. The heterogeneous catalysis of Cu2(NH2-BDC)2(DABCO) in a three-component, solvent-free synthesis of 4H-pyran derivatives.  

Scheme 5. Ball mill synthesis of Cu2(NH2-BDC)2(DABCO).  

Fig. 1. XRD pattern of a) the prepared Cu2(NH2-BDC)2(DABCO) in this work, b) Simulated XRD pattern [42].  
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in the shortest possible time and with the highest efficiency (entry 6). The turnover frequency (TOF) of the reaction has been calculated 
based on the following equation: 

TOF =
Number of moles of reactant consumed

Mole of catalyst 

The TON (Turnover number) indicates the maximum number of molecular reactions or reaction cycles that can occur at a catalyst’s 

Fig. 2. FT-IR spectra: a) 2-aminoterephthalic acid, b) DABCO, c) Cu(OAc)2, d) Cu2(NH2-BDC)2(DABCO).  

Fig. 3. a) FESEM photographs, b) TEM photographs, c) EDS analysis and d) TGA spectra of Cu2(BDC)2(DABCO).  
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reactive centre before the activity of the catalyst begins to degrade. It has been calculated as: 

TON =TOF
[
time− 1]

Based on these equations, for the optimal conditions (Entry 8), the TOF was calculated as 15, and the TON as 5*10− 2 s− 1. 
Generally, the ball milling method, except for the purification of the product, if necessary, no solvent is used, and hence it is 

considered a green synthetic method. Furthermore, the role of catalyst payload on reaction termination was studied. The best and 
highest yields are obtained with 0.04 g of catalyst (entry 8). The same reaction was performed with Cu2(BDC)2(DABCO) as a non-NH2 
catalyst at a relatively higher time and with lower efficiency (entry 9). 

To illustrate the extent of the usability of this catalyst, we expanded the zoptimized reaction conditions to various aldehydes and 
1,3-cyclohexanedione compounds. Table 2 shows a summary of the findings. As shown in the table, the highest yield was obtained for 
producing products 5 and 6 under optimal conditions progressively. In addition, the catalyst was simply isolated by filtration and 
removed from the reaction mixture. 

In the next step, ethyl acetoacetate was used as the changeable component for extending the scope of the protocol to the less active 
reagents. A summary of the data can be found in Table 3. It should be noted that in addition to ethyl acetoacetate, acetylacetone was 
also studied. Under optimum reaction conditions, the good and desirable yield of the intended products (5, 6, 8, and 9) was achieved 
within a brief reaction time. 

Physical and spectroscopic data were compared to those of previously described compounds in the literature, allowing the clear 
labelling of all products. In FT-IR spectra of the products, the significant band at around 2190 cm− 1 is related to the CN stretching band, 
and the broad band at 3200-3400 cm− 1 approves the presence of the NH2 moiety (see Fig. 4d) [50]. As shown in Fig. 5 for the 
compound 6h, the characteristic H4 in 1H NMR spectra of these compounds was appeared as a singlet above 4.0 ppm [50]. 

A plausible mechanism has been suggested in Scheme 6. The first step consists of forming a cyanocinnamonitrile Knoevenagel 
intermediate in the reaction of by Cu2+-activated aldehyde reacting with malononitrile. At this stage, the catalyst Cu2(NH2- 
BDC)2(DABCO) produces an anion by attacking the acid hydrogens of malononitrile. The produced anion is a nucleophile and attacks 
the carbonyl group of the aldehyde as an electrophile. Subsequently, by removing a water molecule, the Knoevenagel intermediate is 
formed. Then, 1,3-dicarbonyl components are added to the intermediate by Michael’s addition of the enol form. Then the cyclization, 
and subsequent tautomerization of the imino-pyran intermediates is carried out on the amino-pyran. 

3.3. Catalytic properties of Cu2(NH2-BDC)2(DABCO) 

The recyclability and the reusability of Cu2(NH2-BDC)2(DABCO) were also studied for a minimum of six rounds in the model re-
action zsynthesizing the product 5a. A simple filtration process separated the catalyst from the reaction after each run. A summary of 
the results can be found in Fig. 6. It has been demonstrated that Cu2(NH2-BDC)2(DABCO) is reusable without a substantial loss of 
activity in 4H-pyrans synthesis. 

XRD and FT-IR techniques were used to zanalyze the structure of the retrieved catalyst, which showed no degradation (Fig. 7a, b, 

Table 1 
Optimizing the three-component reaction of 4-chlorobenzaldehyde (2a), malononitrile (3), and dimedone (4a) under various conditions. 

.  

Entry Catalyst loading Solvent Temp. (◦C) Time (min) Yieldb (%) 

1 0.04 THF 75 360 68 
2 0.04 MeCN 75 300 85 
3 0.04 EtOH 75 20 90 
4 0.04 EtOH 50 30 85 
5 0.04 EtOH r.t 45 80 
6 – Solvent-free r.t 80 88 
7 0.02 Solvent-free r.t 26 90 
8 0.04 Solvent-free r.t 5 96 
9 0.04 Solvent-free r.t 20 78 

a Conditions of reaction: 4-chlorobenzaldehyde (2a, 1.0 mmol), malononitrile (3, 1.0 mmol), dimedone (4a, 1.0 mmol), grinding, ambient 
temperature. 

b Yield refers to isolated products. 
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and 8a, 8b). The recovered catalyst’s FT-IR spectra and x-ray pattern show that its crystalline structure remains intact and stable. 

3.4. Comparison activity of Cu2(NH2-BDC)2(DABCO) 

The new methodology for synthesizing various 4H-pyran derivatives was assessed by comparing several previous reports and 
accepted methods to demonstrate its efficacy and capabilities. Table 4 provides a comprehensive summary of the results of the present 
protocol, demonstrating its superiority over other approaches with respect to the yield of the product, reaction time, non-using of 
organic solvents as green chemistry, as well as simplified separation and reusability of the catalyst. 

4. Conclusion 

In this paper, we developed a highly effective, environmentally friendly, and greenway for the multicomponent synthesis of 4H- 
pyran derivatives in the presence of Cu2(NH2-BDC)2(DABCO) as a heterogeneous and renewable catalyst. In addition to all of these, our 
method has many advantages, such as concise reaction time, the reaction at ambient temperature and non-solvent conditions, high 
yields of products, as well as easy separation of catalyst from the reaction mixture. It is noteworthy that the catalyst was synthesized in 
a solvent-free manner. 

Table 2 
Preparation of 4H-pyrans derivatives by using Cu2(NH2-BDC)2(DABCO) as the catalysta 

.  

Entry Aldehyde Product Time (min) Yield (%)b M. P. (◦C) M.P. (◦C) [Lit.] 

1 4-Chloro benzaldehyde 5a 5 96 212–214 212-214 [45] 
2 2-Chloro benzaldehyde 5b 6 93 209–212 211-213 [46] 
3 4- Bromo benzaldehyde 5c 8 96 204–207 205-206 [43] 
4 Benzaldehyde 5d 12 90 223–226 222-224 [44] 
5 2-Nitro benzaldehyde 5e 9 94 215–218 213-217 [15] 
6 3-Nitro benzaldehyde 5f 6 90 214–216 216-218 [47] 
7 4-Nitro benzaldehyde 5g 7 92 180–184 180-182 [48] 
8 4-Methyl benzaldehyde 5h 20 90 217–220 215-217 [48] 
9 3-Hydroxy benzaldehyde 5i 23 88 203–206 205-206 [49] 
10 4-Hydroxy benzaldehyde 5j 25 85 206–209 205-206 [50] 
11 2,4-Dichloro benzaldehyde 5k 6 94 189–192 192-194 [44] 
12 4-Cyano benzaldehyde 5l 8 95 220–224 221-224 [50] 
13 4-Chloro benzaldehyde 6a 20 94 242–244 241-244 [50] 
14 2-Chloro benzaldehyde 6b 25 90 210–212 210-212 [51] 
15 4- Bromo benzaldehyde 6c 22 90 235–237 236-238 [52] 
16 Benzaldehyde 6d 40 86 237–240 241-242 [53] 
17 2-Nitro benzaldehyde 6e 25 85 198–200 197-199 [54] 
18 3-Nitro benzaldehyde 6f 30 92 234–237 234-236 [52] 
19 4-Nitro benzaldehyde 6g 20 88 223–225 222-224 [52] 
20 4-Methyl benzaldehyde 6h 40 90 224–228 225-226 [44] 
21 2,4-Dichloro benzaldehyde 6i 23 89 220–223 221-223 [13] 
22 4- Hydroxy benzaldehyde 6j 42 86 246–248 244-246 [50]  

a Reaction conditions: aldehyde (2, 1.0 mmol), malononitrile (3, 1.0 mmol), dimedone or 1,3-cyclohexandione (4a-b, 1.0 mmol), Cu2(NH2- 
BDC)2(DABCO) (0.04 g), solvent-free and room temperature. 

b Isolated yield. 
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Table 3 
Preparation of 4H-pyrans derivatives by using Cu2(NH2-BDC)2(DABCO) as the catalysta 

.  

Entry Aldehyde Product Time (min) Yield (%)b M.P. (◦C) M.P. (◦C) [Lit.] 

1 4-Chloro benzaldehyde 8a 22 92 160–163 162 [55] 
2 2-Chloro benzaldehyde 8b 25 90 188–192 190-191 [56] 
3 4-Bromo benzaldehyde 8c 25 92 179–182 179-180 [57] 
4 Benzaldehyde 8d 60 80 185–188 189 [58] 
5 2-Nitro benzaldehyde 8e 42 90 178–180 177-178 [57] 
6 3-Nitro benzaldehyde 8f 40 87 186–190 187-188 [57] 
7 4-Nitro benzaldehyde 8g 40 89 175–178 174-176 [59] 
8 4-Methyl benzaldehyde 8h 18 90 173–176 175-176 [59] 
9 4-Chloro benzaldehyde 9a 30 65 149–154 153-155 [60] 
10 3-Nitro benzaldehyde 9b 42 63 160–164 166 [61]  

a Reaction conditions: aldehyde (2, 1.0 mmol), malononitrile (3, 1.0 mmol), acetyl acetone or ethyl acetoacetate (7a-b, 1.0 mmol), Cu2(NH2- 
BDC)2(DABCO) (0.04 g), solvent-free and room Temperature. 

b Isolated yield. 

Fig. 4. FT-IR spectra of 2-amino-3-cyano-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyran (6h).  
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Fig. 5. 1H NMR spectra of 2-amino-3-cyano-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyran (6h).  

Scheme 6. The suggested mechanism of the 4H-pyrans derivatives synthesis using Cu2(NH2-BDC)2(DABCO).  
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Fig. 6. Reusability of Cu2(NH2-BDC)2(DABCO) catalyst for the MCR synthesis of 4H-pyran 5a.  

Fig. 7. X-ray diffraction of powder of Cu2(NH2-BDC)2(DABCO): a) Fresh catalyst, b) Recovered catalyst after 6th runs.  

Fig. 8. FT-IR spectra of powder of Cu2(NH2-BDC)2(DABCO): a) Fresh catalyst, b) Recovered catalyst after 6th runs.  
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