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Abstract: Quantum circuits have been widely used as a platform to simulate generic quantum many-
body systems. In particular, random quantum circuits provide a means to probe universal features of
many-body quantum chaos and ergodicity. Some such features have already been experimentally
demonstrated in noisy intermediate-scale quantum (NISQ) devices. On the theory side, properties of
random quantum circuits have been studied on a case-by-case basis and for certain specific systems,
and a hallmark of quantum chaos—universal Wigner–Dyson level statistics—has been derived. This
work develops an effective field theory for a large class of random quantum circuits. The theory
has the form of a replica sigma model and is similar to the low-energy approach to diffusion in
disordered systems. The method is used to explicitly derive the universal random matrix behavior of
a large family of random circuits. In particular, we rederive the Wigner–Dyson spectral statistics of
the brickwork circuit model by Chan, De Luca, and Chalker [Phys. Rev. X 8, 041019 (2018)] and show
within the same calculation that its various permutations and higher-dimensional generalizations
preserve the universal level statistics. Finally, we use the replica sigma model framework to rederive
the Weingarten calculus, which is a method of evaluating integrals of polynomials of matrix elements
with respect to the Haar measure over compact groups and has many applications in the study of
quantum circuits. The effective field theory derived here provides both a method to quantitatively
characterize the quantum dynamics of random Floquet systems (e.g., calculating operator and
entanglement spreading) and a path to understanding the general fundamental mechanism behind
quantum chaos and thermalization in these systems.

Keywords: quantum chaos; random quantum circuits; field theory

1. Introduction

Recent years have seen a surge of interest in random quantum circuits, which can be
used to simulate various properties of interacting many-body quantum systems, including
universal ergodic dynamics. Random quantum circuits [1–12] consist of qubits (or qudits)
evolving under successive applications of unitary quantum gates drawn randomly from
ensembles of unitaries. They capture several general properties of many-body quantum
chaotic systems. In particular, the universal random matrix theory (RMT) statistics of the
quasi-energy spectra has been derived for some time-periodic (Floquet) circuits [13–23].
Quantum systems with underlying classical chaotic dynamics are conjectured to exhibit
level statistics identical to that of a suitably chosen random matrix ensemble [24], and the
RMT statistics has been used as one of the indicators for quantum chaos. For decades,
numerous efforts have been made to understand this Bohigas–Giannoni–Schmit (BGS)
quantum chaos conjecture theoretically [25–36]. Random quantum circuits, due to their
fine-tuned structure, allow exact analysis of the spectral statistics, which sheds light on
the underlying mechanism responsible for the emergence of RMT structure. In addition
to the RMT spectral statistics, random quantum circuits also exhibit other fundamen-
tal properties of many-body quantum chaotic systems, such as the decay of correlation
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functions of local observables [37,38], ballistic spreading of the local operators [13,39–44],
ballistic growth of the entanglement [13,38,40,45–51], and Gaussian distribution of the
matrix elements of observables in the energy eigenbasis (as expected from the eigenstate
thermalization hypothesis [52–54]) [55,56]. Experimentally, random quantum circuits can
be simulated in noisy intermediate-scale quantum (NISQ) devices [57] built with super-
conducting qubits [58,59], trapped ions [60,61], and Rydberg atoms [62], and some of these
generic features for quantum chaotic systems have been observed [63]. Due to their high
controllability, random quantum circuits provide a useful tool for exploring fundamental
principles underlying chaos and thermalization.

At a high level, the approaches to studying the conventional interacting many-body
systems can be broadly categorized as either (i) the microscopic approach, where the
specific Hamiltonian of a particular system is studied in an ab initio or bottom-up way
and where all microscopic details enter the calculation or (ii) the low-energy (usually field-
theory-based) approach, where only the universal low-energy features enter the theory
(e.g., gapless collective modes). In the context of the quantum circuits used to simulate
many-body systems, it was mostly the former type of approach that has been used to date.
In particular, theoretical studies of random quantum circuits relied heavily on fine-tuned
features of specific models. Here, we construct a field-theory approach, where universal
features of ergodic dynamics of a large family of random quantum circuits can be studied
in a unified way.

This field-theory method generalizes a supersymmetric sigma model developed
by Zirnbauer [64–66], Altland [67], and others, making use of a generalized Hubbard–
Stratonovich transformation, i.e., the color–flavor transformation [64–66,68]. This model is
similar to the sigma model for disordered electron systems [69,70] but is formulated for
systems modeled by an evolution operator or a scattering matrix rather than a Hamilto-
nian. In particular, it has been used to investigate the connection between the appearance
of universal RMT statistics and the underlying classical chaotic dynamics (i.e., the BGS
quantum chaos conjecture [24]) in generic quantum chaotic maps [65,66], localization in
quantum kicked rotors [67,71–73], eigenenergy and eigenfunction statistics of quantum
graphs [74–77], and the plateau transition in quantum Hall systems [78,79]. A review of
this model and a more complete list of references can be found in [80,81]. For quantum
circuits, we find it convenient to reformulate this sigma model in the replica formalism
(in contrast to supersymmetry), and use it to derive an ensemble-averaged effective field
theory.

The spectral statistics of the Floquet operator of time-periodic systems can be extracted
from this effective field theory. In contrast to the aforementioned model-specific methods,
the field-theoretical approach is applicable to a wide class of Floquet systems and is
particularly useful for random quantum circuits composed of local random gates. To
demonstrate the usefulness of this method, we apply it to study the spectral statistics of a
family of Floquet random quantum circuits, some of which are shown in Figures 1 and 2.
These Floquet circuits are composed of random unitary matrices which are drawn randomly
and independently from the circular unitary ensemble (CUE) and are applied to all pairs
of neighboring qudits at various time substeps during one period. Among these circuits,
the brickwork circuit depicted in Figure 1a was studied earlier by Chan, De Luca, and
Chalker in [13] (see also the related work in [16]), and the RMT spectral statistics were
derived in the limit of a large on-site Hilbert space dimension q→ ∞, using the generalized
diagrammatic approach initially constructed in [82] for the Weingarten calculus [83–89].
Applying the field-theoretical approach, we rederive this result and also show that the
universal RMT statistics is preserved under an arbitrary reordering of the two-qudit gates,
for both periodic and open boundary conditions. In particular, we show that the effective
field theory describing the Floquet quantum circuit of this type is identical to that of the
CUE ensemble. Moreover, we consider higher-dimensional generalizations of this family
of Floquet circuits and find that their quasi-energy spectra all exhibit RMT statistics (see
Figure 2 for some 2D examples).
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Figure 1. Floquet operators of 1D Floquet random quantum circuits with different orderings of the
two-qudit unitary gates: (a) brickwork circuit [13], (c) staircase circuit, and (b) circuit obtained from
rearranging the local gates (blue boxes) in (a) or (b). The horizontal direction represents the space
coordinates, and each qudit is indicated by a black dot. The vertical direction shows the discrete
time evolution within one period, and different layers represent different substeps. Each blue box
represents an independent CUE matrix w(n,n+1) acting on the Hilbert space of two neighboring sites
n and n + 1. The two half-sized blue boxes at the boundaries constitute a random CUE matrix w(L,1)

(identical matrix) acting on the sites L and 1, for periodic (open) boundary condition, where L is
the total number of qudits. For any of these Floquet quantum circuits, which differ only by the
ordering of local gates and are subject to either periodic or open boundary condition, we prove that
the statistical properties of the quasi-energy spectra are identical to those of the CUE ensemble in the
limit of large on-site Hilbert space dimension q→ ∞.

Figure 2. Floquet operators of 2D Floquet random quantum circuits with different orderings of the
two-qudit gate [(a–c)]. Within one period, two-qudit unitaries (orange boxes) drawn independently
from the CUE ensemble are applied to all pairs of neighboring qudits (black dots) in a 2D lattice at
various time substeps (layers). Each qudit is coupled to all of its neighbors at different substeps. The
half-sized box at the boundary combines with its neighbor on the opposite side to give a random
unitary (identical matrix) acting on the corresponding pair of qudits, for periodic (open) boundary
condition. We prove that, as in the 1D case (Figure 1), the quasi-energy spectrum for this type of
Floquet random quantum circuit with arbitrary ordering of the quantum gates exhibits universal
statistical properties described by the CUE ensemble in the limit of large on-site Hilbert space
dimension q → ∞, for both periodic and open boundary conditions. This statement extends to
arbitrary dimensions (see Appendix B).

The field-theoretical approach is not only useful in the study of the spectral statistics
of Floquet random quantum circuits but can also be applied to the analysis of more generic
properties of a wide class of random quantum circuits (which are not necessarily time-
periodic). To show this, within the same sigma model framework, we rederive the known
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results for Weingarten calculus, which has extensive applications in studies of quantum
circuits (e.g., in [13,39,40,43,45,90,91]). When considering a quantum circuit where all or
part of the quantum gates are random unitaries drawn from some ensembles with the
Haar probability, one usually encounters polynomial functions of the matrix elements
integrated over the relevant group with the Haar measure (or equivalently averaged
over the relevant ensemble). These types of Haar integrals can be computed using the
Weingarten calculus [82–88]. In the present paper, we rederive the results for the Haar
integrals of products of the matrix elements of a unitary matrix over the unitary group (i.e.,
moments of CUE random matrices) using the field-theoretical approach. The derivation
can be generalized to other compact Lie groups or compact symmetric spaces [86,92–94].

The rest of the paper is organized as follows. In Section 2, we introduce a standard
diagnostic of the statistics of quasi-energies of time-periodic systems and briefly review the
spectral statistical properties of the CUE ensemble. In Section 3, we present an effective
field theory which is formulated as a replica sigma model and can be used to investigate
the spectral statistics of a wide class of Floquet quantum systems. This effective field theory
is applied in Section 4 to study a family of Floquet random quantum circuits related to the
brickwork circuit in [13] by a reordering of the Haar random unitary gates (which couple
the neighboring qudits) and by the higher-dimensional generalization. We show that the
statistical properties of the quasi-energy spectra of the Floquet random quantum circuits
of this type are universally described by the CUE ensemble, for both the periodic and
open boundary conditions. Using the same sigma model method, we rederive the results
for the Weingarten calculus for the unitary group in Section 5. Finally, in Section 6, we
conclude with a discussion of directions for future studies. The appendices are devoted to
technical details. In Appendices A and B, we provide the calculation of the second- and
fourth-order moments of the Floquet operator for the family of Floquet random quantum
circuits studied in the current paper, in 1D and in higher dimensions, respectively. We
prove that, for arbitrary ordering of the two-qudit unitary gates, and in any dimension,
these moments are identical to those of the CUE ensemble. In Appendix C, we study a
non-interacting Floquet model and examine the higher-order fluctuations in the effective
field theory. We show that the quartic-order fluctuations of this non-interacting model
give rise to a larger contribution to the level correlation function compared with their
chaotic counterparts and are therefore no longer negligible. In Appendix D, we rederive
the asymptotic behavior of the Weingarten function for a unitary group of dimension q in
the large q→ ∞ limit. Appendix E contains a derivation of the recursion relation for the
Weingarten function.

2. Diagnostic of Spectral Statistics of Time-Periodic Systems

For time-periodic (Floquet) systems, the statistics of the quasi-energy spectra serve
as a diagnostic of quantum chaos. The quasi-energies {θi} are the eigenphases of the time
evolution operator over one period U ( i.e., the Floquet operator): U|n〉 = eiθn |n〉. The
quasi-energy density can be expressed as

ρ(φ) =
N

∑
i=1

δ2π(φ− θi), (1)

where N is the Hilbert space dimension and δ2π(φ) represents the 2π-periodic delta func-
tion defined as δ2π(φ) = ∑∞

n=−∞ e−inφ/2π. For brevity, the subscript 2π will be omitted
from now on.

For an ensemble of random Floquet systems, the two-point correlation function of the
quasi-energy density is usually introduced as:

R2(φ1, φ2) =〈ρ(φ1)ρ(φ2)〉, (2)

where the angular bracket denotes the ensemble averaging. The correlation function,
R2(φ1, φ2) measures the probability of finding two quasi-energies at φ1 and φ2, and is one
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of the widely used probes of the spectral statistics. In the present paper, in addition to the
ensemble averaging, we also perform the averaging over the entire quasi-energy spectrum:

R̄2(∆φ) =
∫ 2π

0

dφ0

2π
R2(φ0 + ∆φ/2, φ0 − ∆φ/2). (3)

This averaging [80] is similar to the energy integration employed in [95,96] to derive a
ballistic sigma model for individual Hamiltonian systems, and it allows us to extract
information about the correlation function of an arbitrary pair of quasi-energy levels with
the separation ∆φ, irrespective of their positions in the quasi-energy spectrum on the
Floquet circle [97].

The Fourier transform of the two-level correlation function is known as the spectral
form factor:

K(t) =
∫ 2π

0
dφ1

∫ 2π

0
dφ2R2(φ1, φ2)e−i(φ1−φ2)t = 2π

∫ 2π

0
d(∆φ) R̄2(∆φ)e−i∆φ t, (4)

which is equivalent to

K(t) =
〈∣∣Tr

(
Ut)∣∣2〉 =

〈
N

∑
i,j=1

e−it(θi−θj)

〉
. (5)

From this definition, one can immediately see that K(t) = K(−t) and K(t = 0) = N2.
Moreover, assuming no degeneracy in the quasi-energy spectrum, in the large time limit t→
∞, the off-diagonal (i 6= j) terms in the summation in Equation (5) vanish upon ensemble
averaging, due to the random phases, and the SFF acquires the value of K(t→ ∞) = N
(plateau).

Chaotic Floquet systems without time-reversal invariance are expected to exhibit the
same spectral statistics properties as the circular unitary ensemble (CUE) [81,98,99], which
is an ensemble of unitary matrices with the Haar probability measure. For the CUE
ensemble, the spectrum is statistically homogeneous, and the mean level density is given
by ρ̄ = N/2π. The two-level correlation function R2(φ1, φ2) depends only on the level
separation ∆φ = φ1 − φ2 and is therefore equal to its energy-averaged value [99]:

R2(φ1, φ2) = R̄2(∆φ) = − 1
4π2

sin2(N∆φ/2)
sin2(∆φ/2)

+
N2

4π2 +
N
2π

δ(∆φ). (6)

At nonzero ∆φ, the first term in the equation above corresponds to the connected part of
the two-level correlation function defined as

Rcon
2 (φ1, φ2) = 〈ρ(φ1)ρ(φ2)〉 − 〈ρ(φ1)〉〈ρ(φ2)〉. (7)

In the large N limit, after rescaling the quasi-energy ε = ρ̄∆φ and keeping it finite, the
connected two-level correlation function assumes a form identical to that of the Gaussian
unitary ensemble (GUE) [81,99]:

1
ρ̄2 Rcon

2 (∆φ) = −
(

sin(πε)

πε

)2

. (8)

From Equation (6), one finds that the SFF of the CUE ensemble acquires the form

K(t) = min(|t|, N) + N2δt,0. (9)

It exhibits a linear ramp until a plateau sets in at t = N. This linear ramp reflects the
repulsion between the quasi-energies and is expected to be a universal feature of quantum
chaotic systems with broken time-reversal symmetry.
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3. Replica Sigma Model for Generic Floquet Systems

In this section, we reformulate the sigma model initially constructed in [64–67] using
the replica trick instead of the supersymmetric method, and obtain an ensemble-averaged
effective field theory from which one can extract information about the statistical properties
of the quasi-energy spectra for generic time-periodic quantum systems.

3.1. Generating Function for Level Correlation Function

Consider now an ensemble of Floquet systems whose Floquet operators U are from an
arbitrary ensemble of unitary matrices. Note that, for many-body systems, U represents
the many-body Floquet operator that acts in the many-body Hilbert space. The statistical
properties of the quasi-energies of this ensemble can be obtained from the following
generating function using the replica trick

Z (R)(α, β) =

〈∫ 2π

0

dφ

2π

[
det
(

1− αeiφU
)

det
(

1− βe−iφU†
)]R

〉
. (10)

Here, α and β are two complex numbers and R represents the replica number which will
be set to zero (the replica limit) at the end of the calculation. Taking derivatives of the
generating function Z (R)(α, β) with respect to the complex variables α and β, multiplying
the result by αβ/R2, and then taking the replica limit R→ 0, we find

C(α, β) ≡ lim
R→0

αβ

R2
∂2Z (R)(α, β)

∂α∂β
=

〈∫ 2π

0

dφ

2π
Tr
(

αeiφU
1− αeiφU

)
Tr
(

βe−iφU†

1− βe−iφU†

)〉
=

〈∫ 2π

0

dφ

2π

∞

∑
n,m=1

Tr
(

αeiφU
)n

Tr
(

βe−iφU†
)m
〉

=
∞

∑
n=1

K(n)(αβ)n.

(11)

In this equation, the powers of U and U† (i.e., n and m) need to be identical to have a
non-vanishing contribution to C(α, β) after the integration over φ.

The two-level correlation function R̄2(∆φ) can be obtained from C(α, β), which is
a weighted summation of the SFF K(n) (Equation (5)) at discrete time n, by setting
α = β = ei∆φ/2:

R̄2(∆φ) =
1

(2π)2

[
2 Re C(α = β = ei∆φ/2) + N2

]
. (12)

Here, we have used the fact that K(−n) = K(n) and K(0) = N2, with N being the
dimension of the Hilbert space. We note that the higher-order correlation functions of the
quasi-energy density can be evaluated in an analogous manner, making use of a similar
generating function [64].

3.2. Replica Sigma Model for Level Correlation Function

The generating function defined in Equation (10) can be expressed as a Grassmann
path integral:

Z (R)(α, β) =

〈∫ 2π

0

dφ

2π

∫
D(ψ̄, ψ) exp

{
−ψ̄+,u

i

(
δij − αeiφUij

)
ψ+,u

j

−ψ̄−,u
i

(
δij − βe−iφU†

ij

)
ψ−,u

j

}〉
.

(13)

The Grassmann field ψs,u
i carries three different indices: u = 1, 2, ..., R is the replica index,

i = 1, 2, ..., N labels the Hilbert space, and s = +/− distinguishes the contributions from
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the forward (U) and backward (U†) evolution operators. Throughout the paper, we employ
the convention that repeated indices imply the summation.

Using the color–flavor transformation [64–66,68], the integration over the center phase
φ in Equation (13) can be converted into an integration over the RN × RN complex matrix
field Z (we call matrix Z a ‘field’ but note that it does not have time-dependence and carries
indices in the Hilbert and replica spaces only):

Z (R)(α, β) = c0

〈∫
D(ψ̄, ψ) exp

{
−ψ̄+,u

i ψ+,u
i − ψ̄−,u

i ψ−,u
i

}
×
∫
D(Z, Z†)det(1 + Z†Z)−2RN−1 exp

{
αψ̄+,u

i Zuv
ij U†

jj′ψ
−,v
j′ − βψ̄−,u

i (Z†)uv
ij Ujj′ψ

+,v
j′

}〉
= c0

〈∫
D(Z, Z†)det(1 + Z†Z)−2RN−1

×
∫
D(ψ̄, ψ) exp

{
−
[
ψ̄+ ψ̄−

][ 1 −αZU†

βZ†U 1

][
ψ+

ψ−

]}〉
.

(14)

Here, Zuv
ij is a complex matrix which carries indices in both the replica space (labeled by u, v) and the

Hilbert space (labeled by i, j), and c0 is an indefinite unessential normalization factor, which can be
determined in the R→ 0 limit.

Performing the Gaussian integration over ψ, we arrive at a sigma model representation of the
generating function

Z (R)(α, β) = c0

〈∫
D(Z, Z†)e−S[Z† ,Z]

〉
,

S[Z†, Z] = (2RN + 1)Tr ln
(

1 + Z†Z
)
− Tr ln

(
1 + αβZU†Z†U

)
.

(15)

It is sometimes convenient to make the transformation

Q = TΛT−1, T =

[
1 −Z

Z† 1

]
, Λ =

[
1 0
0 −1

]
, (16)

after which the action becomes

S[Q] = −2RN Tr ln
(

QΛ + 1
2

)
− Tr ln

[
1
2

(
1−

[
αU 0
0 βU†

])
QΛ +

1
2

(
1 +

[
αU 0
0 βU†

])]
. (17)

Similarly to the sigma model for a disordered system [69,70,100], the matrix field Q stays on the
manifold with the constraints Tr Q = 0 and Q2 = 1. Equation (15) (or equivalently Equation (17)) is a
replica version of the supersymmetric sigma model derived earlier to study the spectral statistics of
the circular ensembles and quantum chaotic maps [64–66,80].

3.3. Ensemble-Averaged Effective Theory
Starting from Equation (15), we then perform the ensemble averaging and derive an effective

field theory for the matrix field Z for any ensemble of Floquet systems. Note that Equation (15) can
be rewritten as

Z (R)(α, β) = c0

∫
D(Z, Z†)e−Seff[Z† ,Z],

Seff[Z
†, Z] ≡ (2RN + 1)Tr ln

(
1 + Z†Z

)
− ln

〈
exp

[
Tr ln

(
1 + αβZU†Z†U

)]〉
.

(18)

Until now, no approximations have been made, and the expression above is exact. However, it
is difficult to perform the ensemble averaging in the second term in the action Seff, especially for
many-body systems whose Floquet operator has a complicated structure in the many-body Hilbert
space. To proceed, we expand Seff around the saddle point Z = 0 in powers of the fluctuation Z
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and carry out the ensemble averaging term by term. Up to the quartic order in Z, the action Seff is
given by

Seff[Z
†, Z] = S(2)

eff [Z
†, Z] + S(4)

eff [Z
†, Z] + O(Z6), (19a)

S(2)
eff [Z

†, Z] = ∑
i1,...,i4

tr
(

Z†
i1i2

Zi3i4

)[
(2RN + 1)δi2,i3 δi4,i1 − αβ

〈
Ui2i3 U†

i4i1

〉]
, (19b)

S(4)
eff [Z

†, Z] =− (αβ)2

2 ∑
i1,...,i8

tr
(

Z†
i1i2

Zi3i4

)
tr
(

Z†
i5i6

Zi7i8

)
×
[〈

Ui2i3 U†
i4i1

Ui6i7 U†
i8i5

〉
−
〈

Ui2i3 U†
i4i1

〉〈
Ui6i7 U†

i8i5

〉]
+

1
2 ∑

i1,...,i8

tr
(

Z†
i1i2

Zi3i4 Z†
i5i6

Zi7i8

)
×
[
−(2RN + 1)δi2,i3 δi4,i5 δi6,i7 δi8,i1 + (αβ)2

〈
Ui2i3 U†

i4i5
Ui6i7 U†

i8i1

〉]
.

(19c)

In the present paper, we use ‘tr’ to denote the trace operation that acts on the replica space only and

‘Tr’ to trace over both the replica and Hilbert spaces. We note that the last term in S(4)
eff (Equation (19c))

gives rise to a contribution of higher order in the replica number R compared with the remaining

term in S(4)
eff and is not important in the replica limit R→ 0.

The specific forms of the moments of the Floquet operator in the effective theory are model
dependent. Once they are known, one can insert them into the expression for the effective action in
Equation (19) to obtain an effective field theory which encodes the information about the statistical
properties of the quasi-energy spectrum. This field-theoretical approach is therefore applicable to
a wide class of Floquet systems, including many-body and single-particle systems. One advantage
of this method, compared with other model-specific methods, is that it can be used to investigate
why or when universal statistical behaviors emerge. For Floquet random quantum circuits consisting
of independent local unitary gates, the moments of the many-body Floquet operator are given by
products of moments of the local unitaries, and therefore are usually not difficult to evaluate. This
makes the current field-theoretical approach especially useful for random quantum circuits with
local gates.

4. Application to Floquet Random Quantum Circuits
4.1. Floquet Random Quantum Circuits

As an example, we apply the effective field theory (Equation (19)) derived in the previous
section to study the spectral statistics of a family of Floquet quantum circuits composed of random
local unitary gates. Figures 1 and 2 show the Floquet operators of some of these Floquet random
quantum circuits, including the brickwork circuit (Figure 1a) studied earlier in [13]. The other two
circuits depicted in panels (b) and (c) of Figure 1 can be obtained from the brickwork circuit by
reordering the local gates. Some examples of the 2D generalization of such Floquet circuits are
depicted in Figure 2. We prove that Floquet random quantum circuits of this type, subject to either
periodic or open boundary condition, are all described by the same effective field theory as the CUE
ensemble in the limit of large on-site Hilbert space dimension, irrespective of the ordering of the local
gates and the dimensionality of the lattice of qudits.

We first consider the Floquet quantum circuits consisting of a 1D lattice chain of L qudits, each
of which contains q→ ∞ internal states. The dimension of the many-body Hilbert space is N = qL.
The time evolutions of these Floquet circuits are discrete and time-periodic, and the evolutions over
one period contain 2 ≤ M ≤ L substeps (where M is model specific). For all these Floquet quantum
circuits, each qudit (labeled by an integer n = 1, 2, ..., L) is coupled to its neighbors on the left hand
side (at site n− 1) and the right hand side (at site n + 1) at two different substeps (labeled by integers
s(n−1,n) and s(n,n+1), respectively). We consider both the periodic and open boundary conditions, and
the qudit label n is defined modulo L for the periodic boundary condition. The local gate that couples
a pair of neighboring qudits at sites n and n + 1 is given by a q2 × q2 random CUE matrix w(n,n+1)

and is represented diagrammatically by a blue box in Figure 1. Unitary gates acting on different pairs
of neighboring qudits are independent and uncorrelated. We consider all possible orderings of these

quantum gates represented by different configurations of
{

1 ≤ s(n,n+1) ≤ M|n = 1, 2, ..., L′
}

with

constraint s(n,n+1) 6= s(n−1,n). Here, L′ is defined as L′ = L for the periodic boundary condition and
L′ = L− 1 for the open boundary condition. The total number of substeps M is given by the total
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number of different integers in the set
{

s(n,n+1)
}

, and we consider all possible values of 2 ≤ M ≤ L′.

For the staircase circuit in Figure 1c, M = L′ and s(n,n+1) = n, while for the brickwork circuit in
Figure 1a, M = 2 and s(n,n+1) = 2− (n mod 2) (for the open boundary condition or the periodic
boundary condition with even L).

For any of the Floquet random quantum circuits described above, the Floquet operator can be
expressed as

U = W(σ(1),σ(1)+1)W(σ(2),σ(2)+1)...W(σ(L′−1),σ(L′−1)+1)W(σ(L′),σ(L′)+1), (20)

where σ ∈ SL′ represents a permutation of numbers 1, 2, ..., L′. W is defined as

W(n,n+1) = w(n,n+1) ⊗ 1(n,n+1). (21)

Here, 1(n,n+1) represents an identical matrix operating in the Hilbert space of all sites except for
n and n + 1. As mentioned earlier, w(n,n+1) acts on the qudits at sites n and n + 1 and is drawn
randomly and independently from the CUE ensemble of dimension q2. We consider all possible
quantum circuits whose Floquet operator can be expressed in the form of Equation (20) for arbitrary
permutations σ ∈ SL′ . For example, σ is the identical permutation for the staircase circuit in Figure 1c,
while for the brickwork circuit in Figure 1a with the periodic boundary condition and even L, σ is
given by

σ(2k− 1) = k, σ(2k) = L/2 + k, 1 ≤ k ≤ L/2. (22)

In Appendix A, we prove that the Floquet operator U given by Equation (20) with arbitrary
permutation σ ∈ SL′ obeys the conditions:〈

UijU†
j′i′
〉
=

1
N

δii′δjj′ , (23a)〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
=

1
N2

(
δi1i′1

δj1j′1
δi2i′2

δj2j′2
+ δi1i′2

δj1j′2
δi2i′1

δj2j′1

)
. (23b)

Here, the L-dimensional vector i = (i(1), i(2), ..., i(L)) labels the many-body state of the circuits, and
its n-th component i(n) = 1, 2, ..., q indexes the single-particle state of the n-th qudit. We note that
Equation (23a) holds for arbitrary q, while Equation (23b) is derived in the limit of q→ ∞.

The above discussion can be straightforwardly generalized to higher-dimensional Floquet
quantum circuits with similar configurations. In particular, let us consider now a D-dimensional
cubic lattice of qudits, with L sites in each direction. The single-particle (many-body) Hilbert space
dimension is q→ ∞ (N = qLD

). The time evolution is again discrete and periodic, and is composed
of local two-qudit gates that couple separately all pairs of neighboring qudits. During one period,
each qudit is coupled to all of its neighboring qudits at different substeps by different local unitary
gates drawn randomly and independently from the CUE ensemble of dimension q2. For this type of
D-dimensional Floquet circuit, with any possible ordering of these local gates and with either periodic
or open boundary condition, we prove that the Floquet operator U still satisfies Equation (23). In
this case, i can be considered as an LD-dimensional vector whose component i(n) = 1, 2, ..., q labels
the single-particle state of the qudit n in the D-dimensional lattice. The derivation is relegated to
Appendix B.

Equations (23a) and (23b) are also obeyed if U is drawn randomly from a CUE ensemble of
dimension N → ∞. As a result, the effective field theory (Equation (19)) for the Floquet quantum
circuits under consideration is equivalent to that of the CUE ensemble of dimension N, and the
two-level correlation functions for the current models are given by the CUE level correlation function
in Equation (6).

4.2. Quadratic Fluctuations
In the following, we present the detailed derivation of the two-level correlation function R̄2(∆φ)

for the quasi-energies of the Floquet random quantum circuits described above (or equivalently the
CUE ensemble of the same dimension N), using the effective field theory (Equation (19)) and the
moments of the Floquet operator (Equation (23)).
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Substituting Equation (23a) into the quadratic-order effective action S(2)
eff in Equation (19b), we

obtain

S(2)
eff =(2RN + 1) ∑

i1,i2

tr
(

Z†
i1i2

Zi2i1

)
− αβ

N ∑
i1,i2

tr
(

Z†
i1i1

Zi2i2

)
. (24)

We now divide Z into the diagonal component Xii ≡ Zii and the off-diagonal component Yij ≡ Zij
(for i 6= j) in the Hilbert space and Fourier transform the diagonal component Xjj with respect to j:

X(k) = ∑
j

Xjje−i2πk·j/q. (25)

Here, k is an LD dimensional vector and the summation over each component runs over k(n) =

0, 1, ..., q− 1. In terms of X(k) and Yij, the effective action S(2)
eff can be rewritten as

S(2)
eff = (2RN + 1)

1
N ∑

k
tr
(

X†(k)X(k)
)
− αβ

N
tr
(

X†(0)X(0)
)

+ (2RN + 1) ∑
i1 6=i2

tr
(

Y†
i1i2

Yi2i1

)
.

(26)

From the equation above, one finds that the bare propagator for X(k = 0) acquires the form〈
Xuv(0)(X†)v′u′ (0)

〉
0
= δuu′δvv′

N
(2RN + 1)− αβ

. (27)

Here, the angular bracket with subscript 0 represents the averaging over the Gaussian fluctuation

of matrix Z governed by the action S(2)
eff (Equation (26)). Taking the replica limit R→ 0 and setting

α = β to ei∆φ/2, the bare propagator for X(0) becomes〈
Xuv(0)(X†)v′u′ (0)

〉
0
= δuu′δvv′

N
1− ei∆φ

, (28)

which diverges when ∆φ→ 0. The corresponding mode is massless.
By contrast, the propagators for X(k 6= 0) and Yij are given by, respectively,〈

Xuv(k)(X†)v′u′ (k′)
〉

0
= δuu′δvv′δk,k′

N
2RN + 1

,〈
Yuv

ij (Y†)v′u′
j′i′
〉

0
= δuu′δvv′δii′δjj′

1
2RN + 1

.
(29)

X(k 6= 0) and Yij are therefore massive, and give rise to an α-, β-independent contribution to the
generating function Z (R) at the quadratic order.

In summary, the Z fluctuations can be divided into two categories: the massless fluctuation
X(0) and the massive fluctuations X(k 6= 0) and Yij. The massive modes X(k 6= 0) and Yij contribute
a nonessential constant to the generating function, while the soft mode X(0) governs the spectral
statistics [36,101].

4.3. Quartic Fluctuations
We now investigate the contribution to the self-energy from the quartic-order fluctuations

(Equation (19c)). Note that the last term in S(4)
eff (Equation (19c)) does not contribute in the replica

limit R→ 0 due to its special structure in the replica space. We can therefore focus on the first term in

S(4)
eff , which can be expressed in terms of X(k) and Y as

S(4−1)
eff = − (αβ)2

2N4 ∑
k1,k2

tr
(

X†(k1)X(k2)
)

tr
(

X†(−k1)X(−k2)
)

− (αβ)2

2N2 ∑
i1 6=i2,i3 6=i4

tr
(

Y†
i1i2

Yi3i4

)
tr
(

Y†
i2i1

Yi4i3

)
− (αβ)2

2N3 ∑
i1 6=i2

∑
k,k′

[
tr
(

Y†
i1i2

X(k)
)

tr
(

Y†
i2i1

X(−k)
)
+ tr

(
X†(−k)Yi1i2

)
tr
(

X†(k)Yi2i1

)]
.

(30)
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Here, we have used Equation (23b). Comparing with the quadratic action S(2)
eff in Equation (26),

one can see that the quartic action S(4−1)
eff is of higher order in 1/N. Note that this counting does not

hold for nonergodic circuits, and the higher-order fluctuations become important (see Appendix C).
The self-energies for the X and Y components from the quartic interactions are given by,

respectively,

(ΣX)
ab,ba(k, k) =

(αβ)2

N4

〈
Xab(−k)(X†)ba(−k)

〉
0
=

(αβ)2

N3
1

1− αβδk,0
,

(ΣY)
ab,ba
i1i2,i2i1

=
(αβ)2

N2

〈
Yab

i2i1
(Y†)ba

i1i2

〉
0
=

(αβ)2

N2 .

(31)

Here, we have taken the replica limit and ignored the self-energy corrections that vanish in the limit
R→ 0. From the equation above, we can see that the self-energy from the quartic-order fluctuations
is negligible in the large N limit for the massive modes X(k 6= 0) and Y. For the massless mode
X(0), the self-energy from the quartic interactions can be ignored if we consider an energy separation
∆φ � 1/N that is not too small. To recover the fine structure of the nearby quasi-energy levels,
higher-order fluctuations of X(0) are needed.

We note that, for integrable systems, fluctuations beyond the quadratic order are no longer
negligible, even when the quasi-energy separation ∆φ being probed is much larger than the mean
level spacing. In Appendix C, we consider a non-interacting Floquet model whose single-particle
dynamics within one period is generated by random CUE matrices. In particular, the single-particle
Floquet operator for each particle is independently drawn from the CUE ensemble. We find that the
action for the quadratic fluctuations of this non-interacting model is identical to that of the Floquet
random quantum circuits considered in this section (or equivalently the CUE ensemble), and is
given by Equation (26). However, the quartic fluctuations are governed by a different action which,
compared with its chaotic counterpart in Equation (30), leads to a much larger contribution to the
self-energy of the Z matrix field. Unlike the chaotic model, the higher-order fluctuations become
important for this non-interacting model.

4.4. Two-Level Correlation Function
For the chaotic Floquet random quantum circuits under consideration here, we can focus on

the quadratic fluctuations’ contribution and neglect the higher-order corrections. C(α, β), defined in
Equation (11), is then approximately given by

C(α, β) = lim
R→0

αβ

R2 c1

〈
1
N

tr
(

X†(0)X(0)
)
+

αβ

N2 tr2
(

X†(0)X(0)
)〉

0
=

αβ

(1− αβ)2 . (32)

Here, the overall coefficient c1 contains the unessential contribution from the massive modes and its
value in the replica limit is determined from the fact that limR→0 Z(R)(α, β) = 1. Using Equation (12),
we obtain the result for the two-level correlation function

R̄2(∆φ) = − 1
8π2

1
sin2(∆φ/2)

+
N2

4π2 . (33)

It is easy to see that 〈Tr U〉 = 0 for the Floquet circuits under consideration. Therefore, the average
quasi-energy density for any of these circuits is homogeneous and given by ρ̄ = N/2π. This
also means that the first term in Equation (33) corresponds to the connected part of the two-level
correlation function Rcon

2 (∆φ 6= 0) defined in Equation (7). We emphasize that this equation applies
to all the Floquet quantum circuits under consideration.

Comparing Equation (33) with the exact CUE result in Equation (6), one can see that the smooth
part of R̄2(∆φ) is recovered, while an oscillatory term proportional to cos(N∆φ) is missing. To recover
the oscillatory term or to extract the behavior of R̄2(∆φ) at small energy separations ∆φ . 1/N,
nonperturbative information about higher-order fluctuations is needed. This may be obtained by
consideration of non-standard saddle points (see [80]), similar to the calculation of the level correlation
function for the Hamiltonian systems described by the Gaussian ensembles [102–105].

5. Weingarten Calculus
To show that the field-theoretical approach described above provides access not only to the

spectral statistics but also to other generic properties of quantum circuits, in this section we rederive
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the known results for the Weingarten calculus, which has been employed extensively in studies of
quantum circuits. Let us now consider a Haar integral of a product of the matrix elements of a unitary
matrix U over the unitary group in q dimensions U (q):

I =
∫
U (q)

dUUi1 j1 Ui2 j2 ...Uip jp U†
j′1i′1

U†
j′2i′2

...U†
j′p′ i
′
p′

=

〈
Ui1 j1 Ui2 j2 ...Uip jp U†

j′1i′1
U†

j′2i′2
...U†

j′p′ i
′
p′

〉
CUE

,
(34)

where dU denotes the normalized (
∫
U (q) dU = 1) Haar measure. This integral can be interpreted as

the product of the unitary matrix elements averaged over the CUE ensemble, denoted by the angular
bracket with subscript CUE. In this section and in Appendices D and E, we use U to denote a random
CUE matrix (i.e., a Haar distributed random unitary matrix).

It has been found that this integral I can be expressed in terms of the Weingarten function [82–88]:

I = δp,p′ ∑
τ,σ∈Sp

Wg(τ−1σ)
p

∏
k=1

δik ,i′
σ(k)

δjk ,j′
τ(k)

. (35)

Here, the double summation runs over all permutations τ, σ ∈ Sp of the integers 1, 2, ..., p, and the
Weingarten function Wg(τ−1σ) depends only on the cycle structure of the product τ−1σ. More
specifically, the permutation τ−1σ can be divided into m disjoint cycles:(

P(1)
1 → P(1)

2 → ...→ P(1)
c1

)(
P(2)

1 → P(2)
2 → ...→ P(2)

c2

)
...
(

P(m)
1 → P(m)

2 → ...→ P(m)
cm

)
. (36)

Here,
{

P(l)
k

}
are different integers from the set of integers under the permutation {1, 2, ..., p}, and

they satisfy P(l)
k = (τ−1σ)k−1(P(l)

1 ) (for k ≤ cl) and P(l)
1 = (τ−1σ)P(l)

cl . The Weingarten function
Wg(τ−1σ) depends only on the lengths of these disjoint cycles {ck|k = 1, 2, ..., m}, which obey the
constraint ∑m

k=1 ck = p, irrespective of their order. In the following, we will denote the Weingarten

function of the permutation τ−1σ given by Equation (36) as Wg(τ−1σ) = V(p)
c1,c2,...,cm .

The Weingarten function can be uniquely determined by the recursions relation [82,83]:

qV(p+1)
c1,...,cm ,1 +

m

∑
s=1

csV(p+1)
c1,...,cs−1,cs+1,cs+1,...,cm

= V(p)
c1,...,cm , (37a)

qV(p)
c1,...,cm +

c1−1

∑
c=1

V(p)
c1−c,c,c2,...,cm

+
m

∑
s=2

csV(p)
c1+cs ,c2,...,cs−1,cs+1,...,cm

= 0. (37b)

Here, {ci} represent an arbitrary set of m positive integers that satisfy ∑m
k=1 ck = p in Equation (37a),

and in Equation (37b) an additional constraint c1 ≥ 2 is imposed.
In the large q→ ∞ limit [82], the Weingarten function of the identical permutation id is given by

Wg(id) = V(p)
1,1,...,1 = q−p + O(q−p−2). For all the remaining permutations, the Weingarten function

V(p)
c1,c2,...,cm = O(qm−2p) is of higher order in 1/q (since the number of disjoint cycles m < p). Using

these results, one can easily see that Equation (23) is obeyed by the CUE random matrix U of
dimension N in the large N limit.

These results for the Weingarten calculus have been obtained previously, using various meth-
ods [82,83,85,86,88,89]. In the following, we rederive these results using a field-theoretical method
similar to the one employed earlier in the analysis of the statistics of quasi-energy spectra. We believe
that this field-theoretical approach can be straightforwardly generalized and can serve as a general
framework for studying quantum circuits.
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5.1. Sigma Model Derivation for the Weingarten Calculus
To begin with, we rewrite the integral I in Equation (34) as a fermionic path integral

I =
∫
U (q)

dU
∫
D(ψ̄, ψ)e−SU [ψ̄,ψ]F[ψ̄, ψ],

SU [ψ̄, ψ] =
R′

∑
u=1

q

∑
l,k=1

(
ψ̄+,u

k Uklψ
+,u
l + ψ̄−,u

k U†
klψ
−,u
l

)
,

F[ψ̄, ψ] =
p

∏
k=1

(
ψ−,k

ik
ψ̄−,k

jk

) p′

∏
l=1

(
ψ+,l

j′l
ψ̄+,l

i′l

)
.

(38)

Here, the fermionic field ψs,u
k carries three indices that label, respectively, the component associated

with U/U† (s = +/−), the replica space (u = 1, 2, ..., R′), and the Hilbert space in which the
unitary matrix U acts (k = 1, 2, ..., q). Note that here, the replica number R′ is an integer given by
R′ = max(p, p′) and, unlike in the earlier calculation of the level correlation function, it does not
need to be set to zero at the end.

In Equation (38), we have made use of Wick’s theorem and the following identities〈
ψ−,u

iu
ψ̄−,v

jv

〉
SU

= δuvUiu ju ,
〈

ψ+,u
j′u

ψ̄+,v
i′v

〉
SU

= δuvU†
j′u i′u

,〈
ψ−ψ̄+〉

SU
=
〈
ψ+ψ̄−

〉
SU

= 0.
(39)

The angular bracket with the subscript SU represents the functional averaging over the fermionic
field ψ with the weight e−SU [ψ̄,ψ]. Note that in Equation (38), fermions with different replica indices
(u) or U/U† indices (s = ±) are uncoupled. In fact, the replica space is introduced here such that,
when computing the expectation value of 〈F[ψ̄, ψ]〉SU

using the Wick contraction, the fermionic field
ψ∓ with index ik (j′k) has to pair with ψ̄∓ with index jk (i′k), as they share the same replica index k,
leading to the factor Uik jk (U†

j′k i′k
) in the integrand of I.

Applying the color–flavor transformation [64–66,68], the Haar integral over the unitary matrix
U in Equation (38) can be converted into an integral over a complex R′ × R′ matrix field Z:

I =z1

∫
D(Z, Z†)det(1 + Z†Z)−(2R′+q)

∫
D(ψ̄, ψ)e−SZ [ψ̄,ψ]F[ψ̄, ψ],

=z1

∫
D(Z, Z†)det(1 + Z†Z)−(2R′+q) det(−ZZ†)q〈F[ψ̄, ψ]〉SZ

,
(40)

where

SZ[ψ̄, ψ] =
R′

∑
u,v=1

q

∑
l=1

(
−ψ̄+,u

l Zuvψ−,v
l + ψ̄−,u

l Z†
uvψ+,v

l

)
,

z−1
1 =

∫
D(Z, Z†)det(1 + Z†Z)−(2R′+q) det(−ZZ†)q.

(41)

Note that here the matrix field Z acts in the replica space only. In the second equality of Equation (40),
we have integrated out the fermions governed by the new action SZ[ψ̄, ψ], and the angular bracket
with the subscript SZ represents the functional averaging with the weight exp(−SZ[ψ̄, ψ]). The
normalization constant z1 is determined from the fact that I = 1 if we set F = 1.

After the color–flavor transformation, fermions with different replica indices interact through
the matrix field Z, while those with different Hilbert space indices become uncoupled. The fermionic
propagator now acquires the form〈

ψ−,u
iu

ψ̄+,v
i′v

〉
SZ

= −δiu i′v Z−1
uv ,

〈
ψ+,u

j′u
ψ̄−,v

jv

〉
SZ

= δj′u jv (Z†)−1
uv ,〈

ψ−ψ̄−
〉

SZ
=
〈
ψ+ψ̄+〉

SZ
= 0.

(42)

Making use of these results, we obtain

〈F[ψ̄, ψ]〉SZ
=δp,p′ ∑

τ,σ∈Sp

sgn(τ−1σ)
p

∏
k=1

δik ,i′
σ(k)

δjk ,j′
τ(k)

Z−1
kσ(k)(Z†)−1

τ(k)k. (43)



Entropy 2022, 24, 823 14 of 28

Inserting Equation (43) into Equation (40), and applying the transformation

W = Z−1, (44)

whose Jacobian leads to a contribution of 2R′ tr ln(WW†) to the action, we find

I = δp,p′ ∑
τ,σ∈Sp

g(σ, τ)
p

∏
k=1

δik ,i′
σ(k)

δjk ,j′
τ(k)

. (45)

Here, g(σ, τ) is given by

g(σ, τ) =
〈

G[W, W†; σ, τ]
〉

W
≡
∫
D(W, W†)e−Sw [W,W† ]G[W, W†; σ, τ]∫

D(W, W†)e−Sw [W,W† ]
,

Sw[W, W†] = (2R′ + q) tr ln
(

1 + WW†
)

,

G[W, W†; σ, τ] = sgn(τ−1σ)
p

∏
k=1

Wkσ(k)W
†
τ(k)k.

(46)

The angular bracket with subscript W represents the averaging over W with the action Sw[W, W†].
Using this field-theoretical approach, the Haar integral over the unitary matrix U, whose matrix

elements are highly correlated due to the constraint UU† = 1, has been transformed to an integration
over the complex matrix W governed by the action Sw. Note that Equation (45) is equivalent to
the known result Equation (35) if g(σ, τ) = Wg(τ−1σ). In the following, we will show that g(σ, τ),
defined by Equation (46), depends only on the cycle structure of τ−1σ and is indeed the Weingarten
function Wg(τ−1σ).

5.2. General Properties of the Weingarten Function
If we apply the following transformation in Equation (46)

Wij →Wiχ(j), W†
ij →W†

χ(i)j, (47)

where χ ∈ Sp represents an arbitrary permutation of p numbers, the action Sw[W, W†] remains
invariant, while G[W, W†; σ, τ] transforms to G[W, W†; χσ, χτ]. This proves that g(σ, τ) obeys the
condition

g(σ, τ) = g(χσ, χτ), (48)

for an arbitrary permutation χ ∈ Sp. Setting χ to τ−1, one can immediately see that g is a function of
τ−1σ only.

In an analogous way, one can also prove that g(σ, τ) depends only on the cycle structure of
τ−1σ:

g(τ, σ) = V(p)
c1,c2,...,cm , (49)

where m is the total number of disjoint cycles in τ−1σ and ci is the length of the i-th cycle. Rearranging
the W and W† terms in G[W, W†; σ, τ], we can rewrite g(σ, τ) as

g(σ, τ) = sgn(τ−1σ)

〈
m

∏
k=1

(
ck

∏
l=1

W
P(k)

l σ(P(k)
l )

W†
σ(P(k)

l )P(k)
l+1

)〉
W

= g(τ−1σ, id) =(−1)p−m

〈
m

∏
k=1

(
ck

∏
l=1

W
P(k)

l P(k)
l+1

W†
P(k)

l+1P(k)
l+1

)〉
W

.

(50)

Here, the integers
{

P(k)
l

}
denote the cycle structure of τ−1σ (Equation (36)), and they satisfy P(k)

l =

(τ−1σ)l−1(P(k)
1 ). We introduced here the notation that P(k)

l = P(k)
(l mod ck)

. In the second equality, we

have used sgn(τ−1σ) = (−1)p−m as well as Equation (48).
Note that the action Sw[W, W†] is invariant under the transformation

Wij →Wχ(i)χ(j), W†
ij →W†

χ(i)χ(j), (51)
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for arbitrary χ ∈ Sp. We now apply this transformation and choose the permutation χ, defined by

χ(P(k)
l ) = bk + l, (52)

where bk = ∑k−1
h=1 ch for k ≥ 2 and b1 = 0. After this transformation, g(σ, τ) becomes

g(σ, τ) =(−1)p−m

〈
m

∏
k=1

(
ck

∏
l=1

Wbk+l,bk+(l+1 mod ck)W
†
bk+(l+1 mod ck),bk+(l+1 mod ck)

)〉
W

. (53)

This equation shows that g(σ, τ) depends only on the lengths {ci|i = 1, ..., m} of the disjoint cycles of
τ−1σ.

Using these results, we prove in Appendix E that the function g(σ, τ) defined in Equation (46)
satisfies the recursion relation (Equation (37)) and therefore is given by the Weingarten function
g(σ, τ) = Wg(τ−1σ) for p ≤ q. See [83] for a discussion about extrapolating the results for the case
of p ≤ q to p > q. In Appendix D, we also provide the derivation for the asymptotic behavior of the
Weingarten function g(σ, τ) in the large q→ ∞ limit.

6. Conclusions
In summary, we derived an effective field theory which can be employed to investigate the

spectral statistics of the Floquet operator for a large class of Floquet quantum systems. We applied it
to a family of Floquet random quantum circuits whose Floquet operators are composed of two-qudit
random unitaries acting on pairs of neighboring qudits in a D-dimensional lattice. Universal RMT
statistics was found in the limit of infinite local Hilbert space dimensions, irrespective of the ordering
of local gates, the dimensionality of the qudit lattice, and the choice of the boundary condition (open
or periodic). This field-theoretical approach was also used to rederive the known results for the
Weingarten calculus, which is a method of computing Haar integrals of polynomial functions of the
matrix elements.

The wide applicability of the Weingarten calculus in quantum circuit studies suggests that this
field-theoretical approach may be generalized to investigate other fundamental features of quantum
many-body systems, which is a direction for future work. In particular, the field theory may be useful
for the investigation of phase transitions in quantum circuits, such as the measurement-induced
phase transition [106–109], which arises from the competition between the unitary dynamics and
the projective measurements. A renormalization group analysis of the field theory may be available
to carefully examine this phase transition. Moreover, a mapping has been found between the
entanglement growth (or the operator spreading in the high-dimensional case) in random quantum
circuits and the classical statistical mechanics problem of the surface growth in the Kardar–Parisi–
Zhang universality class [39,45]. The field-theoretical approach may provide some insight into this
mapping in a more generic setting.

In the present paper, we focus on the Weingarten calculus for the unitary group, having in mind
random quantum circuits whose local gates are given by the CUE random matrices. The derivation
can be immediately generalized to other compact groups [86,92–94], making use of the color–flavor
transformation for the corresponding group [68]. This generalization may have direct applications in
random quantum circuits with different symmetry classes [43]. Moreover, as a simple example, the
effective field theory given by Equation (19) was employed to study the spectral statistics of Floquet
quantum circuits whose local gates are drawn from the CUE ensemble. In fact, it is applicable to
quantum circuits with random gates drawn from various ensembles of unitary matrices. It is a useful
analytical tool to study the Thouless energy—the energy separation below which the RMT statistics
appears—and also to look for the putative transitions between the ergodic phase and many-body
localization phase in various Floquet random quantum circuit models [14,17,18,90,110,111].

The replica trick is used in the present paper to derive the sigma model for generic Floquet
quantum systems, which was originally constructed in the supersymmetric formalism [64–67]. One
advantage of using the replica method is that many terms in the action for higher-order fluctuations
are irrelevant in the replica limit and therefore can be omitted. However, unlike the supersymmetric
calculation, which allows for a nonperturbative analysis [64,70], the current replica calculation is
perturbative and cannot recover the oscillating term in the level correlation function. Consideration
of non-standard saddle points [80,102–104] may recover the missing oscillating term and is left for a
future study.
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Appendix A. Derivation of the Moments of Floquet Operator

In this appendix, we prove that the Floquet operator U given by Equation (20) with arbitrary
permutation σ ∈ SL′ follows the conditions given by Equations (23a) and (23b), in the limit q→ ∞.
In other words, the moments of the Floquet operator U for any Floquet random quantum circuit that
is related to the brickwork circuit studied in [13] by reordering the local quantum gates within one
period are given by Equation (23). We make use of the fact that the moments of the Floquet operator
U are given by the product of the moments of the independent random CUE matrices w(n,n+1), which
also take the form of Equation (23) after the replacement N → q2 and i→ (i(n), i(n+1)). Here, q2 and
(i(n), i(n+1)) are, respectively, the dimension and label of the two-qudit Hilbert space in which the
CUE matrix w(n,n+1) operates.

For any Floquet operator U that takes the form of Equation (20), we can express its second-order

moment
〈

UijU†
j′i′

〉
as

〈
UijU†

j′i′
〉
= ∑

k,k′

L′

∏
n=1

〈
w(n,n+1)

a(n) ,b(n+1) ;c(n) ,d(n+1) (w
(n,n+1))†

c′(n) ,d′(n+1) ;a′(n) ,b′(n+1)

〉

= ∑
k,k′

L′

∏
n=1

1
q2 δa(n) ,a′(n)δb(n+1) ,b′(n+1)δc(n) ,c′(n)δd(n+1) ,d′(n+1) .

(A1)

As earlier, vector i labels the many-body state of all the qudits in the circuit and its n-th element i(n)

indexes the single-particle state of the n-th qudit. In addition, k = (k(1), ..., k(L)) (k = (k(2), ..., k(L−1)))
is an L-dimensional ((L− 2)-dimensional) vector for the periodic (open) boundary condition. k(n)

labels the single-particle state at site n at an intermediate substep, and one has to sum over all possible
states k(n) = 1, ..., q. Furthermore, a(n) (b(n+1)) and c(n) (d(n+1)) are, respectively, the row and column

indices labeling the Hilbert space of the site n (n + 1) for the CUE random matrix w(n,n+1)
a(n) ,b(n+1) ;c(n) ,d(n+1) ,

and they are defined as follows. Note first that only the unitaries w(n,n+1) and w(n−1,n) act on the

qudit at site n, and
{

a(n), b(n), c(n), d(n)
}

depend on the ordering of these two unitaries. In particular,

if σ−1(n) < σ−1(n− 1) (i.e., unitary w(n,n+1) is applied before w(n−1,n)), we have

a(n) = i(n), c(n) = k(n), b(n) = k(n), d(n) = j(n), (A2)

and otherwise,

a(n) = k(n), c(n) = j(n), b(n) = i(n), d(n) = k(n). (A3)

For the periodic boundary condition, Equations (A2) and (A3) apply to arbitrary site n, which is
defined modulo L. By contrast, for the open boundary condition, these two equations hold for
1 < n < L. At the boundaries n = 1, L, we instead have

a(1) = i(1), c(1) = j(1), b(L) = i(L), d(L) = j(L). (A4)

The row and column indices for (w(n,n+1))† are defined in the same way, and {a′(n), b′(n), c′(n),
d′(n)} are related to

{
i′(n), j′(n), k′(n)

}
in exactly the same way as

{
a(n), b(n), c(n), d(n)

}
are related to{

i(n), j(n), k(n)
}

.

For both the cases of σ−1(n) < σ−1(n− 1) and σ−1(n) > σ−1(n− 1), {a(n), b(n), c(n), d(n)} are
related with

{
i(n), j(n), k(n), k(n)

}
by a permutation, and the identity

δa(n) ,a′(n)δb(n) ,b′(n)δc(n) ,c′(n)δd(n) ,d′(n) = δi(n) ,i′(n)δj(n) ,j′(n) (δk(n) ,k′(n) )
2, (A5)
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is always true for the periodic boundary condition (and for open boundary condition when 1 <
n < L). Making use of this property in Equation (A1), we find that the second-order moment of the
Floquet operator for the periodic boundary condition is given by

〈
UijU†

j′i′
〉
=

1
q2L ∑

k,k′

L

∏
n=1

δi(n) ,i′(n)δj(n) ,j′(n) (δk(n) ,k′(n) )
2 =

1
qL

L

∏
n=1

δi(n) ,i′(n)δj(n) ,j′(n) . (A6)

The second-order moment of U for the open boundary condition can be evaluated in a similar way:

〈
UijU†

j′i′
〉
=

1
q2(L−1)

δi(1) ,i′(1)δj(1) ,j′(1)δi(L) ,i′(L)δj(L) ,j′(L) ∑
k,k′

L−1

∏
n=2

δi(n) ,i′(n)δj(n) ,j′(n) (δk(n) ,k′(n) )
2

=
1
qL

L

∏
n=1

δi(n) ,i′(n)δj(n) ,j′(n) .

(A7)

As a concrete example, consider the staircase circuit depicted in Figure 1c with the periodic

boundary condition. In this case,
{

a(n), b(n), c(n), d(n)
}

are given by Equation (A3), and the second-
order moment for the Floquet operator U is given by〈

UijU†
j′i′
〉
= ∑

k,k′

〈
w(1,2)

i(1) ,i(2) ;k(1) ,k(2) (w
(1,2))†

k′(1) ,k′(2) ;i′(1) ,i′(2)

〉
×

L−1

∏
n=2

〈
w(n,n+1)

k(n) ,i(n+1) ;j(n) ,k(n+1) (w
(n,n+1))†

j′(n) ,k′(n+1) ;k′(n) ,i′(n+1)

〉
×
〈

w(L,1)
k(L) ,k(1) ;j(L) ,j(1) (w

(L,1))†
j′(L) ,j′(1) ;k′(L) ,k′(1)

〉
=

1
qL δi,i′δj,j′ .

(A8)

Reordering the two-qudit quantum gates changes the row and column labels of w(n,n+1) and
(w(n,n+1))† in the equation above but does not affect the final result. Note that this result for the

second-order moment
〈

UijU†
j′i′

〉
is valid for arbitrary q.

We now evaluate the fourth-order moment of U and consider the q → ∞ limit for simplicity.
This can be expressed as

〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
= ∑

k1,k′1,k2,k′2

L′

∏
n=1

〈
w(n,n+1)

a(n)1 ,b(n+1)
1 ;c(n)1 ,d(n+1)

1

w(n,n+1)

a(n)2 ,b(n+1)
2 ;c(n)2 ,d(n+1)

2

× (w(n,n+1))†
c′(n)1 ,d′(n+1)

1 ;a′(n)1 ,b′(n+1)
1

(w(n,n+1))†
c′(n)2 ,d′(n+1)

2 ;a′(n)2 ,b′(n+1)
2

〉

= ∑
k1,k′1,k2,k′2

L′

∏
n=1

1
q4

2

∑
s(n)=1



δs(n) ,1δ
a(n)1 ,a′(n)1

δ
b(n+1)

1 ,b′(n+1)
1

δ
c(n)1 ,c′(n)1

δ
d(n+1)

1 ,d′(n+1)
1

× δ
a(n)2 ,a′(n)2

δ
b(n+1)

2 ,b′(n+1)
2

δ
c(n)2 ,c′(n)2

δ
d(n+1)

2 ,d′(n+1)
2

+δs(n) ,2δ
a(n)1 ,a′(n)2

δ
b(n+1)

1 ,b′(n+1)
2

δ
c(n)1 ,c′(n)2

δ
d(n+1)

1 ,d′(n+1)
2

× δ
a(n)2 ,a′(n)1

δ
b(n+1)

2 ,b′(n+1)
1

δ
c(n)2 ,c′(n)1

δ
d(n+1)

2 ,d′(n+1)
1


.

(A9)

Here, k1,2 and k′1,2, like k and k′, are L-dimensional ((L− 2)-dimensional) vectors whose components
label the intermediate single-particle states for all sites (sites in the bulk of the lattice 1 < n < L) for the

periodic (open) boundary condition. In addition,
{

a(n)1/2, b(n)1/2, c(n)1/2, d(n)1/2

}
are related to

{
i(n)1/2, j(n)1/2, k(n)1/2

}
in the same way as

{
a(n), b(n), c(n), d(n)

}
are related to

{
i(n), j(n), k(n)

}
(see Equations (A2)–(A4)), and

similarly for
{

a′(n)1/2 , b′(n)1/2 , c′(n)1/2 , d′(n)1/2

}
. The summation over s(n) = 1, 2 is simply introduced here to

distinguish the two terms within the bracket.
In the second equality in Equation (A9), terms involving δ

k(n)1 ,k′(n)1
δ

k(n)2 ,k′(n)2
δ

k(n)1 ,k′(n)2
δ

k(n)2 ,k′(n)1
, com-

pared with those involving
(

δ
k(n)1 ,k′(n)1

δ
k(n)2 ,k′(n)2

)2
or
(

δ
k(n)1 ,k′(n)2

δ
k(n)2 ,k′(n)1

)2
, are of higher order in 1/q,

since the number of free summations is reduced. For this reason, terms with s(n) 6= s(n+1) for at least
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one n, compared with those with all s(n) identical, are of higher order in the large q expansion and
can be ignored. As a result, we obtain

〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
= ∑
k1,k′1,k2,k′2

1
q4L′



L′

∏
n=1

δ
a(n)1 ,a′(n)1

δ
b(n+1)

1 ,b′(n+1)
1

δ
c(n)1 ,c′(n)1

δ
d(n+1)

1 ,d′(n+1)
1

× δ
a(n)2 ,a′(n)2

δ
b(n+1)

2 ,b′(n+1)
2

δ
c(n)2 ,c′(n)2

δ
d(n+1)

2 ,d′(n+1)
2

+
L′

∏
n=1

δ
a(n)1 ,a′(n)2

δ
b(n+1)

1 ,b′(n+1)
2

δ
c(n)1 ,c′(n)2

δ
d(n+1)

1 ,d′(n+1)
2

× δ
a(n)2 ,a′(n)1

δ
b(n+1)

2 ,b′(n+1)
1

δ
c(n)2 ,c′(n)1

δ
d(n+1)

2 ,d′(n+1)
1


=

1
q2L

(
L

∏
n=1

δ
i(n)1 ,i′(n)1

δ
i(n)2 ,i′(n)2

δ
j(n)1 ,j′(n)1

δ
j(n)2 ,j′(n)2

+
L

∏
n=1

δ
i(n)1 ,i′(n)2

δ
i(n)2 ,i′(n)1

δ
j(n)1 ,j′(n)2

δ
j(n)2 ,j′(n)1

)
.

(A10)

In the second equality, we used the fact that Equation (A1) reduces to Equation (A6) (Equation (A7))
upon substituting Equations (A2) and (A3) (Equations (A2)–(A4)). This proves Equation (23) for any
Floquet operator described by Equation (20) with arbitrary permutation σ ∈ SL′ .

Appendix B. Generalization to Higher-Dimensional Floquet Quantum Circuits

In this appendix, we generalize the calculation in Appendix A to an arbitrary high dimension
D. More specifically, we consider now a D-dimensional Floquet random quantum circuit which
consists of a D-dimensional cubic lattice of qudits. During one period, each qudit is coupled to all its
neighboring qudits at different time substeps by different two-qudit unitary gates. All these unitary
gates are drawn randomly and independently from the CUE ensemble. We will prove that, for any
Floquet quantum circuit of this type with an arbitrary ordering of the two-qudit unitary gates, and for
both periodic and open boundary conditions, the second- and fourth-order moments of the Floquet
operator U take the form Equation (23), same as the CUE ensemble of dimension N = qLD

, where q is
the Hilbert space dimension of each qudit and L is the number of lattice sites in each direction. For
simplicity, we consider the large q→ ∞ limit for the calculation of the fourth-order moment.

In the following, we employ the notation that each qudit is labeled by a D-dimensional vector
n whose α-th component nα represents the coordinate in the lattice in dimension α = 1, ..., D. The
neighbors of qudit n are denoted by n± eα, with eα being the unit vector in dimension α. nα is
defined modulo L for the periodic boundary condition. The many-body state is indexed by i and the
single-particle state at site n is labeled by i(n).

As in the 1D case, the second-order moment
〈

UijU†
j′i′

〉
can be expressed as

〈
UijU†

j′i′
〉
= ∑

k,k′

′
∏
n

D

∏
α=1

〈
w(n,n+eα)

a(n,α) ,b(n+eα ,α) ;c(n,α) ,d(n+eα ,α) (w
(n,n+eα))†

c′(n,α) ,d′(n+eα ,α) ;a′(n,α) ,b′(n+eα ,α)

〉

= ∑
k,k′

′
∏
n

D

∏
α=1

1
q2 δa(n,α) ,a′(n,α)δb(n+eα ,α) ,b′(n+eα ,α)δc(n,α) ,c′(n,α)δd(n+eα ,α) ,d′(n+eα ,α) .

(A11)

Here, w(n,n+eα) represents the random CUE matrix that couples the qudits at sites n and n + eα.
∏′n stands for ∏L′

n1=1 ... ∏L′
nD=1, where L′ is defined as L (L − 1) for the periodic (open) boundary

condition. We use k(n,m) to denote the single-particle state for qudit n at a intermediate substep, and
it needs to be summed over (∑

q
k(n,m)=1

). ∑k denotes the product ∏n ∏Mn
m=1 ∑

q
k(n,m)=1

, where m runs
over m = 1, 2, ..., Mn and n runs over all sites in the lattice. Mn + 1 is the number of neighbors for
site n. For the periodic boundary condition, Mn = 2D− 1, while for the open boundary condition,

Mn = 2D− Dn − 1, (A12)

where Dn denotes the number of components of vector n satisfying nα = 1 or L. ∑k′ is defined in the

same manner. The row and column indices
{

a(n,α), b(n,α), c(n,α), d(n,α)
}

and
{

a′(n,α), b′(n,α), c′(n,α), d′(n,α)
}

label the single-particle state at site n at a certain time substep and depend on the ordering of the quantum
gates that couple site n with all its neighbors.

Consider first the periodic boundary condition. For arbitrary ordering of the two-qudit

unitary gates, the 4D numbers in the set S(1)
n =

{
a(n,α), b(n,α), c(n,α), d(n,α)|α = 1, 2, ..., D

}
are al-
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ways related to those in the set S(2)
n =

{
i(n), j(n), k(n,m), k(n,m)|m = 1, 2, ..., 2D− 1

}
by a permuta-

tion. Row and column indices for w† are defined in an analogous way. In particular, the num-

bers in the set S′(1)n =
{

a′(n,α), b′(n,α), c′(n,α), d′(n,α)|α = 1, 2, ..., D
}

are related to those in the set

S′(2)n =
{

i′(n), j′(n), k′(n,m), k′(n,m)|m = 1, 2, ..., 2D− 1
}

by the same permutation that connects S(1)
n to

S(2)
n . This means that, for arbitrary ordering of the two-qudit gates, the following identity is always

satisfied

D

∏
α=1

δa(n,α) ,a′(n,α)δb(n,α) ,b′(n,α)δc(n,α) ,c′(n,α)δd(n,α) ,d′(n,α) = δi(n) ,i′(n)δj(n) ,j′(n)

(
2D−1

∏
m=1

δk(n,m) ,k′(n,m)

)2

. (A13)

Inserting this equation into the second equality of Equation (A11), we obtain the second-order
moment for the Floquet operator

〈
UijU†

j′i′
〉
= ∑

k,k′
∏
n

1
q2D δi(n) ,i′(n)δj(n) ,j′(n)

(
2D−1

∏
m=1

δk(n,m) ,k′(n,m)

)2

=
1

qLD ∏
n

δi(n) ,i′(n)δj(n) ,j′(n) .

(A14)

For the open boundary condition, extra care must be taken for the sites n at the boundaries.
For any site n that sits in the bulk of the lattice, as in the case of the periodic boundary condi-

tion, the sets S(1)
n and S(2)

n (S′(1)n and S′(2)n ) defined above are always related by a 4D-number
permutation for any ordering of the quantum gates. Moreover, the permutation that connects

S(1)
n and S(2)

n is identical to the one that connects S′(1)n and S′(2)n . By contrast, at the boundary,
for any component of the vector n that satisfies nα = 1 (nα = L), b(n,α) and d(n,α) (a(n,α) and

c(n,α)) must be removed from the set S(1)
n =

{
a(n,β), b(n,β), c(n,β), d(n,β)|β = 1, 2, ..., D

}
. After ap-

plying this procedure, all the 2Mn + 2 numbers left in the new set S(1)
n are related to those in the

set S(2)
n =

{
i(n), j(n), k(n,m), k(n,m)|m = 1, 2, ..., Mn

}
by a permutation.

{
a′(n,α), b′(n,α), c′(n,α), d′(n,α)

}
are defined in the same way. They are related to

{
i′(n), j′(n), k′(n,m)

}
in exactly the same way as{

a(n,α), b(n,α), c(n,α), d(n,α)
}

are related to
{

i(n), j(n), k(n,m)
}

. This leads to

∏
α|nα 6=L

δa(n,α) ,a′(n,α)δc(n,α) ,c′(n,α) ∏
β|nβ 6=1

δb(n,β) ,b′(n,β)δd(n,β) ,d′(n,β)

= δi(n) ,i′(n)δj(n) ,j′(n)

(
Mn

∏
m=1

δk(n,m) ,k′(n,m)

)2

.

(A15)

Here, the first (second) product ∏α|nα 6=L (∏β|nβ 6=1) runs over all directions α (β) that obey nα 6= L
(nβ 6= 1).

Using this result, we find that Equation (A11) reduces to

〈
UijU†

j′i′
〉
= ∑

k,k′
∏
n

 1
qMn+1 ∏

α|nα 6=L
δa(n,α) ,a′(n,α)δc(n,α) ,c′(n,α) ∏

β|nβ 6=1
δb(n,β) ,b′(n,β)δd(n,β) ,d′(n,β)


=∏

n

 1
qMn+1 δi(n) ,i′(n)δj(n) ,j′(n)

Mn

∏
m=1

 ∑
k(n,m) ,k′(n,m)

δ2
k(n,m) ,k′(n,m)


=

1
qLD ∏

n
δi(n) ,i′(n)δj(n) ,j′(n) .

(A16)

We have therefore proved Equation (23) for the D-dimensional Floquet random quantum circuit
which has an arbitrary ordering of the two-qudit random unitary gates and is subject to either periodic
or open boundary condition.

The fourth-order moment
〈

Ui1j1
Ui2j2

U†
j′1i′1

U†
j′2i′2

〉
, in the limit of q → ∞, can be expressed in a

form similar to the 1D expression in Equation (A9):
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〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
= ∑
k1,k′1,k2,k′2

′
∏
n

D

∏
α=1

〈
w(n,n+eα)

a(n,α)
1 ,b(n+eα ,α)

1 ;c(n,α)
1 ,d(n+eα ,α)

1

w(n,n+eα)

a(n,α)
2 ,b(n+eα ,α)

2 ;c(n,α)
2 ,d(n+eα ,α)

2

× (w(n,n+eα))†
c′(n)1 ,d′(n+eα )

1 ;a′(n)1 ,b′(n+eα )
1

(w(n,n+eα))†
c′(n)2 ,d′(n+eα )

2 ;a′(n)2 ,b′(n+eα )
2

〉

= ∑
k1,k′1,k2,k′2

′
∏
n

D

∏
α=1

1
q4

2

∑
s(n,α)=1



δs(n,α) ,1δ
a(n,α)

1 ,a′(n,,α)
1

δ
b(n+eα ,α)

1 ,b′(n+eα ,α)
1

δ
c(n,α)

1 ,c′(n,α)
1

δ
d(n+eα ,α)

1 ,d′(n+eα ,α)
1

× δ
a(n,α)

2 ,a′(n,α)
2

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
2

δ
c(n,α)

2 ,c′(n,α)
2

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
2

+δs(n,α) ,2δ
a(n,α)

1 ,a′(n,α)
2

δ
b(n+eα ,α)

1 ,b′(n+eα ,α)
2

δ
c(n,α)

1 ,c′(n,α)
2

δ
d(n+eα ,α)

1 ,d′(n+eα ,α)
2

× δ
a(n,α)

2 ,a′(n,α)
1

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
1

δ
c(n,α)

2 ,c′(n,α)
1

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
1


.

(A17)

Here, the indices
{

a(n,α)
1/2 , b(n,α)

1/2 , c(n,α)
1/2 , d(n)1/2

}
are related to

{
i(n)1/2, j(n)1/2, k(n,m)

1/2

}
in the same way as{

a(n,α), b(n,α), c(n,α), d(n)
}

are related to
{

i(n), j(n), k(n,m)
}

(and similarly for the indices of w†). As

before, s(n,α) is introduced to distinguish the two terms in the bracket.
Similarly to the 1D case, in the second equality in the equation above, terms that contain the factor

δ
k(n,m)

1 ,k′(n,m)
1

δ
k(n,m)

2 ,k′(n,m)
2

δ
k(n,m)

1 ,k′(n,m)
2

δ
k(n,m)

2 ,k′(n,m)
1

are of higher order in the large q expansion compared with

those with the factor (δ
k(n,m)

1 ,k′(n,m)
1

δ
k(n,m)

2 ,k′(n,m)
2

)2 or (δ
k(n,m)

1 ,k′(n,m)
2

δ
k(n,m)

2 ,k′(n,m)
1

)2, due to the reduced number of

free summations. For this reason, we only need to keep terms for which all s(n,α) are identical in the
leading order of the large q expansion. This leads to〈

Ui1j1
Ui2j2

U†
j′1i′1

U†
j′2i′2

〉

= ∑
k1,k′1,k2,k′2



′
∏
n

D

∏
α=1

1
q4 δ

a(n,α)
1 ,a′(n,α)

1
δ

b(n+eα ,α)
1 ,b′(n+eα ,α)

1
δ

c(n,α)
1 ,c′(n,α)

1
δ

d(n+eα ,α)
1 ,d′(n+eα ,α)

1

× δ
a(n,α)

2 ,a′(n,α)
2

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
2

δ
c(n,α)

2 ,c′(n,α)
2

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
2

+
′

∏
n

D

∏
α=1

1
q4 δ

a(n,α)
1 ,a′(n,α)

2
δ

b(n+eα ,α)
1 ,b′(n+eα ,α)

2
δ

c(n,α)
1 ,c′(n,α)

2
δ

d(n+eα ,α)
1 ,d′(n+eα ,α)

2

× δ
a(n,α)

2 ,a′(n,α)
1

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
1

δ
c(n,α)

2 ,c′(n,α)
1

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
1


=

1
q2LD

(
∏
n

δ
i(n)1 ,i′(n)1

δ
i(n)2 ,i′(n)2

δ
j(n)1 ,j′(n)1

δ
j(n)2 ,j′(n)2

+ ∏
n

δ
i(n)1 ,i′(n)2

δ
i(n)2 ,i′(n)1

δ
j(n)1 ,j′(n)2

δ
j(n)2 ,j′(n)1

)
.

(A18)

In the second equality here, we made use of the intermediate results in the derivation of the second-
order moment (i.e., the fact that Equation (A11) is identical to Equations (A14) and (A16) for the
periodic and open boundary conditions, respectively).

Appendix C. Effective Field Theory of a Non-interacting Floquet Model

In this appendix, we compare the effective field theory of the Floquet random quantum circuits
studied earlier (or equivalently the CUE ensemble) with that of a non-interacting Floquet model and
show that the quartic fluctuations become important in the non-interacting case. We consider now
a time-periodic non-interacting system whose many-body Floquet operator is simply given by the
tensor product of all single-particle Floquet operators w(n):

U = w(1) ⊗ w(2) ⊗ ...⊗ w(L). (A19)

All
{

w(n)|n = 1, ..., L
}

are q× q unitary matrices drawn randomly and independently from the CUE
ensemble. As before, we consider the limit of large single-particle Hilbert space dimension q→ ∞ for
simplicity.

Since all single-particle Floquet operators w(n) are independent, the many-body SFF K(t) is
given by the product of all single-particle SFFs k(n)(t):

K(t) =
L

∏
n=1

k(n)(t), k(n)(t) =
〈
|Tr(w(n))t|2

〉
. (A20)
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Here, k(n)(t) is simply the SFF for the CUE ensemble of dimension q (Equation (9) after the replace-
ment N → q). Therefore, one can easily see that the many-body SFF now exhibits a fast-growing
ramp K(t) = tL, which plateaus at time t = q. The many-body quasi-energies are uncorrelated at
an energy separation of the order of the many-body level spacing ∆φ ∼ 1/N, where N = qL is the
dimension of the many-body Hilbert space [36].

The many-body Floquet operator U given by Equation (A19) satisfies Equation (23a) but not
Equation (23b). Its fourth-order moment in the large q limit takes the form

〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
=

L

∏
n=1

〈
w(n)

i(n)1 ,j(n)1

w(n)
i(n)2 ,j(n)2

(w(n))†
j′(n)1 ,i′(n)1

(w(n))†
j′(n)2 ,i′(n)2

〉

=
1

q2L

L

∏
n=1

(
δ

i(n)1 ,i′(n)1
δ

j(n)1 ,j′(n)1
δ

i(n)2 ,i′(n)2
δ

j(n)2 ,j′(n)2
+ δ

i(n)1 ,i′(n)2
δ

j(n)1 ,j′(n)2
δ

i(n)2 ,i′(n)1
δ

j(n)2 ,j′(n)1

)
.

(A21)

Note that for the chaotic Floquet circuits described by Equation (20), to have nonzero moments〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
, if i(n)1 = i′(n)1/2 is obeyed by one of the sites, it must hold for all other sites as well.

Otherwise, the fourth-order moment can be ignored in the leading order of the large q expansion.
However, this is no longer the case for the non-interacting model. It is this difference that leads to the
contrasting behavior of the many-body level statistics for the two models.

Since the second-order moment of the Floquet operator
〈

UijU†
j′i′

〉
for the current non-interacting

model is identical to that of the chaotic Floquet circuits discussed in Section 4, the quadratic fluctua-
tions in the effective theory (Equation (19)) are therefore also governed by the action in Equation (24).
On the other hand, the quartic-order effective action of the non-interacting model is different from
that of the chaotic model (Equation (30)) and assumes the form

S(4−1)
eff = − (αβ)2

2 ∑
i1,...,i8

tr
(

Z†
i1i2

Zi3i4

)
tr
(

Z†
i5i6

Zi7i8

)

× 1
q2L


L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)6 ,i(n)5
δ

i(n)3 ,i(n)4
δ

i(n)7 ,i(n)8
+ δ

i(n)2 ,i(n)5
δ

i(n)6 ,i(n)1
δ

i(n)3 ,i(n)8
δ

i(n)7 ,i(n)4

)

−
L

∏
n=1

δ
i(n)2 ,i(n)1

δ
i(n)6 ,i(n)5

δ
i(n)3 ,i(n)4

δ
i(n)7 ,i(n)8

.

(A22)

Here, we have inserted Equation (A21) into S(4)
eff in Equation (19c) and, as before, ignored the last

term in S(4)
eff , which is not important in the replica limit R→ 0.

Rewriting Equation (A22) in terms of X and Y, which denote, respectively, the diagonal and
off-diagonal components of the matrix Z in the Hilbert space, we obtain

S(4−1)
eff = − (αβ)2

2N2 ∑
k1 ,...,k4

tr
(

X†(k1)X(k2)
)

tr
(

X†(k3)X(k4)
)

×
[

L

∏
n=1

(
δ

k(n)1 ,0
δ

k(n)2 ,0
δ

k(n)3 ,0
δ

k(n)4 ,0
+

1
q2 δ

k(n)1 ,−k(n)3
δ

k(n)2 ,−k(n)4

)
−

L

∏
n=1

(
δ

k(n)1 ,0
δ

k(n)2 ,0
δ

k(n)3 ,0
δ

k(n)4 ,0

)]

− (αβ)2

2N2 ∑
i1 6=i2 ,i3 6=i4 ,i5 6=i6 ,i7 6=i8

tr
(

Y†
i1i2

Yi3i4

)
tr
(

Y†
i5i6

Yi7i8

)

×
L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)6 ,i(n)5
δ

i(n)3 ,i(n)4
δ

i(n)7 ,i(n)8
+ δ

i(n)2 ,i(n)5
δ

i(n)6 ,i(n)1
δ

i(n)3 ,i(n)8
δ

i(n)7 ,i(n)4

)
− (αβ)2

2N2 ∑
i1 6=i2 ,i5 6=i6

∑
k3 ,k4

[
tr
(

Y†
i1i2

X(k3)
)

tr
(

Y†
i5i6

X(k4)
)
+ tr

(
X†(−k3)Yi1i2

)
tr
(

X†(−k4)Yi5i6

)]

×
L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)6 ,i(n)5
δ

k(n)3 ,0
δ

k(n)4 ,0
+

1
q

δ
i(n)2 ,i(n)5

δ
i(n)6 ,i(n)1

δ
k(n)3 ,−k(n)4

)
.

(A23)

Here, X(k) represents the Fourier transform of the diagonal component Xii with respect to i (Equation (25)), and
the n-th component of momentum k is denoted by k(n).
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From Equation (A23), we obtain the self-energy for X(k) and Y from the quartic interactions in the replica
limit R→ 0,

(ΣX)
ab;ba(k, k) =

(αβ)2

N2

〈
Xab(−k)(X†)ba(−k)

〉
0

[
L

∏
n=1

(
δk(n) ,0 +

1
q2

)
− δk,0

]

=
(αβ)2

N
1

1− αβδk,0

[(
1 +

1
q2

)r0 1
q2(L−r0)

− δk,0

]
,

(ΣY)
ab;ba
i1i2 ;i′2i′1

=
(αβ)2

N2 ∑
i3 6=i4

〈
Yab

i3i4
(Y†)ba

i4i3

〉
0

×
L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)3 ,i(n)4
δ

i′(n)1 ,i′(n)2
+ δ

i(n)2 ,i(n)3
δ

i(n)1 ,i(n)4
δ

i′(n)2 ,i(n)3
δ

i′(n)1 ,i(n)4

)

=
(αβ)2

N

L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i′(n)1 ,i′(n)2
+

1
q

δ
i(n)2 ,i′(n)2

δ
i(n)1 ,i′(n)1

)

− (αβ)2

N

L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i′(n)1 ,i′(n)2
+

1
q

δ
i(n)2 ,i′(n)2

δ
i(n)1 ,i′(n)1

δ
i(n)1 ,i(n)2

)
.

(A24)

Here, we have used the expressions for the bare propagators (Equations (27) and (29)). r0 represents the number
of zero components in the L-dimensional vector k. We can therefore see that the self-energy for X(0) is of the
order of L/q2 N(1− exp(i∆φ)), and the self-energy for X(k) with r0 < L zero components in k is of the order
of 1/q2(L−r0)N. Furthermore, the self-energy (ΣY)

ab;ba
i1i2 ;i′2i′1

is of the order of 1/(NqL−r′ ), where r′ represents the

number of components satisfying i(n)2 = i(n)1 and i′(n)2 = i′(n)1 . Comparing Equation (A24) with Equation (31),

we find that the self-energies for X(k) (with at least one zero component in k) and Yi1i2 (when i(n)1 = i(n)2 is
satisfied for as least one site n) of the current non-interacting model are much larger than their counterparts for
the chaotic Floquet circuits. Therefore, in contrast to the chaotic case, the quartic-order fluctuations for the current
non-interacting model are essential.

Appendix D. Large q Expansion of the Weingarten Function

In this appendix, we study the asymptotic behavior of the Weingarten function g(σ, τ) (Equation (46)) for
the unitary group U(q) in the large q→ ∞ limit. Expanding the action Sw[W, W†] in powers of W, we obtain

Sw[W, W†] = q
∞

∑
n=1

(−1)n−1

n
tr
(

WW†
)n

, (A25)

where we have approximated the overall coefficient as q + 2R′ ≈ q. One can see from rescaling W by W →W/
√

q
that the higher-order terms in the expansion above are also of higher order in 1/q.

At the leading order in the large q expansion, we can therefore apply the Gaussian approximation and keep
only the quadratic term in Sw[W, W†]:

S(2)
w [W, W†] = q tr

(
WW†

)
. (A26)

The bare W propagator is given by 〈
WuvW†

v′u′

〉
0
= δuu′ δvv′

1
q

, (A27)

where the angular bracket with subscript 0 denotes the functional averaging with the Gaussian action S(2)
w .

Applying the Wick theorem to evaluate the expectation value of
〈

G[W, W†; σ, τ]
〉

0 (Equation (46)), we find that, in
the Gaussian approximation, g(σ, τ) is non-vanishing only when σ = τ:

g(σ, σ) =
p

∏
k=1

〈
Wkσ(k)W

†
σ(k)k

〉
0
=

1
qp , (A28)

which is consistent with the known result for the Gaussian approximation to the Weingarten function Wg(id) =
g(σ, σ) [82]. The Weingarten functions for all the remaining permutations τ−1σ 6= id are of higher order in 1/q.
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To deduce the leading-order term in the large q expansion of g(σ 6= τ), we should go beyond the Gaussian
approximation and keep the higher-order terms in Sw[W, W†]. Using Equation (53), we find

g(σ, τ) ∝
m

∏
k=1

〈(
ck

∏
l=1

Wbk+l,bk+(l+1 mod ck)
W†

bk+(l+1 mod ck),bk+(l+1 mod ck)

)[
q tr
(

WW†
)ck
]〉

0

∝
m

∏
k=1

(
q

ck

∏
l=1

〈
Wbk+l,bk+(l+1 mod ck)

W†
bk+(l+1 mod ck),bk+l

〉
0

×
〈

W†
bk+(l+1 mod ck),bk+(l+1 mod ck)

Wbk+(l+1 mod ck),bk+(l+1 mod ck)

〉
0

)
∝

m

∏
k=1

q1−2ck ,

(A29)

which leads to the known result g(σ, τ) ∝ qm−2p [82]. The extra factor of q Tr
(
WW†)ck in the first line of the

equation above represents the interaction vertex arising from the ck-th-order term in the expansion of Sw[W, W†]
(Equation (A25)).

Appendix E. Recursion Relation for the Weingarten Function

In this appendix, we will show that the function g(σ, τ) given by Equation (46) satisfies the recursion
relations for the Weingarten function, i.e., Equation (37). To derive the first recursion relation Equation (37a), we
make use of the identity UU† = 1, which leads to∫

U (q)
dUUi1 j1 Ui2 j2 ...Uip jp U†

j′1 i′1
U†

j′2 i′2
...U†

j′p i′p

=
q

∑
ip+1 ,i′p+1 ,jp+1=1

δip+1 ,i′p+1
δjp+1 ,j′p+1

×
∫
U (q)

dUUi1 j1 Ui2 j2 ...Uip jp Uip+1 jp+1 U†
j′1 i′1

U†
j′2 i′2

...U†
j′p i′p

U†
j′p+1 i′p+1

.

(A30)

Using Equation (45), the left hand side (L.H.S.) of the equation above can be expressed as

L.H.S. = ∑
τ′ ,σ′∈Sp

(
p

∏
k=1

δik ,i′
σ′ (k)

δjk ,j′
τ′ (k)

)
g(σ′, τ′), (A31)

while the right hand side (R.H.S.) acquires the form

R.H.S. =
q

∑
ip+1 ,i′p+1 ,jp+1=1

∑
τ′′ ,σ′′∈Sp+1

δip+1 ,i′p+1
δjp+1 ,j′p+1

(
p+1

∏
k=1

δik ,i′
σ′′ (k)

δjk ,j′
τ′′ (k)

)
g(σ′′, τ′′). (A32)

We then choose an arbitrary pair of permutations σ, τ ∈ Sp and set ik = i′
σ(k), jk = j′

τ(k), for k = 1, 2, ..., p. For

simplicity, we consider the case where p < q and all integers in the set
{

i′k |k = 1, ..., p
}

(
{

j′k |k = 1, ..., p + 1
}

) are
different from each other. In this case, the L.H.S. then becomes

L.H.S. = g(σ, τ) = V(p)
c1 ,c2 ,...,cm , (A33)

where {ck |k = 1, 2, ..., m} represent the lengths of disjoint cycles for the permutation τ−1σ and obey the constraint

∑m
k=1 ck = p. Here, we made use of the result that g(σ, τ) depends only on {ck} and expressed it as V(p)

c1 ,c2 ,...,cm (see
Section 5.2). On the other hand, the R.H.S. becomes

R.H.S. = ∑
τ′′ ,σ′′∈Sp+1

q

∑
i′p+1=1

(
p

∏
k=1

δi′
σ(k) ,i′

σ′′ (k)
δj′

τ(k) ,j′
τ′′ (k)

)
δi′p+1 ,i′

σ′′ (p+1)
δj′p+1 ,j′

τ′′ (p+1)
g(σ′′, τ′′). (A34)

Let us now examine all terms in the summation in Equation (A34). The contribution is nonzero for arbitrary
i′p+1 if σ′′ = σp and τ′′ = τp, where σp and τp are defined as

σp(k) =

{
σ(k), k = 1, 2, ..., p,
p + 1, k = p + 1,

τp(k) =

{
τ(k), k = 1, 2, ..., p,
p + 1, k = p + 1.

(A35)

The permutation τ−1
p σp, compared with τ−1σ, contains an extra disjoint cycle of length 1. More specifically, from

the earlier result (Equation (50)), we find that g(σp, τp) is given by

g(σp, τp) = (−1)p−m

〈(
Wp+1,p+1W†

p+1,p+1

) m

∏
k=1

(
ck

∏
l=1

W
P(k)

l ,σ(P(k)
l )

W†
σ(P(k)

l ),P(k)
l+1

)〉
W

=V(p+1)
c1 ,c2 ,...cm ,1.

(A36)
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Compared with g(σ, τ) = V(p)
c1 ,c2 ,...cm , it contains an extra factor Wp+1,p+1W†

p+1,p+1. Here, the integers
{

P(k)
l

}
denote the cycle structure of τ−1σ as in Equation (36). The total contribution from this pair of permutations (σp, τp)
to Equation (A34) is

q

∑
i′p+1=1

g(σp, τp) = qV(p+1)
c1 ,c2 ,...,cm ,1, (A37)

where the factor q comes from the summation over i′p+1.
Another non-vanishing contribution comes from the case when i′p+1 = i′

σ(l) for an arbitrary positive integer
l ≤ p. In this case, the contribution is non-vanishing if the permutations σ′′ = σl and τ′′ = τp, where τp is defined
in Equation (A35) and σl is given by

σl(k) =


σ(k), k 6= l, p + 1,
p + 1, k = l,
σ(l), k = p + 1.

(A38)

In this case, it is easy to see that δi′p+1 ,i′
σl (p+1)

= δi′
σ(l) ,i′

σl (l)
= δi′p+1 ,i′

σ(l)
= 1.

g(σl , τp) can be obtained from g(σ, τ) by replacing the factor Wl,σ(l)W†
σ(l),τ−1σ(l) in Equation (50) with

Wl,p+1W†
p+1,p+1Wp+1,σ(l)W†

σ(l),τ−1σ(l). This results in adding a number to the disjoint cycle to which number l
belongs (labeled by j):

g(σ, τ) =
〈

Wl,σ(l)W
†
σ(l),τ−1σ(l)...

〉
W

= V(p)
c1 ,...,cj ,...,cm ,

g(σl , τp) =

〈
Wl,σl (l)W

†
σl (l),τ

−1
p σl (l)

W
τ−1

p σl (l),σl τ
−1
p σl (l)

W†
σl τ
−1
p σl (l),τ

−1
p σl τ

−1
p σl (l)

...
〉

W
,

=
〈

Wl,p+1W†
p+1,p+1Wp+1,σ(l)W

†
σ(l),τ−1σ(l)...

〉
W

= V(p+1)
c1 ,...,cj+1,...,cm

.

(A39)

Here, “...” represents all remaining terms that stay the same in g(σl , τp) and g(σ, τ). Summing over all possibilities
of l, we find the total contribution of this type is

∑
l

g(σl , τp) =
m

∑
s=1

csV(p+1)
c1 ,...,cs−1 ,cs+1,cs+1 ,...,cm

. (A40)

Combining everything (Equations (A37) and (A40)), we find the R.H.S. of Equation (A30).

R.H.S. = qV(p+1)
c1 ,...,cm ,1 +

m

∑
s=1

csV(p+1)
c1 ,...,cs−1 ,cs+1,cs+1 ,...,cm

. (A41)

Equating this to the L.H.S. (Equation (A33)), we arrive at the recursion relation
Equation (37a), which holds for an arbitrary pair of σ, τ ∈ Sp (or equivalently, an arbitrary configuration of{

cj
}

that satisfies ∑m
j=1 cj = p) when p < q.

The recursion relation Equation (37b) can be proved in a similar way using the identity:

q

∑
jp ,j′p=1

δjp ,j′p

∫
U (q)

dUUi1 j1 Ui2 j2 ...Uip−1 jp−1 Uip jp U†
j′1 i′1

U†
j′2 i′2

...U†
j′p−1 i′p−1

U†
j′p i′p

= 0, (A42)

for ip 6= i′p. Using Equation (45), one can rewrite this equation as

q

∑
jp ,j′p=1

∑
τ′ ,σ′∈Sp

δjp ,j′p

(
p

∏
k=1

δik ,i′
σ′ (k)

δjk ,j′
τ′ (k)

)
g(σ′, τ′) = 0. (A43)

We now set jk = j′k and ik = i′
χ(k) for 1 ≤ k ≤ p. χ ∈ Sp represents an arbitrary nonidentical permutation

of numbers 1, 2, ..., p that satisfies χ(p) 6= p. It contains m disjoint cycles with lengths {ck |k = 1, 2, ..., m}. Since
χ 6= id and χ(p) 6= p, p stays in a cycle (labeled by 1) of length c1 ≥ 2. We consider the case p ≤ q and choose
the set

{
i′k |k = 1, ..., p

}
(
{

j′k |k = 1, ..., p− 1
}

), whose elements are all different from each other, for simplicity.
Equation (A43) can be rewritten as

q

∑
j′p=1

∑
τ′ ,σ′∈Sp

(
p

∏
k=1

δi′
χ(k) ,i′

σ′ (k)
δj′k ,j′

τ′ (k)

)
g(σ′, τ′) = 0. (A44)

Let us now examine all terms in the summation on the L.H.S. of Equation (A44). For arbitrary j′p, the
contribution is non-vanishing when σ′ = χ and τ′ = id. The total contribution of this type is

q

∑
j′p=1

g(χ, id) = qg(χ, id) = qV(p)
c1 ,c2 ,...,cm . (A45)
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Another type of non-vanishing contribution comes from the case where j′p = j′l and l also stays within the
same cycle to which p belongs (cycle 1). In this case, the contribution is non-vanishing if σ′ = χ and τ = τl , where
τl is defined as

τl(k) =


k, k 6= p, l,
l, k = p,
p, k = l.

(A46)

g(χ, τl) can be obtained from g(χ, id) by replacing W†
ll and W†

pp in G[W, W†; χ, id]
(Equation (46)) with W†

lp and W†
pl . This breaks cycle 1 of length c1 into two disjoint cycles of lengths c1 − c

and c (c obeys 0 < c < c1 and depends on l):

g(χ, id) = V(p)
c1 ,c2 ,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(l),lW

†
l,lWl,χ(l)W

†
χ(l),χ(l)...Wχ−1(p),pW†

p,p

) m

∏
k 6=1

(...)

〉
W

,

g(χ, τl) = V(p)
c1−c,c,c2 ,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(l),lW

†
l,p

)(
Wl,χ(l)W

†
χ(l),χ(l)...Wχ−1(p),pW†

p,l

) m

∏
k 6=1

(...)

〉
W

.

(A47)

Here, ∏m
k 6=1(...) represents the contribution from all remaining cycles other than 1 and stays the same for both

g(χ, id) and g(χ, τl). Taking into account all possible l belonging to cycle 1, we find that the total contribution
from such terms is

∑
l∈cycle 1

g(χ, τl) =
c1−1

∑
c=1

V(p)
c1−c,c,c2 ,...,cm . (A48)

The last type of non-vanishing contribution arises from the case when j′p = j′l and l does not belong to
cycle 1 (we label the cycle which l belongs by 2). In this case, the contribution is non-vanishing if σ′ = χ and
τ′ = τl (Equation (A46)). As mentioned earlier, g(χ, τl) can be obtained from g(χ, id) by replacing W†

ll and W†
pp in

G[W, W†; χ, id] with W†
lp and W†

pl , respectively. However, since now l, p belong to different cycles, this replacement
combines cycle 1 and cycle 2 into one cycle of length c1 + c2:

g(χ, id) = V(p)
c1 ,c2 ,c3 ,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(p),pW†

p,p

)(
Wl,χ(l)W

†
χ(l),χ(l)...Wχ−1(l),lW

†
l,l

) m

∏
k>2

(...)

〉
,

g(χ, τ0) = V(p)
c1+c2 ,c3 ,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(p),pW†

p,lWl,χ(l)W
†
χ(l),χ(l)...Wχ−1(l),lW

†
l,p

) m

∏
k>2

(...)

〉
.

(A49)

Here, ∏m
k>2(...) represents the contribution from all remaining cycles k 6= 1, 2, which remains the same for both

cases. Summing over all possible l that do not stay in cycle 1, we find the total contribution of this type is

∑
l /∈cycle 1

g(χ, τl) =
m

∑
s=2

csV(p)
c1+cs ,c2 ,...,cs−1 ,cs+1 ,...,cm . (A50)

From Equation (A42), one can see that, for an arbitrary choice of χ ∈ Sp that satisfies χ(p) 6= p (for
arbitrary {ck} with at least one cycle length c1 > 1), the sum of all three types of non-vanishing contributions
(Equations (A45), (A48), and (A50)) should equal 0, which proves Equation (37b) for p ≤ q.
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