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Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease.
Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain,
previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering
techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing
enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study,
we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature
extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble
(RSE) classifier along with the K-nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or
normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies.
Based on 5 x 5 cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification

accuracy, sensitivity, and specificity for all four datasets used in the study.

1. Introduction

Magnetic resonance imaging (MRI) of the brain provides
comprehensive diagnostic information for diagnosis [1]. It is
essential because it is noninvasive and safe and yields a higher
resolution that cannot be obtained by other techniques. MRI
is mainly utilized to diagnose different types of disorders such
as strokes, tumors, bleeding, injury, blood-vessel diseases or
infections, and multiple sclerosis (MS). The early diagnosis
of pathological brain disease and its prodromal stage are
critical and can decrease or halt the progression of the disease
[2]. Therefore, the classification of normal/pathological brain
status from MRIs is essential in clinical medicine as it focuses
on soft tissue anatomy and generates a large and detailed
dataset about the subject’s brain. However, the use of a large
database makes manual interpretation of the brain images

tedious, time consuming, and costly. The major drawback of
the manual approach is its irreducibility. Therefore, there is
a need for automated image analysis tools such as computer-
aided diagnosis (CAD) systems [3].

Considerable research has been carried out to develop
automatic tools for the classification of MR images to
distinguish between normal and pathological brains. El-
Dahshan et al. [4] utilized a three-level discrete wavelet
transform, accompanied by principal component analysis
(PCA), to decrease features. A good success rate was obtained
by using feedforward backpropagation neural networks
(BPNNs) and the K-nearest neighbor (KNN). Zhang and
Wu [5] recommended the application of a kernel support
vector machine (KSVM) and presented three new kernels:
homogenous polynomial, inhomogeneous polynomial, and
Gaussian radial basis for distinguishing between normal
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and abnormal images. Patnaik et al. [6] employed DWT to
obtain the approximation coeflicients. Later, a support vector
machine (SVM) was utilized to perform the classification.
Zhang et al. [7] recommended a training feedforward neural
network (FNN) with a unique scaled conjugate gradient
(SCG) technique. Kundu et al. [8] proposed combining
the Ripplet transform (RT) for feature extraction, PCA for
dimensionality reduction, and the least-square SVM (LS-
SVM) for classification, and the 5 x 5 stratified cross-
validation (SCV) offered high classification accuracies. El-
Dahshan et al. [9] utilized the feedback pulse-coupled neural
network for the preprocessing of MR images, the DWT
for feature extraction, PCA for features reduction, and the
FBPNN for the classification of pathological and normal
brains. Damodharan and Raghavan [10] used wavelet entropy
as the feature space, and they then used the traditional naive-
Bayes classifier classification method. Wang et al. [11] utilized
the stationary wavelet transform (SWT) to substitute for
DWT. Likewise, they proposed a hybridization of particle
swarm optimization (PSO) and the artificial bee colony
(HPA) method to obtain the optimal weights and biases of
FNN. Nazir et al. [12] applied denoising at the beginning,
and they achieved an overall classification accuracy of 91.8%.
Harikumar and Vinoth Kumar [13] used wavelet-energy and
SVM. Padma and Sukanesh [14] used the combined wavelet
statistical feature to segment and classify Alzheimer’s disease
(AD) as well as benign and malignant tumor slices. Zhang et
al. [15] utilized Hu moment invariants (HMI) and generalized
eigenvalue proximal SVM (GEPSVM) for the detection of
pathological brain in MRI scanning and obtained an accuracy
of 98.89%, sensitivity of 99.29%, and specificity of 92.00%.
Later on, Zhang et al. [16] used multilayer perceptron (MLP)
for classification, where two pruning techniques like dynamic
pruning (DP) and Bayesian detection boundaries (BDB were
used to find the optimal hidden neurons and an adaptive
real coded BBO (ARCBBO) method was implemented to
determine the optimal weights and obtained an accuracy of
98.12% and 98.24%, respectively. Nayak et al. [17] used 2D-
DWT, PCA, and Adaboost algorithm with random forest as
its base classifier and obtained an accuracy of 98.44% for
classification of pathological brain MR image with Dataset-
255. Later on, Nayak et al. [18] utilized two-dimensional
stationary wavelet transform (SWT), symmetric uncertainty
ranking (SUR) filter, and Adaboost with SVM classifier for
the detection of pathological brain MR images and obtained
an accuracy of 98.43% with Dataset-255. Wang et al. [19]
employed Pseudo Zernike moment and linear regression
classifier for classification of Alzheimer’s disease and yielded
an accuracy of 97.51%, sensitivity of 96.71%, and specificity
0f 97.73%. Alam et al. [20] utilized dual-tree complex wavelet
transform (DTCWT), principal component analysis (PCA),
and twin support vector machine (TSVM) for the detection
of Alzheimer’s disease classification and obtained an accuracy
0f 95.46 + 1.26.

Scholars have proposed different methods to extract fea-
tures for the pathological brain disease [21]. After analyzing
the above methods, we found that all of the methods achieved
promising results which indicated that 2D-DWT is effec-
tive in feature extraction for pathological brain detection.
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However, there are two problems. (1) Most of them utilize tra-
ditional PCA for feature extraction which is computational-
intensive for large datasets with a higher dimensions. (2) The
classification performance can be further improved, because
the feature vector contains excessive features, which required
more memory and increased computational complexity.
Moreover, it required too much time to train the classifiers.

To address the above-mentioned problems, we proposed
a new pathological brain detection system based on brain
MR images which has the potential improvements over the
other schemes. Weiner filter is used for the preprocessing
of the images. The proposed method uses 2D DWT for
the extraction of features because of its ability to analyze
images at different scales. PPCA is used in place of PCA
for the reduction of features which has the advantages of
computing the efficient dimension reduction in terms of the
distribution of latent variables, maximum-likelihood esti-
mates, probability model, dealing with the missing data, and
a combination of multiple PCA as probabilistic mixture. A
relatively new classifier known as random subspace ensemble
(RSE) classifier is employed which has the advantage of low
computational burden over the traditional classifiers. Hence,
the novelty of the proposed method lies in the application of
PPCA features and RSE classifier.

The article is organized as follows: Section 2 presents
details about the materials and methods. Section 3 describes
the experimental results, evaluation procedure, and discus-
sions. Finally, Section 4 presents the conclusion and future
research.

2. Materials and Methods

2.1. Materials. At present, there are four benchmark datasets
(DS) as DS-66, DS-90, DS-160, and DS-255, of different sizes
of 66, 90, 160, and 255 images, respectively. All the datasets
(DS) contain axial, T2-weighted, 256 x 256-pixel MR images
downloaded from medical school of Harvard University
(Boston, MA, USA) (URL: http://www.med.harvard.edu/
aablib/home.html) website. T2-weighted images are selected
as input image because T2-weighted (spin-spin) relaxation
gives better image contrast that is helpful to show different
anatomical structure clearly. Also, they are better in detecting
lesions than T1 weighted images.

We selected five slices from each subject. The selection
criterion is that, for healthy subjects, these slices were selected
at random. For pathological subjects, the slices should con-
tain the lesions by confirmation of these radiologists with ten
years of experiences. A sample of diseased slices is shown
in Figure 2. In this investigation, all diseases are treated as
pathological, and our task is a binary classification problem,
that is, to distinguish pathological brain from healthy brains.
Here, the whole brain is considered as the input image. We
did not select local characteristics like point and edge, and we
extract global image characteristics that are further learned
by the new cascade model. Let us keep in mind that our
procedure is different from the way neuroradiologists do.
They usually take the local features and compare with stan-
dard template to check whether focuses exist, such as shrink,
expansion, bleeding, and inflammation. While our technique
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is like AlphaGO, the computer researcher gives the machine
sufficient data, and then the machine can learn how to make
classification naturally. Including patients’ information (age,
gender, handedness, memory test, education, etc.) can add
additional information and thus may assist us to improve
the classification performance. Nevertheless, this new model
proposed in our research is only dependent on the imaging
data. Besides, the imaging data from the website does not
contain the subjects’ information.

The cost of predicting pathological to normal types is
severe, because the subjects may be told that she/he is normal
and thus avoids the mild symptoms displayed. The treatments
of patients may be postponed. Nevertheless, the cost of
misclassification of healthy to pathological types is low, since
correct treatment can be given by other diagnosis means.
The cost-sensitivity (CS) problem was resolved by changing
the class distribution at the beginning state, since original
data was accessible. That means we purposely picked up
more pathological brains than healthy ones into the dataset,
with the goal of making the classifier biased to pathological
brains, to solve the CS problem. The overfitting problem was
supervised by cross-validation technique.

In our experiment, DS-66 and DS-160 are extensively
employed for brain MR image classifications that consist
of normal brain images as well as abnormal brain images
from seven types of diseases, namely, glioma, meningioma,
Alzheimer’s disease, Alzheimer’s disease plus visual agnosia,
PicKs disease, sarcoma, and Huntington’s disease. DS-90
contains MR brain images of a healthy brain, AIDS dementia,
Alzheimer’s disease plus visual agnosia, Alzheimer’s disease,
cerebral calcinosis, cerebral toxoplasmosis, Creutzfeldt-Jakob
disease, glioma, herpes encephalitis, Huntington’s disease,
Lyme encephalopathy, meningioma, metastatic adenocarci-
noma, metastatic bronchogenic carcinoma, motor neuron
disease, MS, Pick’s disease, and sarcoma.

The third dataset, DS-255, includes images of four new
types of diseases embedded with the above seven types
of diseased images and normal brain images. The four
additional diseases are chronic subdural hematoma, cerebral
toxoplasmosis, herpes encephalitis, and MS.

2.2. Proposed Methodology. The proposed method comprises
four vital stages, namely, image preprocessing, feature extrac-
tion using 2D-DWT, feature reduction utilizing PPCA, and
classification using the RSE classifier. In order to enhance the
quality of the MR images, Wiener filter is employed, followed
by the extraction of approximation coefficients from MR
images utilizing a 2D-DWT with three-level decomposition.
Then, we saved these obtained features as our primary
features. Thereafter, then we employ PPCA for obtaining
uncorrelated discriminant set of features. Finally, we classi-
fied the reduced features using the RSE classifier with KNN as
a base classifier. The complete block diagram of the proposed
system is shown in Figure 1. A brief description about all these
four stages is shown below.

2.2.1. Preprocessing Using Wiener Filter. The gif images were
downloaded individually from the website of the Harvard
Medical School. Then, each of the gif images was converted

into JPG format manually. The images were in RGB format,
and they were then converted into grayscale intensity images.
Next, the intensity image is converted to double precision.
Acquired brain MR images require preprocessing to improve
the quality, enabling us to obtain better features. In our study,
we used the popular Wiener filter method.

The Wiener filter is used to replace the finite impulse
response (FIR) filter in order to decrease noise in signals
[22]. When an image is blurred by a familiar low-pass filter
(LPF), we can recover the image by inverse filtering. However,
inverse filtering is extremely sensitive to additive noise.
Wiener filtering accomplishes an optimal trade-off between
inverse filtering and noise smoothing in that it eliminates
the additive noise and inverts the blurring simultaneously.
In addition, it reduces the overall mean-square error during
the course of inverse filtering plus noise smoothing. The
Wiener filtering method generates a linear approximation of
the original image and is based on the stochastic framework.
The orthogonality principle indicates that the Wiener filter in
the Fourier domain can be articulated as follows:

H* (fl’fz)sxx(fl’fz) )
IH (fis I S + S (10 £2)

W(f, f>) = (1)

Here, S, (f;, f;) is the power spectrum of the original
image, S,,,(f1, f,) is the adaptive noise, and H(f, f,) is the
blurring filter.

2.3. 2D-DWT

2.3.1. Advantage of Wavelet Transform. The FT is the most
commonly used tool for the analysis of signals, and it breaks
down a time-domain signal into constituent sinusoids of
various frequencies, thus changing the signal from the time
domain to the frequency domain. Nevertheless, the FT has a
serious disadvantage as it removes the time information from
the signal. For instance, an investigator cannot determine
when a specific event took place based on a Fourier spectrum.
Therefore, the classification accuracy decreases as the time
information is lost.

Gabor modified the FT to examine only a small part of
the signal at a time. This approach is known as windowing or
the short-time FT (STFT) [23]. It accumulates a window of
appropriate shape to the signal. STFT can be considered as
a compromise between the time information and frequency
information. Nevertheless, the precision of the information is
limited by the window size.

The wavelet transform (WT) constitutes the next logical
step. It uses a windowing method with variable size, and the
progress of the signal analysis is shown in Figure 3. Another
benefit of the WT is that it selects a “scale” in place of the
traditional “frequency”; that is, it does not generate a time-
frequency view of a specific signal but a time-scale view. The
time-scale view is another way of visualizing data and is more
commonly used and effective.

2.3.2. DWT. This is an effective implementation of the WT,
and it utilizes the dyadic scales and positions [24]. The
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FIGURE 1: Block diagram of the proposed system.

FIGURE 2: Brain MR images: (a) healthy brain; (b) AIDS dementia; (c) Alzheimer’s disease plus visual agnosia; (d) Alzheimer’s disease; (e)
cerebral calcinosis; (f) cerebral toxoplasmosis; (g) Creutzfeldt-Jakob disease; (h) glioma, (i) herpes encephalitis; (j) Huntington’s disease; (k)
Lyme encephalopathy; (I) meningioma; (m) metastatic adenocarcinoma; (n) metastatic bronchogenic carcinoma; (0) motor neuron disease;

(p) multiple sclerosis; (q) Pick’s disease; and (r) sarcoma.

fundamentals of the DWT are as follows. Let x(¢) be a square-
integral function. The continuous WT of the signal x(t)
relative to a real-valued wavelet y(t) is defined as

W (a T)—wa(t)i *(t_—T>dt @)
> - o \/Ew a >
where W(a, 1) is the WT, 7 indicates the function across
x(t), and the variable a is the dilation factor (both real
and positive numbers). Here, the asterisk () indicates the
complex conjugate.

Equation (1) can be discretized by restraining a and 7 to
a discrete lattice (a = 2/ and T = 2’k) to provide the DWT,
which is given as follows:

cA i (n) = DS [Zx (n) l; (n - ij)] ,
' (3)
c¢Dj (n) = DS [Zx (n) h; (n— 2jk)] )

Here, cAj; and cD;; refer to the coefficients of
the approximation components and detailed components,
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FIGURE 4: Three-level wavelet decomposition tree.

respectively. I(n) and h(n) represent the LPF and high-pass
filter (HPF), respectively. j and k represent the wavelet
scale and translation factors, respectively. The DS operator
represents downsampling. The approximation component
has low-frequency components of the image, whereas the
detailed components contain high-frequency components.
Figure 4 shows a three-level decomposition tree.

2.3.3. 2D-DWT. In a case involving 2D images, the DWT
is employed in each dimension separately. A sample of a
pathological brain MR image with its three-level wavelet
decomposition is shown in Figure 5. Consequently, there
are four subband images (LL, LH, HH, and HL) at each
scale. The subband LL is utilized for the other 2D-DWT
and can be considered as the approximation component of
the image, whereas the LH, HL, and HH subbands can be
considered as the detailed components of the image. As the
level of the decomposition is increased, a more compact, but
coarser approximation component is accessed. Thus, wavelets
give a simple hierarchical foundation for clarifying the image
information.

There are various types of wavelets, for example, Daub-
echies, symlets 1, coiflets 1, and biorthogonal wavelets and

reverse biorthogonal 1.1. We tested our result with each
type of the wavelet family as shown in Table 2. In our
research, the approximation coefficient of three-level wavelet
decomposition along with a Haar wavelet yields promising
results when compared to others in the wavelet family. Hence,
Haar wavelet was selected in the experiment. It is also the
simplest and most significant wavelet of the wavelet family.
Moreover, it is very fast and can be used to extract basic
structural information from an image. All the features are
present for all the images, and a feature matrix is generated.

2.4. Probabilistic Principal Component Analysis. The PPCA
algorithm proposed by Tipping et al. [36-38] is based on
the estimation of the principal axes when any input vector
has one or more missing values. The PPCA reduces the
high-dimensional data to alower-dimensional representation
by relating a p-dimensional observation vector y to a k-
dimensional latent (or unobserved) variable x that is regarded
as normal with zero mean and covariance I(k). Moreover,
PPCA depends on an isotropic error model. The relationship
can be established as

yr=Waex" +u+e (4)

where y denotes the row vector of the observed variable, ¢
denotes the isotropic error term, and x is the row vector of
latent variables. The error term, ¢, is Gaussian with zero mean
and covariance v * I(k), where v is the residual variance.
To make the residual variance greater than 0, the value of
k should be smaller than the rank. A standard principal
component where v equals 0 is the limiting condition of
PPCA. The observed variables, y, are conditionally indepen-
dent for the given values of the latent variables x. Therefore,
the correlation between the observation variables is explained
by the latent variables, and the error justifies the variability
unique to y;. The dimension of the matrix W is p x k, and
it relates both latent and observation variables. The vector u
allows the model to acquire a nonzero mean. PPCA considers
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FIGURE 5: Pathological brain image and its wavelet coeflicient at three-level decomposition.

the values to be missing and arbitrary over the dataset. From
this model,

yNN(#,W*WT+v*I(k)). (5)

Given that the solution of W and v cannot be determined
analytically, we used the expectation-maximization (EM)
algorithm for the iterative maximization of the corresponding
log-likelihood function. The EM algorithm considers missing
values as additional latent variables. At convergence, the
columns of W span the solution subspace. PPCA then yields
the orthonormal coefficients.

With respect to our research, the size of the image is 256
x 256. After three-level decomposition, the vector feature
becomes 32 x 32 =1024. Here, all the features are not relevant
for the classification. Because of the high computational
cost, we utilized PPCA for the dimensionality reduction. The
advantage of PPCA over PCA is its computational efficiency.

2.5. RSE Classifier. Ensemble classification includes combin-
ing multiple classifiers to obtain more accurate predictions
than those obtained utilizing individual models. In addition,
ensemble learning techniques are considered very useful for
upgrading prediction accuracy. Nevertheless, base classifiers
must be as precise and diverse as possible to increase the
generalization capability of an ensemble model.

For the classification of normal and pathological brain
MRI images, we used a random subspace classifier that
uses KNN as a base classifier. The main idea behind the
success of ensemble classification is the diversification in the
classification that makes the ensemble classifier. With the
ensemble classification approach, each classifier provides a
different error for different instant. Therefore, we can develop
a strong classifier that can decrease the error. The ran-
dom subspace classifier is a machine-learning classifier that
divides the entire feature space into subspaces. Each subspace
randomly selects features from the original feature space. It
must be guaranteed that the boundaries of the particular base
classifier are significantly different. To realize this, an unstable
or weaker classifier is utilized as base classifier because they
create sufficiently varied decision boundaries, even for small
disturbances in the training data parameters.

We used the majority voting method to obtain the final
decision of the class membership. In the proposed algorithm,
we used KNN as the base classifier owing to its simplicity.
After selecting a random subspace, a new set of KNNs
is estimated. The majority voting method was utilized to
combine the output of each base classifier for the decision
preparing test class.

TaBLE 1: Confusion matrix for a binary classifier to discriminate
between two classes (A, and A,).

Predicted class

True class

A, (patients) A, (controls)
A, (patients) TP FN
A, (controls) FP TN

Here, TP (true positive): correctly categorized as positive cases, TN (true neg-
ative): correctly categorized as negative cases, FP (false positive): incorrectly
categorized as negative cases, FN (false negative): incorrectly categorized as
positive cases.

TaBLE 2: Comparison of different wavelet families.

Wavelet family Accuracy
Haar 99.20%
Daubechies 2 98.60%
Coiflets 1 96.98%
Symlets 1 99.01%
Biorthogonal 1.1 98.64%

2.6. Pseudocode of Proposed System. Our proposed system
can be outlined in four major stages. The steps involved are
depicted in Pseudocode 1.

2.7. Performance Measures. Various techniques are used to
evaluate the classifier’s efficiency. The performance is deter-
mined based on the final confusion matrix. The confusion
matrix holds correct and incorrect classification results.
Table 1 illustrates a confusion matrix for binary classification,
where TP, TN, FP, and FN depict true positive, true negative,
false positive, and false negative, respectively.

Here, pathological brains are assumed to hold the value
“true,” and normal control (NC) ones are assumed to hold the
value “false” following normal convention. Now, we calculate
the performance of the proposed approach on the basis of
sensitivity, specificity, accuracy, and precision as follows.

(i) Sensitivity (true positive rate): this is the tendency or
ability to determine that the diagnostic test is positive when
the person has the disease:

TP
Sensitivity = ﬁ (6)
+

(ii) Specificity (true negative rate): this is the tendency or
ability to determine that the diagnostic test is negative when
the person does not have the disease:

TN

e m— 7
TN + FP @

Specificity =
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Input: T2-weighted MR brain images.
Parameter: N, total number of images
Step 1 (weiner filter)

fori=1:N

Read the images and apply wiener filter
end

Step 2 (2D-DWT)

Fori=1:N

Read in the image file

End

forj=1:N

Put the new dataset in a matrix Y.
End

Fork=1:5

Classify test image
End

Apply the DWT using for the 3rd level using “Haar” wavelet to extract the wavelet coefficients.
A matrix X [M x N] is employed to store all the coefficients.

Step 3. Reduce the features from the coeflicients using PPCA

Apply PPCA transformation on the obtained wavelet coefficients.

Step 4 (RSE classification using 5 x 5 cross-validation)

Divide the input data I and target data T into 5 different groups randomly

Use the kth group for test, and other 4 groups to train the RSE algorithm.

Calculate average specificity, sensitivity, and accuracy.

PseupocCoDE 1: Pseudocode of the proposed system.

Investigation 1

Investigation 2

Investigation 3

Investigation 4

Investigation 5

mmm Training
1 Validation

F1GURE 6: Illustration of k-fold cross-validation.

(iii) Accuracy: this is a measure of how many diagnostic
tests are correctly performed:

TP + TN
Accuracy = * . (8)
TP + TN + FP + FN
(iv) The precision and the recall are formulated by
TP
Precision = ———. ©))
TP + FP

2.8. Cross-Validation. Cross-validation (CV) is a model-
assessment method that is used to evaluate the performance
of a machine-learning algorithm prediction on a new DS on
which it has not been trained. It helps to solve the overfitting

problems. Each cross-validation round involves randomly
portioning the original DS into a training set and a validation
set. The illustration of the k-fold CV is shown in Figure 6. The
training set is used to train a supervised learning algorithm,
while a test set is used to evaluate its performance.

To make the RSE classifier more reliable and generalize to
independent datasets, a 5 x 6-fold stratified cross-validation
(SCV) and 5 x 5-fold SCV are employed. A 5 x 6-fold SCV
is employed for DS-66 and 5 x 5-fold SCV is used for DS-
90, DS-160, and DS-255. For DS-66, 55 MR images are used
for training whereas 75, 128, and 204 images are used for DS-
90, DS-160, and DS-255 respectively. The validation images
for DS-66, DS-90, DS-160, and DS-255 are 11, 15, 32, and 51,
respectively.
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TaBLE 3: Comparison result of the proposed method.
Proposed method Feature DS-66 DS-90 DS-160 DS- 255
Logistic regression 13 100.00 100.00 100.00 92.50
QDA 13 100.00 98.90 98.90 96.50
KNN 13 100.00 100.00 100.00 9730
RSE classifier 13 100.00 100.00 100.00 99.20
TABLE 4: Classification comparison with DS-90.
Existing methods Success cases Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)
DWT + PCA + BPNN [25] 388 88.00 56.00 97.14 86.22
DWT + PCA + RBF-NN [25] 411 92.47 72.00 98.25 91.33
DWT + PCA + PSO-KSVM [25] 440 98.12 92.00 99.52 97.78
WE + BPNN [26] 390 88.47 56.00 97.16 86.67
WE + KSVM [27] 413 93.18 68.00 98.02 91.78
DWT + PCA + GA-KSVM (28] 439 97.88 92.00 99.52 97.56
WE + PSO-KSVM [29] 437 97.65 88.00 99.28 97.11
WE + BBO-KSVM [29] 440 98.12 92.00 99.52 97.78
WE + QPSO-KSVM [30] 442 98.59 92.00 99.52 98.22
WERFT + PCA + GEPSVM ([31] 446 99.53 92.00 99.53 99.11
HMI + SEPSVM [15] 445 99.06 96.00 98.89
HMI + TSVM [15] 445 99.29 92.00 98.89
Proposed
2D- DWT + PPCA + RSE (proposed) 450 100.00 100.00 100.00 100.00

3. Results and Discussion

In this study, we implemented a new machine-learning
framework using MATLAB 2016a on an Intel computer with
a Core-i5 processor and 16 GB RAM running under the
Windows 7 operating system. This program can be tested or
run on any computer platform where MATLAB is available.

3.1. Feature Extraction and Optimum Wavelet. In the pro-
posed system, the three-level 2D-DWT of the Haar wavelet
breaks down the input image into 10 subbands, as illustrated
in Figure 5. The top left corner of the wavelet coefficient image
(Figure 5) represents the approximation coefficients of the
three-level decomposition of the image, whose size is only 32
x 32 = 1024. These obtained features are the initial features.
The size of these features is still large, and the matrix size
needs to be reduced. Now, these reduced features are sent as
the input to the PPCA.

3.2. Feature Reduction. The use of PPCA as a dimension-
reduction tool reduces the feature size to its desired size.
Here, we can take the feature as desired. It is better that
the desired number of features should at least preserve more
than 90% of the variance. However, in this study, we did not
take 95% of the variance because it may lead to a higher
computational cost. Researchers have considered different
numbers of features. In our case, we first used a small
number of features, but the accuracy was poor. However, the
result with 13 principal components was excellent. Hence,

the proposed method uses 13 principal components to earn
higher classification accuracy.

3.3. Classification Results. The reduced features were sent
to the classifier, and the results obtained with the different
classifier are promising. From the experiment, it is seen
that the proposed method works well for all four DSs using
13 principal components. The performances obtained with
logistic regression, quadratic discriminant analysis, KNN,
and RSE classifier with KNN as a base classifier are shown
in Table 3. From the table, we see that the proposed method
outperforms other methods. We utilized a 5-fold CV for DS-
90, DS-160, and DS-255, whereas we utilized a 6-fold CV for
DS-66. The RSE classifier obtained an accuracy of 100.00%,
100.00%, 100.00%, and 99.20%, with DS-66, DS-90, DS-160,
and DS-255, respectively. The result obtained with the cubic
SVM is the same as the RSE classifier for the dataset beside
DS-66, where it could only achieve 98.50%.

3.4. Comparison with Existing Schemes. To further demon-
strate the effectiveness of the proposed approach, we com-
pared 21 existing algorithms. The algorithms and their cor-
responding results are listed in Tables 4 and 5. Table 4
shows the comparison result with DS-90. It is evident from
Table 4 that our proposed method correctly matched all cases
with 100% sensitivity, 100% specificity, 100% precision, and
100% accuracy. A comparison of the obtained results shows
that our algorithm is superior to the others. This shows the
effectiveness of the preprocessing technique combined with
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TaBLE 5: Classification comparison (DS-66, DS-160, and DS-255).

Approaches Feature Run Accuracy (%)

DWT + SVM + POLY [24] 4761 DS-66 DS-160 DS-255
DWT + SVM + RBF [24] 4761 5 98.00 9715 96.37
DWT + PCA + k-NN [4] 7 5 98.00 9733 96.18
DWT + PCA + FNN + ACPSO [32] 19 5 98.00 97.54 96.79
DWT + PCA + FNN + SCABC [33] 19 5 100.00 98.75 97.38
DWT + PCA + BPNN + SCG [7] 19 5 100.00 98.93 97.81
DWT + PCA + KSVM [5] 19 5 100.00 98.29 9714
RT + PCA + LS-SVM [34] 5 100.00 99.38 98.82
SWT + PCA + IABAP-FNN [11] 10 100.00 98.88 98.43
WT + PCA + ABC-SPSO-FNN [11] 10 100.00 99.44 99.18
WE + NBC [35] 10 92.58 99.62 99.02
DWT + PCA + ADBREF [17] 13 100.00 99.30 98.44
DWT + SUR + ADBSVM [18] 7 5 100.00 99.22 98.43
FRFE + DP-MLP + ARCBBO [16] 12 10 100.00 99.19 98.24
FRFE + BDP-MLP + ARCBBO ([16] 12 10 100.00 99.31 98.12
DWT + PCA + RSE 13 100.00 99.57 98.90
DWT + PPCA + RSE (proposed) 13 100.00 100.00 99.20

features extracted using the WT and PPCA. Table 4 shows the
result of 5 runs of the proposed system. Table 5 demonstrates
the comparison results over the three DSs in terms of the
number of features, number of runs, and average accuracy.
Here, some of the recent schemes were run 10 times, while
others were run five times. From Tables 4 and 5, we see that
most of the techniques achieved excellent classification when
subjected to DS-66 as it is smaller in size. However, none
of the algorithms achieved 100.00% with DS-90 and DS-160
because DS-255 is larger in size and includes more types of
diseased brains; therefore, no current CAD system can earn
a perfect classification.

Finally, this proposed “DWT + PPCA + RSE” achieved
an accuracy of 100% for DS-66, DS-90, and DS-160 and an
accuracy of 99.20% for DS-255, which is comparable with
other recent studies and greater than the entire algorithm
presented in Table 5. The improvement realized by the
recommended scheme appears to be marginal compared with
other schemes, but we obtained this result based on a careful
statistical analysis (five repetitions of k-fold CV). Thus, this
improvement is reliable and robust.

4. Conclusion

This paper proposed a new cascade model of “2D-DWT +
PPCA + RSE” for the detection of pathological brains. The
experiments validated its effectiveness as it achieved an accu-
racy of 99.20%. Our contributions lie in three points. First,
we introduced the Wiener filter and showed its effective-
ness. Besides this we introduced the PPCA and RSE classifier
and proved it gives the better performance when compared
with other state-of-the-art algorithms. In this work, we trans-
formed the PBD problem to a binary classification task. We
presented a novel method that replaced PCA and introduced
RSE classifier. The experiment showed the superiority of our
methods to existing approaches.

The proposed algorithm can also be employed in other
fields, for example, face recognition, breast cancer detection,
and fault detection. Moreover, this method has been validated
on the publically available datasets which are limited in size.
Also, in the selected dataset, the images are collected during
the late and middle stage of diseases; however, the images with
disease at early stages need to be considered.

In future research, we may consider images from other
modalities like MRSI, PET, and CT to increase robustness
to our scheme. The proposed method can be validated on
a larger clinical dataset utilizing modern machine-learning
techniques like deep learning, extreme learning, and so on,
after collecting the enough brain images from the medi-
cal institutes. Internet of things can be another promising
research field to embed this PBDS.

Nomenclature

MR(I):  Magnetic resonance (imaging)

DWT: Discrete wavelet transform

PPCA: Probabilistic principal component analysis
KNN:  k-nearest neighbor

CV: Cross-validation
BPNN:

Backpropagation neural network
KSVM: Kernel support vector machine
SCG: Scale conjugate gradient

LS-SVM: Least-square support vector machine
FBPNN: Feedforward backpropagation neural
network

SWT: Stationary wavelet transform
PSO: Particle swarm optimization
CAD:  Computer-aided diagnosis
STFT:  Short-time Fourier transform
QDA: Quadratic discriminant analysis
SUR: Symmetric uncertainty ranking
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PZM: Pseudo Zernike moment
SWT: Stationary wavelet transform

DTCWT: Dual-tree complex wavelet transform
RBFNN: Radial basis function neural network

CT:

Computed tomography

TSVM:  Twin support vector machine

HMI: Hu moment invariants

MLP: Multilayer perceptron

ARCBBO: Adaptive real coded biogeography-based

DP:

optimization
Dynamic pruning.

Conflicts of Interest

The

authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Brain Research Program
through the National Research Foundation of Korea funded
by the Ministry of Science, ICT & Future Planning (NRF-
2014M3C7A1046050). And this work was supported by the
National Research Foundation of Korea Grant funded by the
Korean Government (NRF-2017R1A2B4006533).

References

(1]

(2]

[3

D. Jha and G.-R. Kwon, “Alzheimers disease detection in MRI
using curvelet transform with K-NN,” Journal of KIIT, vol. 14,
no. 8, 2016.

S. Alam, M. Kang, J.-Y. Pyun, and G.-R. Kwon, “Performance
of classification based on PCA, linear SVM, and Multi-kernel
SVM,” in Proceedings of the 8th International Conference on
Ubiquitous and Future Networks, ICUFN 2016, pp. 987-989,
Vienna, Austria, July 2016.

E Thorsen, B. Fite, L. M. Mahakian et al., “Multimodal imaging
enables early detection and characterization of changes in
tumor permeability of brain metastases,” Journal of Controlled
Release, vol. 172, no. 3, pp. 812-822, 2013.

E.-S. A. El-Dahshan, T. Hosny, and A.-B. M. Salem, “Hybrid
intelligent techniques for MRI brain images classification,”
Digital Signal Processing, vol. 20, no. 2, pp. 433-441, 2010.

Y. Zhang and L. Wu, “An MR brain images classifier via prin-
cipal component analysis and kernel support vector machine,”
Progress in Electromagnetics Research, vol. 130, pp. 369-388,
2012.

L. M. Patnaik, S. Chaplot, and N. R. Jagannathan, “Classification
of magnetic resonance brain images using wavelets as input to
support vector machine and neural network,” Biomedical Signal
Processing and Control, vol. 1, no. 1, pp. 86-92, 2006.

Y. Zhang, Z. Dong, L. Wu, and S. Wang, “A hybrid method
for mri brain image classification,” Expert Systems with Appli-
cations, vol. 38, no. 8, pp. 10049-10053, 2001.

M. K. Kundu, M. Chowdhury, and S. Das, “Brain MR image
classification using multi-scale geometric analysis of ripplet,”
Progress in Electromagnetics Research, vol. 137, pp. 1-17, 2013.

E. A.-S. El-Dahshan, H. M. Mohsen, K. Revett, and A.-B.
M. Salem, “Computer-aided diagnosis of human brain tumor
through MRI: A survey and a new algorithm,” Expert Systems
with Applications, vol. 41, no. 11, pp. 5526-5545, 2014.

Computational Intelligence and Neuroscience

[10] S. Damodharan and D. Raghavan, “Combining tissue sege-
mentation and neural network for brain tumor detection,” The
International Arab Journal of Information Technology, vol. 12, no.
1, 2015.

[11] S. Wang, Y. Zhang, Z. Dong et al, “Feed-forward neural
network optimized by hybridization of PSO and ABC for
abnormal brain detection,” International Journal of Imaging
Systems and Technology, vol. 25, no. 2, pp. 153-164, 2015.

[12] M. Nazir, E Wahid, and S. A. Khan, “A simple and intelligent
approach for brain MRI classification,” Journal of Intelligent &
Fuzzy Systems. Applications in Engineering and Technology, vol.
28, no. 3, pp. 1127-1135, 2015.

[13] R. Harikumar and B. Vinoth Kumar, “Performance analysis
of neural networks for classification of medical images with
wavelets as a feature extractor;” International Journal of Imaging
Systems and Technology, vol. 25, no. 1, pp. 33-40, 2015.

[14] A. Padma and R. Sukanesh, “Segementation and classification
of brain CT images using combined wavelet statistical texture
features,” Arabian Journal for Science Engineering, vol. 39, no. 2,
2014.

Y. Zhang, J. Yang, S. Wang, Z. Dong, and P. Phillips, “Pathologi-
cal brain detection in MRI scanning via Hu moment invariants
and machine learning,” Journal of Experimental and Theoretical
Artificial Intelligence, vol. 29, no. 2, pp. 299-312, 2017.

[16] Y. Zhang, Y. Sun, P. Phillips, G. Liu, X. Zhou, and S. Wang, ‘A
multilayer perceptron based smart pathological brain detection
system by fractional fourier entropy,” Journal of Medical Sys-
tems, vol. 40, no. 7, article 173, 2016.

[17] D. R. Nayak, R. Dash, and B. Majhi, “Brain MR image classi-
fication using two-dimensional discrete wavelet transform and
AdaBoost with random forests,” Neurocomputing, vol. 177, pp.
188-197, 2016.

[18] D. R. Nayak, R. Dash, and B. Majhi, “Stationary wavelet
transform and AdaBoost with SVM based pathological brain
detection in MRI scanning,” CNS and Neurological Disorders -
Drug Targets, vol. 16, no. 2, pp. 137-149, 2017.

[19] S.-H. Wang, S. Du, Y. Zhang et al, “Alzheiemers disease
detection by pseudo zernike moment and linear regression
classifier;” CNS & Neurologicla Disorders, vol. 16, no. 1, pp. 11-
15, 2017.

[20] S. Alam, M. Kang, and G. Kwon, “Alzheimer disease classifica-
tion based on TSVM and Kernel SVM,” in Proceedings of the
2017 Ninth International Conference on Ubiquitous and Future
Networks (ICUFN), pp. 565-567, July 2017.

[21] D. Jha, J. Kim, and G. Kwon, “Diagnosis of Alzheimer’s disease
using dual-tree complex wavelet transform, PCA, and feed-
forward neural network,” Journal of Healthcare Engineering, vol.
2017, Article ID 9060124, 13 pages, 2017.

[22] H. Naimi, A. B. H. Adamou-Mitiche, and L. Mitiche, “Medical
image denoising using dual tree complex thresholding wavelet
transform and Wiener filter;” Journal of King Saud University
- Computer and Information Sciences, vol. 27, no. 1, pp. 40-45,
2015.

L. Durak, “Shift-invariance of short-time FOUrier transform in
fractional FOUrier domains,” Journal of the Franklin Institute.
Engineering and Applied Mathematics, vol. 346, no. 2, pp. 136—
146, 2009.

S. Chaplot, L. M. Patnaik, and N. R. Jagannathan, “Classification
of magnetic resonance brain images using wavelets as input to
support vector machine and neural network,” Biomedical Signal
Processing and Control, vol. 1, no. 1, pp. 86-92, 2006.

(15

(23

(24



Computational Intelligence and Neuroscience

[25]

[26

(27]

)
K

[30

(31]

[37]

(38]

Y. Zhang, S. Wang, G. Ji, and Z. Dong, “An MR brain images
classifier system via particle swarm optimization and kernel
support vector machine,” The Scientific World Journal, vol. 2013,
Article ID 130134, 9 pages, 2013.

R. Choudhary, S. Mahesh, J. Paliwal, and D. S. Jayas, “Identifica-
tion of wheat classes using wavelet features from near infrared
hyperspectral images of bulk samples,” Biosystems Engineering,
vol. 102, no. 2, pp. 115-127, 2009.

M. R. K. Mookiah, U. Rajendra Acharya, C. M. Lim, A. Petznick,
and J. S. Suri, “Data mining technique for automated diagnosis
of glaucoma using higher order spectra and wavelet energy
features,” Knowledge-Based Systems, vol. 33, pp. 73-82, 2012.

S. Wang, G. Ji, P. Phillips, and Z. Dong, “Application of genetic
algorithm and kernel support vector machine to pathological
brain detection in MRI Scanning,” in Proceedings of the 2nd
National Conference Information Technology Comp. Science, pp.
450-456, Shanghai, China, 2015.

G. Yang, Y. Zhang, J. Yang et al., “Automated classification
of brain images using wavelet-energy and biogeography-based
optimization,” Multimedia Tools and Applications, vol. 75, no.
23, pp. 1-17, 2015.

Y. Zhang, G.Ji, J. Yang et al., “Preliminary research on abnormal
brain detection by wavelet-energy and quantum-behaved PSO,”
Technology and Health Care, vol. 24, pp. S641-5649, 2016.

Y.-D. Zhang, S. Chen, S.-H. Wang, J.-F. Yang, and P. Phillips,
“Magnetic resonance brain image classification based on
weighted-type fractional Fourier transform and nonparallel
support vector machine;” International Journal of Imaging Sys-
tems and Technology, vol. 25, no. 4, pp. 317-327, 2015.

Y. Zhang, S. Wang, and L. Wu, “A novel method for magnetic
resonance brain image classification based on adaptive chaotic
PSO;” Progress in Electromagnetics Research, vol. 109, pp. 325-
343, 2010.

Y. Zhang, L. Wu, and S. Wang, “Magnetic resonance brain image
classification by an improved artificial bee colony algorithm,”
Progress In Electromagnetics Research, vol. 130, pp. 369-388,
2012.

S. Das, M. Chowdhury, and M. K. Kundu, “Brain MR image
classification using multi-scale geometric analysis of ripplet,”
Progress in Electromagnetics Research, vol. 137, pp. 1-17, 2013.

X. Zhou, S. Wang, W. Xu et al., “Detection of pathological
brain in MRI scanning based wavelet-entropy and naive Bayes
classifier;” in Proceedings of the International Conference on
Bioinformatics and Biomedical Engineering, pp. 201-209, 2015.
M. E. Tipping and C. M. Bishop, “Probabilistic principal
component analysis,” Journal of the Royal Statistical Society.
Series B. Statistical Methodology, vol. 61, no. 3, pp. 611-622, 1999.
S. Roweis, “EM algorithms for PCA and SPCA; in Advance
in Neural Information Proccessing System, vol. 10, pp. 626-632,
MIT Press, Cambridge, MA, USA, 1998.

A. Ilin and T. Raiko, “Practical approaches to principal com-
ponent analysis in the presence of missing values,” Journal of
Machine Learning Research, vol. 11, pp. 1957-2000, 2010.

1



