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A B S T R A C T

Background: Multiagent therapies, due to their ability to delay or overcome resistance, are a hallmark of
treatment in multiple myeloma (MM). The growing number of therapeutic options in MM requires high-
throughput combination screening tools to better allocate treatment, and facilitate personalized therapy.
Methods: A second-order drug response model was employed to fit patient-specific ex vivo responses of
203MM patients to single-agent models. A novel pharmacodynamic model, developed to account for two-
way combination effects, was tested with 130 two-drug combinations. We have demonstrated that this
model is sufficiently parameterized by single-agent and fixed-ratio combination responses, by validating
model estimates with ex vivo combination responses for different concentration ratios, using a checkerboard
assay. This new model reconciles ex vivo observations from both Loewe and BLISS synergy models, by
accounting for the dimension of time, as opposed to focusing on arbitrary time-points or drug effect. Clinical
outcomes of patients were simulated by coupling patient-specific drug combination models with pharmaco-
kinetic data.
Findings: Combination screening showed 1 in 5 combinations (21.43% by LD50, 18.42% by AUC) were syner-
gistic ex vivowith statistical significance (P < 0.05), but clinical synergy was predicted for only 1 in 10 combi-
nations (8.69%), which was attributed to the role of pharmacokinetics and dosing schedules.
Interpretation: The proposed framework can inform clinical decisions from ex vivo observations, thus provid-
ing a path toward personalized therapy using combination regimens.
Funding: This research was funded by the H. Lee Moffitt Cancer Center Physical Sciences in Oncology (PSOC)
Grant (1U54CA193489-01A1) and by H. Lee Moffitt Cancer Center's Team Science Grant. This work has been
supported in part by the PSOC Pilot Project Award (5U54CA193489-04), the Translational Research Core
Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI-designated Comprehensive Cancer
Center (P30-CA076292), the Pentecost Family Foundation, and Miles for Moffitt Foundation.
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1. Introduction

In the field of clinical pharmacology, there are multiple definitions
for drug additivity. Bliss, for example, assumes statistical indepen-
dence in the action of the drugs in a given combination [1], whereas
Loewe defines it as a scenario where the reduction in dose of one
drug proportionally complements the dose reduction achieved due
to the second drug [2]. In this manuscript, we will use the definition
of synergy as a benefit over an additive response as it better matches
the reality of the clinic: a physician will not reduce the dosing of
drugs to achieve the same outcome, but would rather seek a tolerable
combination with most improvement over its independent effects.
The pursuit for synergistic drug combinations arises from the myriad
of advantages of combination therapy, such as maximizing efficacy
[3], reducing toxicity [4], and addressing interpatient variability [5],
as well as delaying [6] and/or overcoming [7] innate or acquired
resistance.
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Research in Context

Evidence before this study

Multiple myeloma (MM), a cancer of bone marrow-resident
plasma cells, remains incurable, despite successful approval of
multiple therapeutic agents. MM therapy often involves combi-
nations of three or more agents, with the rationale that combin-
ing drugs with different mechanisms of action could maximize
efficacy by targeting several subpopulations of cancer cells
simultaneously. Currently, there are two approaches employed
to quantify combination drug effects: (a) phase-III, two-arm
clinical trials seek to assess the clinical benefit of adding an
experimental drug to a standard-of-care regimen, by com-
paring response rates, progression free survival and overall
survival between two arms; (b) pre-clinical drug sensitivity
assays generate dose-response curves for two single agents
and combinations, and combination indices (CI) are com-
puted to quantify synergistic effect in homogeneous cell
lines. To date, synergy remains difficult to investigate and,
in turn, translate into clinical utility. This is because,
although clinical trials account for inter-patient heterogene-
ity, tumor microenvironment, and drug pharmacokinetics, it
is impossible to investigate synergy (irrespective of the defi-
nition of additivity) in patients. Conversely, the pre-clinical
platforms used to quantify synergy don’t account for hetero-
geneity, tumor microenvironment, and the effect of pharma-
cokinetics, thus their predictions cannot be translated to
clinical outcome or benefit.

Added value of this study

In order to address this translational need, we developed a
novel framework involving co-cultured myeloma cells from
patient samples in an ex vivo reconstruction of the bone mar-
row, to test the efficacy of single drugs and combinations. This
framework features a pharmacodynamic model to capture the
two-way synergistic effect between pairs of drugs, using
patient-derived tumor-specific ex vivo drug sensitivity. The
patient-specific model parameters capture the effect of inter-
patient heterogeneity, intra-tumoral heterogeneity, and tumor
microenvironment. Pharmacokinetic data from phase-I clinical
trials are coupled with model parameters to simulate clinical
response to a therapeutic regimen. This framework computes
additive (from single agent ex vivo responses) and combination
clinical responses, thereby making quantification of clinical
synergistic effect possible. 203MM patient-derived tumor
specimens were tested with 130 two-drug combinations, which
resulted in high-throughput combination screening based on
pre-clinical data (LD50/AUC) and clinical predictions. This anal-
ysis demonstrated that only half of the combinations synergis-
tic ex vivo also synergize clinically, emphasizing the need to
develop drug combination effect models that account for phar-
macokinetics and dosing schedules.

Implication of all the available evidence

This high-throughput combination screening framework iden-
tified drug combinations that are putatively clinically synergis-
tic, and thus could potentially be used to screen for
combinations that are likely candidates for a phase-III clinical
trial. This could greatly benefit patients enroling in these trials
by improving the response on the experimental arm. The com-
binations shown to be most synergistic could be investigated to
identify molecular pathways that govern this interaction.
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Innate or acquired resistance poses a major hurdle in effectively
treating many cancers. Resistance to a drug arise as a consequence of
enhanced degradation of the drug, increased expression of the drug
target, alteration of the target, clonal evolution, microenvironmental
factors [8], or intratumoral heterogeneity [9]. Thus, combination
effect could be improved either by combining a drug that disrupts
the mechanism of resistance of a second drug, or by combining drugs
that target different subpopulations in the tumor.

In spite of the advantages seen in combination therapies, there is
also the potential for adverse drug-drug interactions translating to
increased toxicities for patients [10]. Furthermore, a combination
proven to be statistically beneficial for a cohort of patients may not be
the most promising option for each individual patient in the cohort,
some patients could be further benefited by combinations tailored to
their particularities and needs. However, absolute personalization of
therapy cannot be inferred solely on a patient's clinical history and clin-
ical literature. Accordingly, we propose to screen therapeutic regimens
using clinical decision support tools backed by experiments conducted
using the patient’s own biopsy samples to identify therapies that yield
better outcomes and complement a physician’s clinical acumen [11,12].

We chose to study combination effects in multiple myeloma
(MM), a treatable yet incurable cancer of bone marrow�resident
plasma cells, for several reasons. MM provides access to rich patient
specimens from bone marrow biopsies. Due to inter� and intra-
tumoral heterogeneity in MM, we anticipate that a priori knowledge
of drug effects may markedly improve clinical outcomes [11]. Multi-
agent therapy is the cornerstone of treatment in MM [12]. MM
patients often respond well to initial therapy, but eventually relapse,
and subsequent lines of therapy are characterized by ever-shortening
responses followed by relapses, ultimately leading to multidrug resis-
tance [13�17]. Recent advances in clinical outcomes for MM patients
are derived from the combination of novel agents [18�26]. The com-
mon rationale is that these drugs potentiate each other's effects;
however, there are no available tools to estimate clinical synergy
(better than additive) or clinical benefit (better than either single
agent) of combination therapy in MM or other malignancies. To this
end, MM is serves as an ideal cancer to examine novel tools to quan-
tify patient drug combination activity and predict clinical response.

Using tumor cells from MM patients, we developed the Ex vivo
Mathematical Malignancy Advisor (EMMA) [11,27,28], a mathemati-
cal framework that estimates tumor-specific drug sensitivity from
patient-derived primary MM cells in an ex vivo reconstruction of the
bone marrow microenvironment. EMMA relies on a drug-agnostic
mechanistic model comprised of a dose�effect relationship at the
pharmacodynamic level and a cumulative effect�response relation-
ship to estimate the percent tumor burden within a clinically action-
able time frame (6 days). However, in its previous form, EMMA
lacked the ability to capture combination effects for combination
therapies. Instead, it assumed the effect to be additive, as defined by
the Bliss independence model [1]. To address this, we developed a
synergy-augmented model (SAM), which captures interactions
between drugs ex vivo and translates combination effects from fixed
ex vivo drug concentrations to clinically relevant time-varying con-
centrations modeled from pharmacokinetic data. By incorporating
SAM into our high-throughput testing of drugs on fresh primary MM
cells, we show how this new drug-agnostic synergy-modeling frame-
work could serve as an effective tool in identifying the most viable
combination at a given point in each patient’s treatment history.

2. Materials and methods

2.1. Ex vivo assay

An ex vivo assay was used to quantify the chemosensitivity of pri-
mary MM cells. Fresh bone marrow aspirate cells were enriched for
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CD138+expression using Miltenyi (Bergisch Gladbach, Germany) 130-
051-301 antibody-conjugated magnetic beads. MM cells (CD138+)
were seeded in Corning (Corning, NY) CellBIND 384 well plates with
collagen I and previously established human-derived stroma to a
total volume of 8mL, containing approximately 4000MM cells and
1000 stromal cells. Each well was filled with 80 mL of Roswell Park
Memorial Institute (RPMI) 1640 media supplemented with fetal
bovine serum (FBS, heat inactivated), penicillin/streptomycin, and
patient-derived plasma (10%, freshly obtained from patient's own
aspirate, filtered) and left overnight for adhesion of stroma. The next
day, drugs were added using a robotic plate handler so that every
drug/combination was tested at 5 (fixed concentration ratio, for com-
binations) concentrations (1:3 serial dilution) in two replicates. Nega-
tive controls (supplemented growth media with and without the
vehicle control dimethyl sulfoxide [DMSO]) were included, as well as
positive controls for each drug (cell line MM1.S at highest drug con-
centration). A plot of percent viability across time for negative control
of Pt415, a 65 year-old female early relapsed/refractory MM patient,
is shown in Supplemental Information S11a. A marginal border effect
amounting to a 10% increase in cellularity can be noticed in the plot
during the first and last 6 h of the experiment. This is an artefact of
the image processing algorithm and hence, ex vivo responses of all
drugged wells are normalized with primary MM control responses. A
grouped bar plot shows a histogram of primary MM cellularity after
24, 48, 72, and 96 h across 203MM patients is presented in Supple-
mental Information S11b. The histogram indicates the range of cellu-
larity for majority of patients lies between 100 and 120 percent of
initial value, while some specimens show a gradual decay up to 70%,
others show a gradual increase up to 160% over 96 h. These indicate
that primary MM cells cultured ex vivo using the proposed approach
survive for the duration of the experiment. Plates were placed in a
motorized stage microscope (EVOS Auto FL, Life Technologies, Carls-
bad, CA) equipped with an incubator and maintained at 5% CO2 and
37 °C. Each well was imaged every 30 min for a total duration of up
to 6 days.

2.2. Digital image analysis

A digital image analysis algorithm [27] was implemented to deter-
mine changes in viability of each well longitudinally across the 96-
hour interval. This algorithm computes differences in sequential
images and identifies live cells with continuous membrane deforma-
tions resulting from their interaction with the surrounding extracel-
lular matrix. These interactions cease upon cell death. By applying
this operation to all 288 images acquired for each well, we quantified
non-destructively, and without the need to separate the stroma and
myeloma, the effect of drugs as a function of concentration and expo-
sure time.

2.3. Model fitting

There are two mathematical models that were fitted to the ex vivo
data: EMMA for single agents and SAM for combinations. Both the
models have distinct sets of equations, as described in Fig. 1. MAT-
LAB’s lsqcurvefit function from the Optimization toolbox was used to
fit the ex vivo tumor burden measurements to these models, and
parameters that govern tumor-drug/combination specific behavior
were estimated. The optimization algorithm used for minimizing the
sum of squares of the error between the model estimates and the
actual data is called the trust-region�reflective method [29]. This
approach uses a quadratic form to restrict the step size of iterations
when the initial guess is too far from the solution. This leads to a
more reliable convergence to minima. The single-agent EMMA model
involved four submodels that have a longitudinal variation in pheno-
typic heterogeneity, where the tumor is assumed to be a homoge-
nous population, two homogeneous subpopulations, a normal
distribution of subpopulations with varying thresholds to drug sensi-
tivity, or two normal distributions of subpopulations [11]. The con-
vergence of the fitting was progressively improved for more complex
models (models with a greater number of parameters) by using the
converged solution of the less complex model as an initial guess. For
example, the initial guess for one normal distribution of subpopula-
tions could be the converged solution of the homogeneous popula-
tion parameters with a negligible standard deviation. This allows
lsqcurvefit to look for solutions in the neighborhood of the simpler
model, thus providing insight into the need for complexity. Similarly,
the SAM model has two submodels: monotonic SAM and non-mono-
tonic SAM, where the converged solution of the monotonic SAM is
used as the initial guess for the non-monotonic SAM. This approach
improved the reliability of the convergence and ensured that the sol-
utions to the more complex models are closer to the simpler ones.

2.4. Model selection

The single-agent EMMA model has 4 candidate submodels, each
quantifying the phenotypic heterogeneity in a different manner. The
choice of the best model cannot be purely based on the lowest sum
of squares of residual (difference between the actual data and its cor-
responding model estimates), as noisy data seldom fits more complex
models better than the simple ones due to the added degrees of free-
dom. Hence, we wish to fit data to the model but also avoid fitting
through noise at the same time. The statistical model identification
tool AIC was used to offset the goodness of fit with the complexity of
the model (measured in terms of the number of parameters) [30].
Originally, AIC was developed to suit data obtained from a single
experiment, but in the case of choosing between the 2 SAM models,
the data comes from 3 different experiments: the 2 single agents’ and
the combinations’ ex vivo assays. A modified AIC for a composite
experiment was derived from first principles in Supplemental Infor-
mation S1, where the maximum log-likelihood function that mini-
mizes the variance in the measurement noise was assumed to be for
the composite experiment as a whole and not for individual experi-
ments. This assumption facilitates the derivation of a maximum log-
likelihood function to be used in the modified AIC that minimizes the
variance in the measurement noise for the entire composite experi-
ment. Matlab codes used for model fitting and model selection, along
with a user guide can be found here DOI: 10.7303/syn20698242. The
ex vivo patient data folders can be found here DOI: 10.7303/
syn9758131.

2.5. Statistical analysis

Due to variability in combination effect between patients, it is
essential that a high-throughput combination screening tool account
for combination effect using statistical means. A volcano plot is
employed to graphically depict the extent of combination effect along
x-axis and the likelihood of combination effect along y-axis. This
presents an overview of the nature of benefit in combining a given
pair of drugs. The y-axis for Figs. 3b, d, 5a, and b represent �log10(p-
value) of a two-tailed paired t-test between the additive response
(LD50, AUC, clinical prediction) and the combination response. The
threshold for a significant change in means between the two groups
(additive and combination) is chosen to be a p-value greater than
0.05, which corresponds to likelihood greater than 95% for the null
hypothesis to be false.

2.6. Combination matrix (checkerboard assay)

A combination matrix experiment was implemented on a 384-
well plate using the approach described above, where CD138+ cells
are seeded with collagen I and bone marrow stromal cells in media
and the patient’s plasma. The purpose of this assay was to show that



Fig. 1. Overview of the modelling framework. a, Response to therapy modelled as a second-order function of drug exposure: Pt210’s ex vivo response to 0.05 mM of carfilzomib
(blue scatter plot) was fit to a second-order sigmoidal function that accounts for tumour drug-specific threshold modelled as a precursor to cell death (EMMA, solid blue line). The
EMMA model fit is compared to linear decay rate model (red solid line) and first-order Michaelis-Menten kinetic model (solid green line) to show that it is necessary to account for
exposure-driven threshold that traditional models ignore. b, Illustration of the drug-agnostic mechanism of response to single agent therapy: The drug-agnostic mechanism of
cell death is based on drug occupancy theory, where the interaction of a drug with a receptor is governed by a reaction-kinetic equation that results in a drug-receptor complex (b),
which initiates cell death beyond a clonal-specific threshold (t) via cell death trigger (a). c, Tumour growth model: A simple doubling time equation is used to estimate tumour
growth, where 1% to 3% (LI) of the population is assumed to double every 24 hours. d, Synergy is a dynamic phenomenon: Pt290’s ex vivo response to 0.05 mM of carfilzomib (solid
red line), 0.05mM of panobinostat (solid green line), their combination (solid blue line), and the theoretical additive response (dashed blue line) computed from the two single agent
response curves assuming Bliss independence are shown. The synergistic effect is measured as the difference in response between theoretical additive and the actual combination. It
can be seen that synergistic interaction is a dynamic phenomenon and requires quantification using finely spaced temporal response data. e, Illustration of the two-way pharmaco-
dynamic modelling framework: The path from dose to response for a two-drug combination obeys the same mechanism of cell death as the single agent model but accounts for the
two-way combination effect at the pharmacodynamic level by augmenting the reaction-kinetic equations used in computing the drug-receptor complex (bA and bB) for single
agents with a nonlinear combination effect term (bBA and bAB) as shown in the differential equations for bA and bB. The combination response is computed from the fraction popu-
lation remaining estimates for the two drugs as if they were statistically independent. Abbreviations: CFZ, carfilzomib; EMMA, Ex Vivo Mathematical Malignancy Advisor; h/hA/hB,
stoichiometric coefficient of the pharmacodynamic equation; LI, Labelling Index; M, Molar; Pt, Patient; p/pA/pB, predicted tumour burden; R/RA/RB, drug concentration; t, time;
a/aA/aB, cell death trigger; b/bA/bB, drug-induced damage; d, drug-specific factor; εAB/εBA, combination effect quadratic coefficient; gAB/gBA, combination effect linear coefficient;
k/kA/kB, cell dissociation coefficient in the pharmacodynamics equation; t, tumour-specific threshold.

4 P. Sudalagunta et al. / EBioMedicine 54 (2020) 102716



P. Sudalagunta et al. / EBioMedicine 54 (2020) 102716 5
the model predictions made using parameters estimated from fitting
fixed concentration ratio ex vivo combination responses at various
concentration magnitudes and ratios correlate well with experimen-
tal results. This was done by treating each well of the multi-well plate
with a two-drug combination, where five serially (1:3) diluted con-
centrations of each drug were combined in 25 ways, best represented
by a 5£5 matrix of concentration duplets. The concentration of one
drug progresses from highest to lowest along rows and the second
drug’s concentration varies across columns, resulting in a constant
concentration ratio along the diagonal. The five constant concentra-
tion ratio ex vivo responses (along the diagonal) are fit to SAM, and
the model predictions at all the off-diagonal concentrations are com-
pared with ex vivo responses.

2.7. Primary cancer cells

We investigated the ex vivo responses of cancer cells from
203MM patients, demographic data can be found in Supplemental
Information S8. Investigators obtained signed informed consent from
all patients who were enrolled in the clinical trials MCC14745,
MCC14690, and MCC18608 conducted at the H. Lee Moffitt Cancer
Center and Research Institute, as approved by the Institutional
Review Board. To this end, patient samples were used in accordance
with the Declaration of Helsinki, International Ethical Guidelines for
Biomedical Research Involving Human Subjects (CIOMS), Belmont
Report, and U.S. Common Rule. The medical records were deidenti-
fied, and only the following clinically relevant information was
reviewed: (A) the treatment administered (therapeutic agents, doses,
and schedule) prior to biopsy, (B) cytogenetics, and (C) serum and
urine electrophoresis results.

3. Results

3.1. Modeling tumor-specific single-agent sensitivity ex vivo using
EMMA

EMMA is a mathematical modeling framework powered by a
high-throughput novel ex vivo assay [27], where primary MM
cells treated with 31 drugs/combinations are imaged every
30 min for up to 6 days in an ex vivo reconstruction of the tumor
microenvironment. At the center of this mathematical framework
rests the concept that drug-induced damage drives the rate of
cell death when the damage exceeds a tumor-specific threshold
[11,27,28]. Fig. 1a depicts drug-induced decrease in cell viability
(in percent, normalized by viability at time = 0 hours) for one
patient's (patient 2100s) primary MM cells treated ex vivo with
0.05 mM of the proteasome inhibitor carfilzomib for an interval
of 120 hours. Linear decay and Michaelis�Menten models can fit
the late dynamics of drug-induced cell killing, but, unlike EMMA,
they are unable to describe an approximate 30-hour delay
between start of treatment and initiation of cell death. This delay
is further magnified at lower concentrations, where increasing
intervals of drug exposure are required to initiate cell death. This
limitation results from a direct functional dependence of cell
death rates on drug concentration in these models [31�36].
EMMA, on the other hand, is a second-order model that requires
accumulation of drug-induced damage beyond a certain threshold
before the observed cell death can occur.

The dose�effect relationship for a single agent is governed by a
reversible reaction kinetic equation (Fig. 1b) where: R(t) is the con-
centration of the drug at time t; b(t) represents drug-induced accu-
mulated damage, or the ''effect'' in the dose�effect relationship; k is
the tumor-specific cell damage reduction, or repair rate; and h is an
empirical exponent that couples the stoichiometry of drug concentra-
tion to the damage effect in the cell. Drug-induced damage (b)
accumulates with drug exposure and decreases with cell repair. Cell
death only initiates after b crosses a tumor-specific threshold (t) and
proceeds at a rate governed by a sigmoidal function.

3.2. Modeling patient’s clinical response to combination therapy
assuming additivity

We have previously demonstrated the accuracy and reproducibil-
ity of EMMA’s clinical predictions in a cohort of 52MM patients
treated with different combination regimens, assuming additivity
[11]. In order to simulate the clinical responses of MM patients, we
have included a tumor growth model (Fig. 1c), as previously
described [11]. Briefly, it is a doubling time equation, where LI is the
labeling index, or percentage of replicating cells, assumed to vary
between 1% and 3%, and p(t) is the tumor burden at time t, in hours.
Intratumoral heterogeneity of sensitivity to single agents was esti-
mated by fitting ex vivo drug sensitivity data to models of increasing
complexity, where the entire tumor was described by one or two
subpopulations, each subpopulation being either clonal or repre-
sented by a normal distribution [11]. Akaike information criterion
(AIC) was used to choose the model that best represents the data
[11]. Tumor drug�specific parameters of the best-ranked AIC model
were coupled with pharmacokinetic data from phase I clinical trials
to simulate patient/drug-specific clinical response. EMMA-based clin-
ical predictions of combination regimens assumed additivity. Here,
we advance this framework to model the potential combination
effect between agents.

3.3. Modeling tumor-specific two-drug combination interactions ex
vivo using SAM

Fig. 1d depicts the ex vivo drug response of primary MM cells of a
patient (patient 290) to the combination of 0.05 mM carfilzomib and
0.05 mM panobinostat (solid blue line), as well as single-agent
responses (carfilzomib in red and panobinostat in green). The ''addi-
tive'' response (dashed blue line) was computed as a pointwise prod-
uct of the fractional viability of the 2 single agents, as per the Bliss
independence model [1], assuming statistical independence between
the effects of each drug. In this example, the actual combination of
the 2 drugs is more effective in killing MM cells than the predicted
additive effect, and thus is considered synergistic. The combination
effect, however, is dynamic, varying with exposure time, drug con-
centrations, and the tumor cells being tested. Thus, similar to the
modeling approach employed to estimate tumor-specific parameters
governing the single-agent response, we have developed a model for
the combination effect accounting for these different variables
(Fig. 1e).

Assume a sample is simultaneously treated with 2 drugs: A and B.
The EMMA framework was extended to account for the two-way
combination effect by incorporating into the pharmacodynamic
equation of the first drug (Drug A) a term that represents the effect of
the second drug (Drug B) on the first: effect of Drug B on Drug A. Con-
versely, the same was done for Drug B. The action of Drug A (RA in Eq.
(1)) as a single agent causes the damage bA in Eq. (1),

b
A
ðtÞ ¼

Zt

0

exp
�
�kAðt�~tÞ

�
RAð~tÞhAd~t; ð1Þ

where kA and hA are estimated from single-agent EMMA model for
Drug A. Similarly, Drug B’s single-agent damage, bB, is described by
Eq. (2):

bBðtÞ ¼
Zt

0

exp
�
�kBðt�~tÞ

�
RBð~tÞhBd~t: ð2Þ
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Eqs. (1) and (2) are closed-form solutions of the single-agent pharma-
codynamic equation shown in Fig. 1B. When combined, in addition to
the effects of the 2 drugs acting alone, there are two combination
effects due to the interaction of the 2 drugs. For example, the effect of
Drug B on Drug A, bBA, is described in Eq. (3),

bBAðtÞ ¼
Z t

0

exp
�
�kAðt�~tÞ

�
fBA RAð~tÞhA ; RBð~tÞhB ; λBA

� �
d~t; ð3Þ

where λBA represents a parameter set and fBA is the function that
defines the combination effect between Drug A and Drug B such that
fBAðRA

hA ;RB
hB Þ ¼ 0; 8 RA ¼ 0; or RB ¼ 0: The simplest mathematical

expression that satisfies the above condition is the bilinear function
fBAðRA

hA ;RB
hB Þ ¼ gBAR

hA
A RhB

B ; where gBA is an undetermined coefficient
to be estimated using the fixed-ratio combination ex vivo sensitivity
data. Similarly, the effect of Drug A on Drug B, bAB, is given by Eq. (4):

bABðtÞ ¼
Z t

0

exp
�
�kBðt�~tÞ

�
fAB RAð~tÞhA ; RBð~tÞhB ; λAB

� �
d~t: ð4Þ

Thus, damage caused by RA in the presence of RB is bA/A+B =bA+ bBA

and damage caused by RB in the presence of RA is bB/A+B =bB+ bAB.
Estimated from the single-agent models and fixed-ratio ex vivo com-
bination, damages bA/A+B and bB/A+B accumulate over time, and cell
death initiates when either exceeds the tumor-specific thresholds tA
or tB, respectively. The accumulated damages bA and bB result in
changes in the viability, given by dpA(t)/dt and dpB(t)/dt, respectively.
Viability of the two-drug combination, p(t), is given by the product
between pA(t) and pB(t), assuming statistical independence, since the
interaction between RA and RB was already accounted for by bBA and
bAB. This modeling framework, capturing the two-way combination
effect from patient-specific ex vivo response measurements, is SAM.

This first version of SAM assumes monotonicity of the combina-
tion effects between the 2 drugs. However, combination studies often
show that a non-monotonic relationship may exist where particular
concentrations, or “sweet spots,” of either or both drugs yields the
maximum combination effect. In order to allow the model to account
for such an effect, a second-order polynomial was chosen to describe
the functional dependence between the combination effect (fBA) and
the concentration of the aiding drug (RB) which required additional
parameters (eBA) for each of the 2 drugs (Eq. (5)). In every two-drug
combination in this work, we have calculated both monotonic and
non-monotonic SAM models and applied a modified AIC (derivation
in Supplemental Information S1) to choose the simplest model for a
composite experiment that best fits the data over noise (additive
model, monotonic, or non-monotonic SAM).
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3.4. Validation of SAM ex vivo

We have tested whether SAM could be parameterized exclusively
by single-agent EMMA parameters and fixed-ratio combination ex
vivo data by comparing SAM's model predictions with ex vivo results
from an actual drug combination matrix (checkerboard assay). In
every experiment, each drug was tested in 5 different concentrations
following a 1:3 dilution, in duplicates, except for the combination
matrix, where quadruplicates were used. Figs. 2a�c depict the ex vivo
response of primary MM cells (derived from patient 385) to single-
agent carfilzomib and panobinostat, as well as to the combination of
both drugs at a fixed concentration-ratio (1:1), respectively. The
results from the combination matrix are presented in Fig. 2d, where
the plots highlighted in red are the fixed-ratio concentrations used
for estimating SAM parameters. Each plot in Fig. 2d depicts the data
points for measured cell viability (colored dots for different
replicates), a smoothed (locally weighted scatter plot smoothing
[LOWESS] algorithm) curve of the ex vivo cell viability data (dashed
black line), and the SAMmodel prediction (solid line).

Fig. 2e depicts Pearson’s correlation coefficient (r) between SAM’s
model predictions and smoothed ex vivo response for each of the 25
two-drug combination concentration pairs, showing high linear cor-
relation between model predictions and experimental measurements
(r > 0.93). Similarly, Fig. 2f shows the angle of the slope (a) of the
linear regression, ranging between 45° (green) and 50° (yellow),
where an a value of 45° and r = 1 represent a perfect linear correla-
tion. Additional comparisons with a second sample (patient 390) and
2 other pairs of drugs (carfilzomib/dexamethasone and carfilzomib/
panobinostat) are provided as Supplemental Information S2-S4.

3.5. SAM as a tool to study combination effect of drugs in primary
samples ex vivo

We calculated the Loewe Combination Index (CI) of 130 drug
combinations tested with primary MM samples in EMMA, according
to Chou�Talalay's method [37] using the median lethal dose (LD50,
defined as the drug concentration that reduces cell viability to 50% of
initial measurement) and 96-hour time point as metrics. By defini-
tion, this method requires that both drugs reach the cell-kill effect
(LD50) at the time point of CI calculation (96 h), which reduced the
number of drug combinations with CI down to 62. Fig. 3a depicts the
10 drug combinations with the lowest (most synergistic) and highest
(most antagonistic) values of median CI (the entire set is available in
Supplemental Information S5). The wide range of ex vivo cell-kill
effects of MM-relevant classes of drugs significantly limited the appli-
cation of this method; while proteasome inhibitors (e.g., bortezomib)
or chemotherapeutic agents (e.g., melphalan) can induce LD50 in less
than 48 h; immunomodulators (e.g., pomalidomide), steroids (e.g.,
dexamethasone), or immunologics (e.g., daratumumab) required
over 96 h to reduce cell viability to 30% of initial measurements, even
at maximum solubility levels. In addition, because of inherent inter-
patient tumor heterogeneity, the calculation of the combination
effect between 2 drugs should be performed using group statistics in
a cohort of samples.

Fig. 3b depicts a novel combination effect analysis to address
these limitations. In this volcano plot, the horizontal axis represents
the log2 fold-change in median LD50 between the actual ex vivo two-
drug combination, and the theoretically computed additive response,
which was calculated assuming statistical independence between the
cell-kill effects of both drugs: the single-agent ex vivo dos-
e�time�response surfaces of each drug in the combination (e.g.,
Fig. 2a�b) were multiplied pointwise to generate the theoretical
additive response curve, from which LD50 was computed at 96 h.
The vertical axis represents the �log10 P value for a two-tailed paired
t-test conducted between the theoretical additive and the actual
LD50-at-96-hours values for all samples tested with the combination.
Fig. 3c exemplifies this test for the combination of carfilzomib and
panobinostat, a combination that is consistently synergistic, as evi-
denced by the overwhelming number of samples where the LD50 of
the combination was lower than predicted by additivity. Thus, to use
this approach, it is sufficient that the actual ex vivo combination, and
theoretical additive combination, reached LD50, instead of both sin-
gle agents. In addition, Fig. 3b provides a statistical measurement of
magnitude and heterogeneity of the combination effect in the group
of samples.

We have further extended this combination effect analysis by
introducing a second measure of ex vivo drug resistance: the average
area under the curve (AUC) of the 5 concentrations from the begin-
ning of the experiment until the final time point (e.g., 96 h). The bene-
fit of this second metric is that it is not bound to an arbitrary
minimum cell-kill effect, thus allowing direct comparisons among
drugs and combinations with significantly different cell-kill



Fig. 2. Ex vivo validation of synergy augmented model (SAM). a-c, EMMA and SAM model parameters estimated from single agent and fixed concentration-ratio combination
ex vivo response data: Pt385’s ex vivo responses to carfilzomib (maximum concentration 0.05mM) and panobinostat (maximum concentration 0.05 mM) as single agents is fit using
EMMA as shown in a and b to estimate parameters that quantify the extent of response and tumour drug-specific heterogeneity. These parameters are used in conjunction with the
combination response data (scatter plot) shown in C to estimate parameters that define the combination effect term in SAM. d, Chequered board assay response: A two-dimen-
sional chequered board combination experiment is conducted to use the fixed concentration-ratio data to estimate SAM parameters and compare ex vivo model predictions with
experimental results. Five three-fold serially diluted concentrations of each drug are combined yielding a 5£5 matrix of ex vivo combination response data with 4 replicates (shown
as coloured scatter plots) for each two-drug concentration duplet. The mean response of the four replicates is smoothed using LOWESS to estimate the smoothed ex vivo response
data (black dashed line). The solid lines in the plots signify SAM model predictions. Enlarged axes labels and a legend are provided for each of the subplots in the chequered board
assay. e, SAM Validation - Pearson’s correlation coefficients: Pearson’s correlation coefficients (r) for each of the 25 two-drug concentration duplets are plotted on a log-log heat

P. Sudalagunta et al. / EBioMedicine 54 (2020) 102716 7



Fig. 3. High-throughput combination screening based on ex vivo response measurements using CI, and a novel use of volcano plot to show statistical significance in synergy by
LD50s and AUCs to demonstrate the relative merits and demerits of each method. a, CIs presented as whisker box plots: CIs are shown as box-and-whisker plots for 20 combina-
tions (the 10 most synergistic and antagonistic by median CI; the rest can be found in Supplemental Information S5, which features 62 combinations) tested ex vivo, where the CI
values are computed at LD50, 50% effect (cell kill), at 96 hours, estimated using EMMA and SAM models that capture tumour heterogeneity in a patient-specific manner. b, High-
throughput combination screening by LD50: High-throughput combination screenings for 56 combinations were tested using at least 10 patients’ specimens each via a volcano
plot. Each disc is a two-drug combination with an x-coordinate that represents the log2 fold-change in LD50 at 96 hours for the median patient to signify the extent of combination
effect, and the y-axis represents the -log10 p-value (for a two-tailed paired t-test) comparing the computed (from the two single-agent responses) additive responses (BLISS) to the
combination responses to signify the statistical significance of the combination effect. Many combinations in A have sparse CI data, despite having ex vivo data from several patients
(like BL and CL, which had 76 and 74 patients tested ex vivo), only one patient had a response, where both the single agents reached LD50. The volcano plot is a better approach to
screen for synergistic combinations when using patient samples in diseases like MM as the combination response is compared to the additive response, which is computed from
the response surfaces of the two single agents. This helps to consider combinations involving drugs that aren’t equipotent in the high-throughput screen. c, Carfilzomib and pano-
binostat synergy by LD50 shown using a box-and-whisker plot: A box-and-whisker plot of LD50s for 60 MM patient samples treated ex vivowith carfilzomib (column 1), panobi-
nostat (column 4), and their combination (column 3) is shown. The combination LD50s are compared to the additive LD50s (column 2) estimated from the additive response
surface, which is the pointwise product of fraction population remaining at 96 hours for each of the two drugs. The red dashed lines indicate patients exhibiting synergy ex vivo
for the combination, and the blue dashed lines indicate patients showing antagonism ex vivo. d, Carfilzomib and panobinostat synergy by AUC using a box-and-whisker plot:
Similar to c, the additive response whisker box plot is compared to the combination response for the same 60 MM patients to estimate the P value for a two-tailed paired t test. e,
High-throughput combination screening by AUC: Similar to b, a high-throughput combination screen is presented for 76 combinations, where the P value (of the two-tailed
paired t test), estimated by comparing the additive and combination AUCs in d, is plotted along the y-coordinate and the x-coordinate shows the median change in AUC (%)
between the additive and combination responses. The number of combinations and the criteria for studying them in a, b, and e is presented in Supplemental Information S9.
Abbreviations: B113, bortezomib and 113; BAd, bortezomib and adavosertib; BAz, bortezomib and AZ-628; BCgp, bortezomib and CGP-60474; BCp7, bortezomib and CP-
724714; BCpd, bortezomib and CPD22; BDa, bortezomib and dabrafenib; BJ, bortezomib and JNK-IN-8; BL, bortezomib and lenalidomide; BM, bortezomib andMARK-INHIBITOR;
BMe, bortezomib and melphalan; BN, bortezomib and NU-7441; BR, bortezomib and R406; BS, bortezomib and silmitasertib; BT, bortezomib and TAI-1; CAd, carfilzomib and
adavosertib; CDa, carfilzomib and dabrafenib; CD, carfilzomib and dexamethasone; CDi, carfilzomib and dinaciclib; CG, carfilzomib and GDC-0980; CJ, carfilzomib and JNK-IN-8;
CL, carfilzomib and lenalidomide; CM, carfilzomib and MARK-INHIBITOR; CMe, carfilzomib and melphalan; CPa, carfilzomib and panobinostat; CPo, carfilzomib and pomalido-
mide; CR, carfilzomib and R406; CV, carfilzomib and volasertib; DB, daratumumab and bortezomib; DC, daratumumab and carfilzomib; DI, daratumumab and ixazomib; DL, dar-
atumumab and lenalidomide; DeMe, defactinib and melphalan; DexA, dexamethasone and ABT-199; DexL, dexamethasone and lenalidomide; DexPo, dexamethasone and
pomalidomide; IA, ixazomib and ABT-199; IMo, ixazomib and motesanib; K111, selinexor and 111; KAl, selinexor and alisertib; KDa, selinexor and dabrafenib; KDo, selinexor
and doxorubicin; Me113, melphalan and 113; MePa, melphalan and panobinostat; MeV, melphalan and VS4718; MeO, melphalan and ONX; PA, panobinostat and ABT-199;
PDex, panobinostat and dexamethasone; PoPy, pomalidomide and pyrvinium; LD50, the dose that achieves 50% cell kill; AUC, average area under the dose-response curve over
all time points; CI, Loewe’s Combination Index; CFZ, carfilzomib; PANO, panobinostat; h, hours; M, molar.

map, where the x and y axes show panobinostat and carfilzomib concentration, respectively, on log scales, and the colour represents the r value. The model correlates very well with
the data, with r values ranging from 0.93 to 1. f, SAM Validation � Linear Regression: Similarly, a log-log heat map of the arc tangent of linear regression slope (a) for the 25 con-
centration duplets is shown to range from 45° to 50°, which implies that the model predictions agree very well with the ex vivo experimental combination response data.
Abbreviations: CFZ, carfilzomib; h, hours; LOWESS, Locally Weighted Scatter Plot Smoothing; M, molar; PANO, panobinostat; Pt, patient; SAM, Synergy Augmented Model.
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dynamics. Fig. 3d�e reflects the same analyses as Fig. 3b�c, except
that they compare the actual versus theoretical additive values of the
AUC.

Importantly, the most synergistic ex vivo combinations identified
by this approach are part of clinical combination regimens in MM:
carfilzomib/panobinostat; daratumumab/bortezomib; carfilzomib/
dexamethasone; carfilzomib/pomalidomide; and selinexor/dexa-
methasone, recently approved to treat refractory MM [38].

3.6. Estimation of clinical synergy

Summary metrics such as LD50 and AUC, while useful for preclini-
cal studies, are unable to account for the complex pharmacokinetic/
pharmacodynamic interactions of actual clinical regimens. Since the
magnitude of drug combination effects vary with exposure time and
drug concentrations, it is imperative to use models that can analyze
combination effects in clinically relevant concentrations while also
accounting for drug-specific pharmacokinetics. To this effect, we
have parameterized patient-specific SAM models with drug-specific
phase I pharmacokinetic data to estimate magnitude and interpatient
heterogeneity of the clinical combination effects of drug regimens in
MM. Fig. 4 contains 4 synergy maps, which define regions of synergy
and antagonism of 2 drugs (carfilzomib/dexamethasone) as a func-
tion of drug concentrations and exposure time in primary MM sam-
ples ex vivo. Fig. 4a presents the synergy map for one MM patient's
(patient 135s) primary cell ex vivo response to carfilzomib and dexa-
methasone, where red-yellow (hot) regions denote synergy and
blue-cyan (cold) represent antagonism. The combination effects for
each point in the 3D space were calculated as the difference between
the viability of the actual ex vivo combination, as predicted by SAM,
and the theoretical additive viability, computed as previously
described (Fig. 3). Also part of the synergy map is a pharmacokinetic
trajectory (black ribbon), representing the varying concentrations of
both drugs during the first 96 h of the combination regimen. Fig. 4b
Fig. 4. Interpatient heterogeneity in combination effect and clinical relevance of synergy. a
ical additive response is estimated from the single agents’ models (EMMA) and subtracted fr
a wide range of concentrations/concentration ratios. The difference is presented as a heat m
in percent viability is marked as ‘cold’ (cyan-blue). The synergy map also features the pharm
relative residence period of the pharmacokinetic curve in the hot/cold regions qualitatively
dicted clinical response to carfilzomib and dexamethasone: The two single agent clinical r
lations (via SAM), are shown. The residence of the pharmacokinetic curve in the synergisti
Pt283, e and f for Pt291, and g and h for Pt293. These four patients were classified as early
synergy maps and the clinical response simulations show significant variation. Abbreviation
represents the simulation of treatment of the same patient (patient
135) with either of the single agents, as well as the theoretical addi-
tive combination and the clinical prediction, based on SAM data. In
this simulation, the patient would be resistant to carfilzomib but sen-
sitive to dexamethasone, reaching approximately 50% tumor reduc-
tion after 3 months of treatment, based on the additive model.
However, when the combination effect is considered, the predicted
clinical response is 75% tumor burden reduction, and thus clinically
synergistic.

In this particular patient/drug combination, the pharmacokinetic
trajectory of treatment was confined to synergistic or additive
regions (Fig. 4a), which explains the clinical synergy of the model
predictions. However, when the pharmacokinetic trajectory crosses
regions of both synergy and antagonism (Fig. 4c) or mainly additivity
(Fig. 4e), the resulting clinical effect is additive (Fig. 4d and f), and
incidentally, when the pharmacokinetic trajectory is located in
regions of antagonism (Fig. 4g), the predicted clinical outcome is
antagonistic (Fig. 4h).
3.7. SAM as a tool to estimate the clinical combination effect and clinical
benefit of drug combinations

Patient-specific SAM parameters, estimated by fitting ex vivo
drug/combination sensitivity data for 203 patients, were coupled
with pharmacokinetic data from phase I clinical trials to estimate the
combination effect and clinical benefit of 46 (out of 130) two-drug
combinations (Fig. 5), which have publically available pharmacoki-
netic data. In this context, the combination effect is considered syner-
gistic if the minimum tumor burden, as estimated by SAM, is lower
than the theoretical additive (as described in Fig. 4) and is considered
antagonistic if the opposite is true. Clinical benefit was defined as the
improvement in clinical response of the SAM-estimated combination
compared to the clinical response of the best single agent.
, Synergy map for Pt135’s response to carfilzomib and dexamethasone: The theoret-
om the combination model (SAM) estimated ex vivo response for the first 96 hours over
ap, where a benefit over additive (synergy) is indicated as ‘hot’ (yellow-red) and a loss
acokinetic curve of the standard of care therapeutic regimen for this combination. The
shows the extent of clinically relevant synergistic/antagonistic effect. b, Pt135’s pre-
esponse simulations (via EMMA), along with additive and combination response simu-
c region is reflected in the clinical prediction. This analysis is repeated in c and d for
relapse/refractory at the time of their biopsy. In spite of their similar classification, the
s: CFZ, carfilzomib; DEX, dexamethasone; Pt, patient; h, hours; M, molar.



Fig. 5. High-throughput combination screens of clinically synergistic and clinically beneficial combinations. a, Clinical synergy via volcano plot: A volcano plot featuring 46 two-
drug combination best response predictions computed from ex vivo experiments conducted across a cohort of 203 MM patients’ specimens to screen for synergistic/antagonistic
combinations that pass a two-tailed paired t test between the combination clinical best response predictions and theoretical additive is shown. The theoretical additive response is
the pointwise product of fraction cells surviving therapy (viability) for the two drugs as single agents. Further, best response is defined as the lowest percent population surviving
therapy for 90 days. In contrast to LD50 and AUC, best response is a prediction of the clinical response from the model parameters (EMMA/SAM) estimated from ex vivo response
data coupled with pharmacokinetic data from phase I clinical trials. The drugs that show clinically relevant synergy are shown as red discs. b, Clinical benefit via volcano plot: Sim-
ilarly, the combination clinical best response was compared to the more viable single agent to obtain the p-values (two-tailed paired t-test) and the median change in percent
tumour burden. The more viable single agent response prediction is merely the best response of the drug that achieves greater percent cell kill. c, Daratumumab and bortezomib
clinical synergy: The combination daratumumab and bortezomib are shown to be the most synergistic combination both by extent of synergism along the x-axis and by the likeli-
hood of synergism on the y-axis. A whisker box plot is shown comparing the best response clinical predictions over a 90-day treatment period for the two single agents, the theoret-
ical additive response prediction, and the combination. Red lines indicate synergism and blue lines indicate antagonism. The solid red line shows the patient with the most
improvement over additive. d, Whisker box plots for carfilzomib and panobinostat; e, Whisker box plot for selinexor and dexamethasone; f, Whisker box plot for selinexor
and liposomal doxorubicin. The solid red line in each of C-F is the patient with the most clinically-relevant predicted synergistic effect. g�j, Ex vivo synergy maps: Heat maps are
used to show regions of ex vivo synergy/antagonism. Regions of red indicate synergy, blue denote antagonism, and empty spaces represent additivity for the four statistically signifi-
cant combinations shown in a. The criteria for studying the 46 combinations featured in a and b is presented in Supplemental Information S9. Abbreviations: BD, Bortezomib and
Dexamethasone; BP, bortezomib and pomalidomide; CD, carfilzomib and dexamethasone; CPa, carfilzomib and panobinostat; CPo, carfilzomib and pomalidomide; DA, dexametha-
sone and ABT-199; DB, daratumumab and bortezomib; KD, KPT-330 and dexamethasone; KDo, KPT-330 and doxorubicin; BR, best response; DARA, daratumumab; BTZ, bortezomib;
CFZ, carfilzomib; PANO, panobinostat; KPT, selinexor; DEX, dexamethasone; DOX, doxorubicin; h, hours; M, molar.
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Fig. 5a's volcano plot depicts the clinical drug combination effect,
showing on the vertical axis the �log10 (P value) from the two-tailed
paired t-test between theoretical additive and SAM-estimated best
response predictions, the horizontal axis represents the median per-
cent tumor burden change between theoretical additive and SAM-
estimated combination. among the 46 combinations tested, 4 were
classified as clinically synergistic: daratumumab/bortezomib, carfil-
zomib/panobinostat, selinexor/dexamethasone, and selinexor/doxo-
rubicin. Figs. 5c�f represent these 4 combinations, where the first
and fourth columns show simulated best responses for each single
agent, the second column represents theoretical additive best
response, and the third column represents the SAM-calculated best
response of the combination. The best response for a therapeutic
option is defined as the lowest tumor burden observed over a treat-
ment period (90 days). The left vertical axis represents the tumor
burden reduction from the start of treatment (with 0% corresponding
to no response and 100% corresponding to total tumor eradication).
The right vertical axis represents tumor burden reduction according
to International MyelomaWorking Group’s classification of the depth
of response [39]. The values of the 4 columns corresponding to each
patient are linked by a dashed line, lines for patients with synergistic
combinations are red and antagonistic combinations are blue. The
solid red lines in Fig. 5c�f highlight the most synergistic patient
within each drug combination. The synergy maps for each of these
patients are shown in Fig. 5g�j and confirm that the pharmacokinetic
trajectories of these drug combinations are confined to regions of
synergy in all 4 patients. Conversely, Supplemental Information S6
highlights in solid blue lines the most antagonistic patient responses
for each of the 4 drug combinations, and their corresponding synergy
maps confirm that the pharmacokinetic trajectories are confined by
regions of antagonism.

Clinical trials, however, do not assess combination effect, but clini-
cal benefits [40]. For example, phase III trials quantify the clinical
benefit of a new agent by treating patients in one arm with the stan-
dard of care therapy, while patients in the experimental arm are
treated with a combination of the standard of care and the new agent.
A trial is considered successful if, in addition to meeting safety and
toxicity standards, the experimental arm patients have a better
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outcome than the standard of care arm. Fig. 5b reflects this concept in
a volcano plot where SAM-predicted combination clinical responses
are compared to the predicted responses of the more efficacious of
the 2 single agents. Similar to Fig. 5a, in Fig. 5b a two-tailed paired t-
test was used to compute the P value (vertical axis) and the difference
in the medians (horizontal axis) for each drug pair. In addition to the
4 clinically synergistic drug combinations identified in Fig. 5a, five
new ones were predicted to perform better than either single agent
did independently: carfilzomib/dexamethasone, bortezomib/dexa-
methasone, carfilzomib/pomalidomide, bortezomib/pomalidomide,
and dexamethasone/venetoclax.

4. Discussion

Multidrug combination therapies have been instrumental in
improving patient outcomes in the treatment of MM. However,
inter� and intra-patient heterogeneity of tumor sensitivity to single
agents leads to variability in the combination effects of therapy. We
have previously described a high-throughput assay designed to test
the chemosensitivity of primary MM cells cultured in an ex vivo
reconstruction of the bone marrow microenvironment, and, ulti-
mately, to predict clinical response to therapies. This model (EMMA),
however, relies solely on additive effects of individual agents [11].
Here, we have successfully extended this platform. Using fixed-ratio
ex vivo two-drug combination response data with a high sampling
rate, we fit a novel pharmacodynamic model (SAM) capable of cap-
turing the two-way synergistic effect found in two-drug combina-
tions. This improvement further increases the original model's ability
to estimate clinical response by accounting for the potential synergis-
tic effects of combination regimens.

As a preliminary validation of SAM's ability to estimate combina-
tion effect, a checkerboard assay was used to measure the ex vivo
response of two primary samples to 3 pairs of drug combinations in a
5£5 concentration combination matrix. We have shown that, when
parameterized with the single agent and fixed-ratio combination,
SAM accurately estimates ex vivo drug response to other drug con-
centration combinations, confirming that this reduced dataset is suf-
ficient to parameterize this combination effect model.

We have computed the CI for a comprehensive panel of two-drug
combinations tested in a cohort of primary MM samples, and we
have described how SAM can extend this well-established model of
synergy to classes of drugs with significant differences in potency as
well as account for intertumor heterogeneity. In this process, we
have identified a list of ex vivo synergistic drugs, including a number
of combinations that are currently approved for MM therapy.

In order to investigate synergy in clinical regimens, we have used
patient-specific SAM models to simulate clinical response to combi-
nation regimens by parameterizing these models with clinical phar-
macokinetic data. Using a graphical representation of combination
effect as a function of drug concentrations and exposure time, we
have demonstrated how the pharmacokinetic trajectory of drug con-
centrations crosses regions of synergy and antagonism during a cycle
of a regimen, defining if the clinical response will be synergistic or
antagonistic.

An analysis of 46 drug pairs with pharmacokinetic data from clini-
cal trials revealed 4 clinically synergistic combinations: daratumumab/
bortezomib, carfilzomib/panobinostat, selinexor/dexamethasone, and
selinexor/doxorubicin. This is consistent with a recent study [5] that
compared Kaplan�Meier curves from various phase II and phase III
clinical trials in melanoma, ovarian, colorectal, pancreatic, and
breast cancer patients treated with targeted therapies, immuno-
therapies, chemotherapies, etc., as single agents and combinations.
The study revealed that the benefit of combinations over monother-
apy is primarily due to independent drug action, reiterating that
synergism observed preclinically did not necessarily translate in to
the clinic for most of the combinations. The authors showcased a
study in PDX (patient-derived xenograft) patients, where testing 33
combinations across 6 tumor types revealed only four synergistic
combinations [5].

Next, we simulated phase II/III clinical trials by assessing clinical
benefit of a combination of 2 drugs over the best response of the
more efficacious drug, identifying 5 additional combinations. These
results were consistent with recent clinical studies in relapsed and
refractory MM: the combination of daratumumab/bortezomib/dexa-
methasone was shown to be superior to the combination of bortezo-
mib/dexamethasone in a phase III two-arm clinical trial [41]. The
efficacy of carfilzomib/panobinostat was studied in a phase I/II clini-
cal trial setting and shown to be beneficial for relapsed/refractory
MM patients [42]. The combination of selinexor/dexamethasone has
recently shown encouraging activity in a phase II trial involving
highly refractory MM patients, leading to its FDA approval [43]. Fur-
ther, adding liposomal doxorubicin to the combination of selinexor/
dexamethasone for relapsed and refractory MM patients is being cur-
rently studied as a phase I trial [44]. Thus, the 4 combinations pre-
dicted to be clinically synergistic (Fig. 5a) have been shown to be at
least clinically beneficial in clinical trials. In addition to these, the 5
other combinations identified as clinically beneficial have shown
improved efficacy in multiagent clinical trials—carfilzomib/dexa-
methasone [45], bortezomib/dexamethasone [46], carfilzomib/poma-
lidomide [47], bortezomib/pomalidomide [48], and dexamethasone/
venetoclax [49]. We expect that these data will represent critical
steps toward the clinical translation of the proposed modeling frame-
work.

Of note, our results also suggest that, at least in this cohort, a num-
ber of drug pairs do not have synergistic activity (or even clinical ben-
efit) across the majority of sample tested, but may be synergistic, or
at least clinically beneficial, on a patient-by-patient bases. These
observations further highlight the importance of accounting for inter-
patient heterogeneity and the need for personalized tools to improve
clinical decisions as depicted in Fig. 5a, where a bird's-eye-view of 46
drug combinations can be 'zoomed into' single-drug pairs (Fig. 5c),
and, finally, into specific pharmacokinetic/pharmacodynamic interac-
tions in individual patient samples (Fig. 5g).

Combination therapy in MM typically involves combining two,
three, or more drugs to maximize efficacy and time to relapse. The
conclusions made from studying two-drug combinations can be
extended to three-drug (or more) combinations by assuming that
higher-order synergistic effects are negligible as shown in the litera-
ture [50,51]. The approach used to compute three-drug combination
response from two-drug responses is described in Supplemental
Information S7. The three-drug ex vivo combination response com-
puted using this approach can be used to estimate AUC, as well as
synergy, for any three-drug combination therapy received by a
patient in the clinic. Supplemental Information S12 depicts how these
ex vivo measurements could be used to predict patients’ clinical
response. Using Receiver Operating Characteristic (ROC) curves, we
show that ex vivo combination AUC serves as an excellent classifier of
patients’ clinical response between IMWG response stratifications of
CR/VGPR (complete response/very good partial response), and partial
response (PR) or worse with an area under the ROC curve of
0.9804 and a p-value of 0.0006 (for a t-test with the null hypoth-
esis that the area under ROC is 0.5), while ex vivo synergy (DAUC
Synergy), was the better classifier between PR/MR (minimal
response/partial response) and SD/PD (stable disease/progressive
disease) patients, with an area under the ROC curve of 0.8167
and a statistically significant p-value of 0.0452 (for a t-test with
the null hypothesis that the area under ROC is 0.5). Furthermore,
the proposed modeling framework could potentially be used to
modulate doses and schedules (within clinically viable limits) to
maximize clinical synergy, and identify regimens that would lead
to significant improvement over the standard of care dosing for
each patient.
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