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Simple Summary: Drug discovery is the process of identifying potential new compounds through
biological, chemical, and pharmacological means. Billions of dollars are spent each year on research
aimed at discovering, designing, and developing new drugs for a wide range of diseases. However,
the research and development of new drugs remain time-consuming and sometimes difficult to com-
plete. With the development of new experimental techniques, huge amounts of data are generated
at different stages of drug development. Biomedical research, especially in the field of drug discov-
ery, is currently undergoing a major shift towards “big data” applications of artificial intelligence
technologies. Therefore, a key challenge for future drug discovery research is the development of
robust artificial-intelligence-based predictive tools for drug–target interactions (DTIs) that can study
biomedical problems from multiple perspectives. In this study, a deep-learning-based prediction
model for DTIs was designed by combining information on drug structure and protein evolution to
provide theoretical support for drug research.

Abstract: The key to new drug discovery and development is first and foremost the search for
molecular targets of drugs, thus advancing drug discovery and drug repositioning. However,
traditional drug–target interactions (DTIs) is a costly, lengthy, high-risk, and low-success-rate system
project. Therefore, more and more pharmaceutical companies are trying to use computational
technologies to screen existing drug molecules and mine new drugs, leading to accelerating new drug
development. In the current study, we designed a deep learning computational model MSPEDTI
based on Molecular Structure and Protein Evolutionary to predict the potential DTIs. The model
first fuses protein evolutionary information and drug structure information, then a deep learning
convolutional neural network (CNN) to mine its hidden features, and finally accurately predicts
the associated DTIs by extreme learning machine (ELM). In cross-validation experiments, MSPEDTI
achieved 94.19%, 90.95%, 87.95%, and 86.11% prediction accuracy in the gold-standard datasets
enzymes, ion channels, G-protein-coupled receptors (GPCRs), and nuclear receptors, respectively.
MSPEDTI showed its competitive ability in ablation experiments and comparison with previous
excellent methods. Additionally, 7 of 10 potential DTIs predicted by MSPEDTI were substantiated
by the classical database. These excellent outcomes demonstrate the ability of MSPEDTI to provide
reliable drug candidate targets and strongly facilitate the development of drug repositioning and
drug development.

Keywords: deep learning; drug–target interactions; extreme learning machine; convolutional
neural network
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1. Introduction

Drug research is a global development problem. In the past few decades, the drug-
targeted therapy strategy has achieved great success [1,2]. Finding specific drugs for targets
is the focus of pharmaceutical research and development, which has made an indelible
contribution to human health [3]. However, the rate of new drug development has been
declining in recent years, and the cost of research and development has been rising [4]. The
main reason for this is that the early screening of a large number of drug candidates in drug
research still relies mainly on time-consuming and labor-intensive experimental methods,
and the later discovery of unsatisfactory efficacy or toxic side effects of drugs leads to the
failure of development. Therefore, efficient and high-throughput computational techniques
in the early stages of drug research can play an important role in targeting and saving costs
in early development [5–8].

With the rapid development of bioinformatics, many achievements have been achieved
by using computational and simulation approaches to predict DTIs. Quantitative structure–
activity relationship (QSAR) utilizes the physicochemical properties or structural parame-
ters of the molecule to quantitatively study the interaction between small molecules and
biological macromolecules by means of mathematics. Casañola-Marti et al. proposed a
QSAR model for predicting anti-tyrosinase activity and demonstrated the effectiveness of
the model in subsequent in vitro experiments, which greatly increased the rate of biochem-
ical discovery of skin disease treatment [9]. Kar et al. proposed an approach to predict the
carcinogenicity of drug compounds based on QSAR, which has been identified as a key
factor in carcinogenicity by analyzing the contribution of molecular fragments to carcino-
genicity [10]. Molecular docking (MD) is a computational simulation method for studying
the optimal binding sites between drug molecules and target proteins by structural match-
ing and energy matching and predicting their binding patterns and affinity [11]. Wallach
et al. proposed a model to normalize docking scores through the virtually generated bait
set that avoids the variability due to changes in physical properties when identifying
active compounds in large screening libraries, thereby extending the applicability of the
model [12].

Recently, computational methods for predicting DTIs based on protein target se-
quences have achieved excellent results and are favored by researchers for their use of
reliable, high-quality characterization information enriched by raw data to ensure the
accuracy of prediction results [13–18]. For instance, Lan et al. proposed a PUDT model
combining protein target sequences and drug compound structures, which greatly im-
proved the accuracy of DTI prediction using a weighted SVM classifier [19]. Cao et al.
aimed to predict DTIs by using an extended structure–activity relationship method at the
genome-scale level. In subsequent experiments, this approach gained good results [20].

In the present study, we combined protein sequence evolution with drug structure
information to propose a deep learning MSPEDTI model to predict hidden DTIs. Con-
cretely, MSPEDTI first fuses protein sequence information characterized by the Position-
Specific Scoring Matrix (PSSM) and drug structure information characterized by molecular
fingerprinting, and then automatically extracts them into continuous, low-dimensional,
information-rich features using a deep learning CNN, thus avoiding the disadvantages of
manual features such as tediousness, sparsity, and high dimensionality. Finally, the ELM
classifier is used to accurately determine whether drug–target pairs are associated or not.
In the gold-standard dataset, we evaluated MSPEDTI using the five-fold cross-validation
(5CV) approach. Compared with other previous methods, MSPEDTI was able to learn
valid biological characteristics for predicting DTIs and showed better performance. The
robustness of MSPEDTI is also demonstrated by the experimental results of the case study,
which can provide effective candidate targets for new drug research. The supporting
data used in this study can be downloaded from https://github.com/look0012/MSPEDTI
(accessed on 1 April 2022).

https://github.com/look0012/MSPEDTI
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2. Materials and Methods
2.1. Gold-Standard Datasets

In the present study, we implemented the MSPEDTI model using the gold-standard
datasets enzyme, GPCR, ion channel, and nuclear receptor, which were collated by
Yamanishi et al. [21] from the BRENDA [22], KEGG [23,24], SuperTarget [25], and Drug-
Bank [26] databases. After removing the redundant information, the numbers of DTI pairs
contained in these datasets are 2926, 635, 1467, and 90, respectively. All of these pairs
are constructed as positive datasets. Table 1 presents the statistical information for these
gold-standard datasets.

Table 1. Statistical information for the four gold-standard datasets: the number of target proteins,
drugs, and interaction pairs. Sparsity is the ratio of positive DTIs to all possible interactions.

Dataset Target Proteins Drugs Interactions Sparsity

Enzymes 664 445 2926 0.0099
Ion Channels 204 210 1467 0.0344

GPCRs 95 223 635 0.0299
Nuclear Receptors 26 54 90 0.0641

The corresponding negative dataset construction process is as follows: firstly, all drug–
target interaction pairs are divided into drug and target components; secondly, these drug
and target are recombined into DTI pairs, and the pairs of interactions are removed. Finally,
these drug–target pairs are randomly selected to construct the negative dataset, which is
the same size as the positive dataset.

2.2. Drug Structure Characterization

We employed molecular fingerprints in this study to characterize the drug structures
for the purpose of numerical conversion. The design idea of fingerprints is to characterize
the molecular structure using the form of a dictionary collection of molecular fragments,
which converts a drug molecule into a binary vector of values by determining whether
certain fragments, i.e., molecular substructures, are present in the molecule. It first divides
the molecular structure to obtain the structural fragments, and then encodes the fragments
of these molecular structures into numbers according to certain rules and corresponds
to each bit of the binary string, thus combining them as a whole (binary string) as a
characterization of the molecular structure.

At present, the commonly used molecular fingerprints are FP4 fingerprint, MACCS fin-
gerprint, Estate fingerprint, and PubChem fingerprint, and their corresponding molecular
structure fragment numbers of 307, 166, 79, and 801. In this experiment, molecular finger-
prints from the PubChem database were selected to characterize the drug structure of DTIs.
The drug molecule is decomposed into 881 substructures in this descriptor. Given a drug,
encode its corresponding bit as 1 or 0 depending on whether its molecular substructure is
present. The fingerprint is encoded in Base64 on the PubChem website and provides a text
description of it in binary, available for download from https://pubchem.ncbi.nlm.nih.gov/
(accessed on 1 January 2018).

2.3. Target Protein Characterization

In the experiments, the Position-Specific Scoring Matrix (PSSM) was used to numer-
ically characterize the target protein. The PSSM can effectively describe the evolution-
ary information of protein amino acids, and it is commonly used in protein secondary
structure prediction [27], protein binding site prediction [28], disordered region predic-
tion [29], and distantly related protein detection [30,31] domains. The PSSM is a matrix of

https://pubchem.ncbi.nlm.nih.gov/
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H × 20, where H is the length of the protein, and 20 is the type of amino acid. The PSSM
Pssm =

{
Θi,j : i = 1 · · ·H and j = 1 · · · 20

}
can be expressed equationally as follows:

Pssm =


Θ1,1 Θ1,2 · · · Θ1,20
Θ2,1 Θ2,2 · · · Θ2,20

...
...

...
...

ΘH,1 ΘH,2 · · · ΘH,20

 (1)

Here, the matrix element Θi,j indicates the probability that the i-th residue of the
protein mutates to the i-type amino acid during the evolutionary process.

In the implementation, we utilized the Position-Specific Iterated BLAST (PSI-BLAST) [32]
to calculate the PSSM by comparing it with the SwissProt database. We followed the
previous study, setting the parameter iterations and e-value of the PSI-BLAST tool to 3
and 0.001 to obtain high homologous sequences in the experiment. The database and
tool are available for download from http://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on
18 March 2002).

2.4. Feature Extraction

In the MSPEDTI model, the convolution neural network (CNN) algorithm of deep
learning is used to extract the hidden features of the protein. Deep learning can learn the in-
trinsic patterns and levels of representation of sample data, thus enabling machines to have
the same analytical learning capabilities as humans. As one of the representative algorithms
of deep learning, CNN is able to classify the input information in a translation-invariant
manner by hierarchical structure, thus deeply mining the essential features of data. There-
fore, we introduced it into MSPEDTI to greatly strengthen the model prediction capability.

CNN is a feedforward neural network with artificial neurons that respond to a portion
of the surrounding units in the coverage area, including convolutional, pooling, sampling,
fully connected, input, and output layers. With its special structure of local weight sharing,
CNN has unique advantages in feature extraction, and its layout is closer to the actual
biological neural network. CNN has unique superiority in feature extraction, with its special
structure of local weight sharing, and its layout is closer to the actual biological neural
network. Weight sharing reduces the complexity of the network, especially the feature that
multidimensional input vectors can be directly input into the network, which avoids the
complexity of data reconstruction in the process of feature extraction and classification. The
structure diagram of CNN is shown in Figure 1. Assuming that Ci is the feature map of
layer ith, its description can be:

Ci = g(Ci−1·Wi + bi) (2)

Here, operator · indicates convolution operations, bi indicates the offset vector, Wi
indicates the weight matrix of the ith layer convolution kernel, and g(x) indicates the
activation function. The subsampling layer follows the convolutional layer and samples the
feature map according to specific rules. Let Ci be the subsampling layer with the following
sampling rules:

Ci = subsampling(Ci−1) (3)

After multiple convolution and sampling, the features are classified by the fully
connected layer to yield the data distribution Γ of the original input. Fundamentally, CNN
can be regarded as a mathematical model that uses multilevel dimensional transformations
to transform the original data C0 into a new feature representation Γ.

Γ(i) = Map(P = pi|C0; (W, b)) (4)

Here, Γ represents the feature representation, pi indicates the ith label class, and C0
represents the original data.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Minimizing the loss function H(W, b) is the ultimate goal of CNN training. Therefore,
CNNs are typically trained to solve the overfitting problem by controlling the fitting
strength using the parameter θ and adjusting the loss function L(W, b) by generalizing
the norm.

L(W, b) = H(W, b) +
θ

2
WTW (5)

CNNs normally update their network layer parameters (W, b) layer by layer by
gradient descent in the training phase and control the backpropagation function to exploit
the learning rate ε.

Wi = Wi − ε
∂E(W, b)

∂Wi
(6)

bi = bi − ε
∂E(W, b)

∂bi
(7)
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2.5. Classification Prediction

The extreme learning machine (ELM) [33] is employed by MSPEDTI as a classifier
to predict potentially associated DTIs. The ELM is a simple and effective single-hidden
layer feedforward neural network learning algorithm that does not need to adjust the
input weights of the network and the bias of the hidden elements during the execution
and produces a unique optimal solution, so it has the advantages of fast learning and good
generalization performance.

Given input samples (Xi, Pi) with L tagged, the ELM consisting of N neurons can be
formulated as:

N

∑
i=1

Vig
(
Wi·Xj + bi

)
= Oj, j = 1, . . . , L (8)

where Xi = [xi1,xi2,...,xiL,]
T ∈ RL, Pi = [Pi1, Pi2, . . . , Pim]

T ∈ Rm, g(x) indicates the activa-
tion function, Vi indicates the output weight matrix, Wi = [wi1, wi2, . . . , wiL]

T stands for the
input weight matrix, Wi·Xj stands for the inner product of Wi and Xj, and bi stands for the
offset of the ith neurons.

To realize the minimization of the output error, i.e., the training goal of
∑L

j=1 ‖Oj − Pj‖ = 0, the ELM needs to optimize its hyperparameters.

N

∑
i=1

Vig
(
Wi·Xj + bi

)
= Pj, j = 1, . . . , L (9)

The equation can be simplified as follows:

SV = P (10)
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S =

 g(W1·X1 + b1) · · · g(WN ·X1 + bN)
...

...
...

g(W1·XL + b1) · · · g(WN ·XL + bN)


L×N

V =

 VT
1
...

VT
N


N×m

P =

 PT
1
...

PT
L


L×m

(11)

Here, V means the output weight, P means the expected output, and S means the
hidden layer neurons output. To gain optimal performance, we want the ELM to acquire
Ŵi, b̂i and V̂i, that is:

‖S
(

Ŵi, b̂i

)
V̂i − P‖ = min

W,b,V
‖S(Wi, bi)Vi − P‖ i = 1, 2, · · · , N (12)

This equates to minimizing the loss function

E =
L

∑
j=1

(
N

∑
i=1

Vig(Wi·Xj + bi)− Pj)
2 (13)

By the principle of the ELM algorithm, when the input weight Wi and the offset bi
of the hidden layer are ascertained, the ELM is able to uniquely obtain its output matrix.
Therefore, the training problem of the ELM is transformed into the problem of solving the
linear equation SV = P with a minimal and unique interpretation.

3. Results
3.1. Evaluation Indicators

We measured the performance of MSPEDTI in the present study using the evaluation
indicators calculated by the five-fold cross-validation method (5CV). The 5CV approach
first splits the whole dataset D into five subsets D1, . . . , D5, which are roughly equal in size
and do not intersect with each other. When testing subset Di, the remaining subsets D−Di
are fed into the classifier as the training set. Loop this operation until all subsets have been
tested. The performance of MSPEDTI was evaluated by the average results and deviations
of the five experiments. There are several evaluation indicators calculated through 5CV,
which are described by the following equations.

Accu. =
TP + TN

TP + TN + FP + FN
(14)

Sen. =
TP

TP + FN
(15)

Spec. =
TN

TN + FP
(16)

Prec. =
TP

TP + FP
(17)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(18)

where TP means true positive, TN means true negative, FP means false positive, and FN
means false negative. Additionally, we plotted the operating characteristic curve (ROC)
generated by 5CV and calculated its area under the curve (AUC) [34,35].

ROC is an essential metric for assessing the comprehensive performance of the model,
which visualizes the variation between specificity and sensitivity and is displayed graph-
ically. It computes a set of specificities and sensitivities by setting multiple different
thresholds for successive variables, and then plots curves by using 1-specificity as abscissa
and sensitivity as ordinate.
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3.2. Assessment of Performance

Gold-standard dataset enzymes, ion channels, GPCRs, and nuclear receptors were
used to measure the capabilities of MSPEDTI in the experiment. The detailed outcomes of
5CV obtained by MSPEDTI on these datasets are listed in Tables 2–5, respectively. From
these tables, it is possible to observe that MSPEDTI accomplished satisfactory prediction
accuracy, with values of 94.19%, 90.95%, 87.95%, and 86.11%, and their standard deviations
were 0.41%, 1.10%, 1.51%, and 4.39%, respectively. In the enzyme dataset, the accuracy of
all five MSPEDTI experiments was higher than 93.85%, with the highest result reaching
94.87%, and their standard deviations values were 94.87%, 94.27%, 93.85%, 94.02%, and
93.94%, respectively. MSPEDTI achieved good results of 88.51%, 81.95%, 76.41%, and
72.46% on MCC, which was used to measure classification performance, and its standard
deviations were 0.89%, 2.24%, 2.88%, and 8.97%, respectively. On the comprehensive
performance assessment index AUC, MSPEDTI gained 94.37%, 90.88%, 88.02%, and 86.63%,
with standard deviations of 0.59%, 0.97%, 2.88%, and 4.77%, respectively. Additionally,
MSPEDTI also yielded more satisfactory outcomes in terms of sensitivity and precision.
The ROC curves produced by MSPEDTI for 5CV on the four gold-standard datasets are
shown in Figures 2–5.

Table 2. MSPEDTI outcomes for 5CV on enzyme dataset.

Test Set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 94.87 91.23 98.75 90.04 95.12
2 94.27 93.14 95.26 88.57 94.77
3 93.85 89.80 97.78 87.99 94.32
4 94.02 93.07 94.71 88.04 93.98
5 93.94 92.33 95.15 87.91 93.68

Average 94.19 ± 0.41 91.91 ± 1.41 96.33 ± 1.81 88.51 ± 0.89 94.37 ± 0.59

Table 3. MSPEDTI outcomes for 5CV on ion channel dataset.

Test Set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 90.17 88.44 91.55 80.38 89.99
2 89.83 90.70 89.51 79.65 90.14
3 92.20 90.26 94.56 84.50 91.66
4 90.51 91.86 89.44 81.05 90.46
5 92.06 90.27 93.73 84.18 92.15

Average 90.95 ± 1.10 90.31 ± 1.23 91.76 ± 2.36 81.95 ± 2.24 90.88 ± 0.97

Table 4. MSPEDTI outcomes for 5CV on GPCR dataset.

Test Set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 86.61 92.68 82.01 73.89 85.37
2 89.76 95.74 87.10 79.53 91.90
3 88.98 95.58 82.44 78.82 88.46
4 88.19 92.86 84.78 76.74 89.39
5 86.22 93.94 82.12 73.07 85.00

Average 87.95 ± 1.51 94.16 ± 1.45 83.69 ± 2.22 76.41 ± 2.88 88.02 ± 2.88

Table 5. MSPEDTI outcomes for 5CV on nuclear receptor dataset.

Test Set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 91.67 86.96 100.00 84.05 94.98
2 80.56 85.71 70.59 61.51 84.74
3 88.89 85.00 94.44 78.26 85.63
4 83.33 83.33 83.33 66.67 83.02
5 86.11 86.67 81.25 71.81 84.76

Average 86.11 ± 4.39 85.53 ± 1.45 85.92 ± 11.56 72.46 ± 8.97 86.63 ± 4.77
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3.3. Comparison of Different Descriptor Model

To estimate the impact of feature descriptors on MSPEDTI performance, we compared
it with the two-dimensional principal component analysis (2DPCA) descriptor model.
2DPCA is an advanced version of the principal component analysis algorithm [36], which
does not need to convert raw data into one-dimensional vectors, which is equivalent to
removing the correlation of the row vector or column vector of the matrix. So, it can directly
calculate the covariance training sample matrix and has the advantage of calculating the
feature vectors quickly.

To validate the representation capability of the features extracted by CNN, we com-
pared it with the 2DPCA descriptor on the ion channel dataset. In the interest of fairness, the
other modules in MSPEDTI were kept unchanged, and only the feature extraction module
was replaced. The 5CV results produced by the two descriptor models on the ion channel
dataset are shown in Table 6, in which it can be observed that the MSPEDTI-generated
results are higher than the 2DPCA descriptor model. The experimental outcomes of the
contrast indicated that the CNN algorithm extracts the features better than the 2DPCA
algorithm in our model. Figure 6 shows the ROC curve plotted on the ion channel by
utilizing the 2DPCA descriptor method.

Table 6. Comparison results of the 2DPCA descriptor model and MSPEDTI on ion channel.

Test Set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 84.75 84.90 84.90 69.49 86.41
2 82.03 82.31 80.00 64.02 81.24
3 82.37 82.84 82.84 64.72 83.35
4 80.68 84.23 78.93 61.47 81.22
5 82.77 82.00 83.67 65.56 83.12

Average 82.52 ± 1.47 83.26 ± 1.25 82.07 ± 2.52 65.05 ± 2.91 83.07 ± 2.12

MSPEDTI 90.95 ± 1.10 90.31 ± 1.23 91.76 ± 2.36 81.95 ± 2.24 90.88 ± 0.97

3.4. Comparison with Different Classifier Model

To validate whether the classifier helps to improve the performance of MSPEDTI, we
compared it with the SVM classifier model in the same dataset. The learning strategy of
SVM is to maximize the sample interval, thus converting it to the solution of the convex
quadratic programming problem [37,38]. Similar to the ablation experiments for the de-
scriptor model, in the comparisons of the classifier models, we only replaced the ELM
classifier with the SVM classifier and left the other modules unchanged.
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Table 7 presents the 5CV experimental outcomes of the MSPEDTI and SVM classifier
model on the ion channel dataset. It is possible to observe from the table that the SVM
classifier model performs well, and the accuracy, AUC, MCC, precision, and sensitivity are
86.48%, 86.64%, 73.05%, 83.86%, and 89.05%, respectively. However, compared with the
ELM classifier, there are still some gaps, and the values of the above evaluation criteria are
lower by 4.47%, 1.26%, 7.90%, 8.90%, and 4.24% respectively. These results indicate that
the ELM classifier is indeed helpful to improve the prediction performance of MSPEDTI.
Figure 7 shows the ROC curve plotted on the ion channel through utilizing the SVM
classifier model.

Table 7. Comparison outcomes of SVM model and MSPEDTI on ion channel.

Test Set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 85.76 90.14 81.42 71.81 85.08
2 85.93 89.04 82.70 71.94 87.90
3 85.76 87.34 84.04 71.46 84.80
4 86.61 89.49 83.73 73.34 87.10
5 88.34 89.26 87.41 76.70 88.33

Average 86.48 ± 1.10 89.05 ± 1.04 83.86 ± 2.24 73.05 ± 2.16 86.64 ± 1.62

MSPEDTI 90.95 ± 1.10 90.31 ± 1.23 91.76 ± 2.36 81.95 ± 2.24 90.88 ± 0.97
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3.5. Comparison with Previous Approaches

We compared MSPEDTI with previous methods in the gold-standard dataset to assess
its ability to predict DTIs in a more intuitive way. Here, we picked the metric AUC,
which best reflects the overall comprehensive capability of the model as the evaluation
criterion. The AUC values resulting from these previous methods, including Yamanishi [4],
DBSI [39], KBMF2K [40], Temerinac-Ott [41], NLCS [42], WNN-GIP [43], SIMCOMP [42],
and NetCBP [44], are aggregated in Table 8. It can be observed from the table that MSPEDTI
yielded optimal results in all four gold-standard datasets over the previous method. This
suggests that the strategy of combining the CNN algorithm with the ELM classifier used
by MSPEDTI can greatly enhance the ability to predict DTIs.

Table 8. Comparison of AUC with previous methods in the gold-standard dataset.

Method Enzymes Ion Channels GPCRs Nuclear
Receptors

SIMCOMP 86.30 77.60 86.70 85.60
NLCS 83.70 75.30 85.30 81.50

Temerinac-Ott 83.20 79.90 85.70 82.40
Yamanishi 82.10 69.20 81.10 81.40
KBMF2K 83.20 79.90 85.70 82.40

WNN-GIP 86.10 77.50 87.20 83.90
DBSI 80.75 80.29 80.22 75.78

NetCBP 82.51 80.34 82.35 83.94
MSPEDTI 94.37 90.88 88.02 86.63

3.6. Case Studies

To further verify MSPEDTI’s ability in predicting new pairs, we trained it using all
available data and predicted the unknown DTIs with the trained model. We searched the
SuperTarget database [25] for the 10 highest-ranked DTI pairs of predicted associations.
SuperTarget is a publicly available classic database that stores information about DTIs, and
it currently collects 332,828 DTIs. Table 9 lists the top ten DTIs with the highest predictive
score, from which we can see that seven potential DTIs were validated in the SuperTarget
database. These outcomes indicated that MSPEDTI has outstanding capabilities in predict-
ing new DTIs. Notably, while the rest of the three DTI interactions were not found in the
current database, there is also the possibility of interaction between them.

Table 9. Top 10 DTI pairs predicted by MSPEDTI.

Drug ID Drug Name Taregt Protein ID Target Protein Name Validation Source

D00951 Medroxyprogesteroneacetate hsa2099 ESR1_HUMAN SuperTarget
D00542 Bromochlorotrifluoroethane hsa1571 CP2E1_HUMAN SuperTarget
D03365 Transdermal Nicotine hsa1137 ACHA4_HUMAN SuperTarget
D00049 Nikotinsaeure hsa 8843 G109B_HUMAN SuperTarget
D00160 Epsilcapramine hsa7298 TYSY_HUMAN unconfirmed
D00771 Chlorzoxazone hsa1374 CPT1A_HUMAN unconfirmed
D00139 Xanthotoxine hsa1543 CP1A1_HUMAN SuperTarget
D00964 Letrozole hsa1215 CMA1_HUMAN unconfirmed
D00585 Mifepristone hsa2099 ESR1_HUMAN SuperTarget

D00437 Nifedipine
Monohydrochloride hsa1559 CP2C9_HUMAN SuperTarget

4. Discussion

Accurate identification of the target protein of the drug can improve the efficacy
of the drug and reduce side effects, thereby improving people’s health. In the current
study, we presented a model MSPEDTI to predict DTI on the basis of protein evolution
and molecular structures. The model takes full advantage of the protein evolutionary
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information and drug molecular information and uses a deep learning algorithm to mine
the deep association between them. The experimental outcomes in the four gold-standard
datasets revealed that the MSPEDTI model has outstanding performance.

However, there are still some shortcomings in our method: firstly, the number of
DTIs known at present is still relatively small, and the model cannot be trained adequately;
secondly, the parameters of the deep learning algorithm used in the model need to be further
optimized to avoid overfitting in some cases; finally, how to integrate more biological
information into the model is still worth further study.

5. Conclusions

In the present work, we designed a deep learning model MSPEDTI for predicting
DTI on the basis of drug structure and protein evolution information. The model deeply
excavates hidden features in protein evolutionary information by CNN, combines them
with drug molecular fingerprint features, and uses ELM to efficiently predict potential
DITs. The model on the gold-standard datasets enzymes, GPCRs, ion channels, and
nuclear receptors, attained better 5CV results. To evaluate whether the modules used by
MSPEDTI contribute to boost model performance, we implemented ablation experiments
and compared them with other descriptor and classifier models. Furthermore, 7 of the 10
DTIs predicted by MSPEDTI were substantiated in authoritative databases. The exceptional
results as mentioned above indicate that MSPEDTI has outstanding ability to predict DTIs
and can provide reliable candidate targets for drug research. In the next step of our research,
we will try to optimize the deep learning feature extraction method to mine more useful
information from the raw data.
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