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Abstract

Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC),

yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the

tumour microenvironment that may impact relapse. The aim of this feasibility study was to

assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the

LVs have potential prognostic and predictive value for overall outcome and risk of relapse.

Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the exter-

nal iliac vessels draining the pelvic region of patients undergoing debulking surgery. This

was followed by quantification of the inflammatory state (low, medium and high) and pres-

ence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression

profiling was also performed, and analysed in the context of high versus low inflammation,

and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical out-

come data including relapse with an average follow-up time of 13.3 months. The presence

of a high degree of inflammation correlated significantly with patient relapse (p = 0.033).

Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p =

0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with

high versus low inflammation. In particular, several members of the let-7 family were consis-

tently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less

inflamed ones. Down-regulation of the let-7 family appears to be associated with inflamma-

tion, but whether inflammation contributes to or is an effect of cancer-infiltration requires fur-

ther investigation.
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Introduction

Epithelial Ovarian cancer (EOC) accounts for over 4000 deaths in the UK every year [1].

Lymph node (LN) metastases are very common in EOC-patients and associated with a more

dismal overall prognosis [2,3]. Total macroscopic tumour clearance with removal of bulky LN

is one of the most important prognostic factors for survival post-surgery in EOC [3,4]. There

is no therapeutic value in the systematic removal of clinically normal appearing LN in the

advanced disease setting, as shown in prospective randomised trials [5]. The involvement and

changes in the connecting lymphatic vessels (LVs) and how they are related to the future risk

of metastasis and relapse have never been investigated, to our knowledge.

LVs are specialised in the uptake and transport of macromolecules from tissue fluid, conse-

quently permitting lymphogenic spread of cancer cells. Within the tumour microenvironment,

intra-tumoural LVs are present, however functional tests in mice have indicated that intra-

tumoural lymphatics are non-functional [6,7]. The collapse of intra-tumoural LVs is due to

some combination of the high interstitial pressure observed in multiple types of tumours, a

lack of lymphatic valves, or induced mechanical pressure of growing tumour cells [6]. How-

ever, in both mice and humans, functional peri-tumoural lymphatics remain [6]. LVs can facil-

itate metastases both passively and through active changes in lymphatic endothelial cell (LEC)

expression that aid cancer-cell infiltration, allowing subsequent drainage to LNs [8]. Tumour

cells can also arrest within the draining LVs and form in-transit metastases, and in some cases

escape the LVs, contributing to loco-regional metastasis, potentially aided by altered LV bar-

rier integrity [8].

Lymphatic endothelial cells (LECs) that line the LVs can also modulate immune cell func-

tion, in both anti-tumour immune response and cancer-induced immunosuppression [9]. For

example, LEC expression of Protein-Death-Ligand 1 (PD-L1), the ligand for T cell inhibitory

receptor, PD-1, can contribute to peripheral tolerance in LNs and tumours [10]. Tumour asso-

ciated LECs can scavenge and cross-present tumour-antigen to cognate CD8+ T cells, display-

ing the ability to endogenise allergen ovalbumin, then present the exogenous antigen on Major

Histocompatibility Complex (MHC) class I molecules, and contribute to inducing tolerance of

tumour-specific CD8+ T cells [11]. LECs of the LN can acquire peptide MHCII-from dendritic

cells and induce tolerance of CD4+ T cells via subsequent presentation, in addition to up-regu-

lating MHCII in response to viral-induced inflammation or Interferon-gamma (IFN-γ) [12].

LVs are also sensitive to inflammation-induced signalling molecules which can promote lym-

phangiogenesis, and induce further secretion of inflammatory molecules that may drain to the

LNs [13]. Chronic inflammation in collecting LVs induce changes including LV dilation and

inhibition of contractile ability but the effects on metastasis are unknown [14].

MicroRNAs provide vital post-transcriptional regulation of gene expression, a function that

is often disrupted by cancer [15]. The ability of a single miRNA to inhibit multiple target genes

has led to several studies of altered tumour miRNA expression in ovarian cancer and response

to chemotherapy. This includes comparison of miRNA expression in different tumour subsets,

in healthy versus diseased ovaries, in patient versus healthy serum, benign versus malignant

tumours, expression associated with reduced patient survival, and expression associated with

drug-resistance [16]. For example, a study using both EOC cell lines and EOC tumour tissue

showed highly elevated miR-221, decreased miR-21 expression, and down-regulation of sev-

eral members of the let-7 family [17].

Expression of miRNAs in LVs and LECs is altered during inflammation and by nearby

tumours. In inflamed LECs, upregulated miR-1236 reduced expression of vascular-endothelial

growth factor-3 receptor, inhibiting lymphangiogenesis [18]. A separate study showed that

inflamed dermal LECs increased miR-155 expression, a miRNA with known involvement in
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PD-L1 expression which may contribute to peripheral tolerance changes [19]. Furthermore, a

panel of differentially expressed miRNAs was identified in inflamed rat LECs and human LEC

culture, indicating effects on inflammation, angiogenesis, endothelial mesenchymal transition,

cell proliferation and senescence pathways [13]. Tumour expression profiling has identified

changes in lymphangiogenesis-inducing miRNAs, such as miR-126 in oral cancer and miR-

128 in non-small cell lung cancer, that could influence metastasis [20,21]. A study using

human LEC co-culture models of gastric cancer, representing tumoural or draining LVs, iden-

tified changes in differential miRNA expression associated with lymphangiogenesis and with

positive lymphatic metastasis [22]. Further miRNA expression studies of draining LVs are

lacking but many gene dysregulations were identified in LECs isolated from afferent LVs that

drained a metastatic gastric tumour in rats, including up-regulation of chemokine CXCL1

[23].

The aim of this feasibility study was to provide insight into, and assess the prognostic value

of the changes in the inflammatory state and miRNA expression of the transporting LVs in

EOC. It is expected that these changes will be indicative of the immune response in the LVs

and the downstream LN, and therefore could be predictive of patient prognosis.

Methods

LV sample collection

LVs were collected from patients undergoing debulking surgery for advanced stage (FIGO IIC,

III or IV) epithelial ovarian cancer at Hammersmith Hospital, Imperial College Healthcare

NHS Trust, London, United Kingdom (Table 1 and S1 Table). Informed consent was provided

from each patient. Ethics committee approval was obtained from Hammersmith and Queen

Charlotte’s and Chelsea Research Ethics Committee (REC reference: 05/Q0406/178), and tis-

sue samples were provided by the Imperial College Healthcare NHS Trust Tissue Bank

(ICHTB). The following LV processing steps are summarised in S1 Fig.

Table 1. Summary of the LV microscopic state and clinical data.

Vessel Sample Type of marker

MPO WT1 Pax-8 Stage Histology LN histology Relapse (mos)�

1 +++ +++ ++ IVB HGS N0 y(11)

2 +++ +++ +++ IVA HGS Nx y(12)

3 +++ - - IIC HGS Nx y(13)

4 + ++ + IV HGS Nx y(9)

5 - - - IIIB CC Nx n

6 - - - IIIC HGS Nx n

7 - - - IIIC HGS N1 n

8 - - - IIIC HGS Nx n

9 + - - IVB HGS Nx n

10 + + ++ IIC HGS N0 n

Key MPO WT1/Pax-8 Histology LN histology

+++ high +++ = 15 cells HGS = high grade serous N0 = Negative status

+ medium ++ 15> cells > = 5 CC = clear cell carcinoma N1 = Positive status

- low + < 5 cells Nx = Unassessed status

Sections of the LVs were stained with antibodies for the inflammatory marker myeloperoxidase (MPO), ovarian cancer markers Wilms-Tumour-1 (WT1) and Paired

Box Gene 8 (Pax-8), and the lymphatic endothelial marker, Podoplanin (PDPN).

�Mean time since surgery = 13.2 ±3.6 months.

https://doi.org/10.1371/journal.pone.0230092.t001
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Macroscopically normal appearing LVs along the external iliac vessels with surrounding

fibro-fatty tissue were removed with the nearby LN as part of the debulking procedure. Vessels

were ligated with VIcyl03 or PDS-4-0, avoiding bipolar coagulation and other thermic energy

to limit vessel damage. All patients had no macroscopic residual disease after surgery.

Vessel isolation and storage

Tissue specimens were transported directly from surgical theatre to the laboratory in ice-cold

sterile Phosphate Buffered Saline (VWR, UK). LVs were identified and isolated along with a

small amount of surrounding tissue under a dissection microscope within a sterile laminar

flow cabinet (Fig 1A–1C). Each vessel was divided into two sections. One half of each vessel

was further cleaned of surrounding fatty tissue, placed in RNA stabilising solution (RNAlater,

ThermoFisher, UK), frozen on dry ice and stored at -20˚C. The other half was fixed in 4%

paraformaldehyde (VWR, UK) for 45 minutes, followed by submersion in 15% sucrose for 3

hours, then 30% sucrose for 6–12 hours. This was followed by embedding in OCT (Scigen,

UK) using dry ice and isopropyl alcohol (ThermoFisher, UK) and stored at -80˚C.

MiRNA extraction and analysis

Samples in RNAlater were individually defrosted and homogenized in 700μL of QIAzol (Qia-

gen, UK), using a PT 1300 D homogenisor with a 3mm dispersing aggregate head (Kinematica,

Switzerland) at 20,000 RPM in a sterile 1.5 ml tube. RNA was extracted using a miRNeasy

Mini Kit (Qiagen, UK) following the standard protocol and quality was verified using a Nano-

DropTM 2000 at A260/280nm and A260/230nm absorbance (Thermofisher, UK). Each sam-

ple was reverse-transcribed to cDNA using a miScript II RT Kit (Qiagen), then qPCR was

carried out using a miScriptSybrGreen real-time PCR kit (Qiagen) and pre-defined miScript

miRNA PCR Array (Qiagen, UK). The array contained primer pairs for 8 housekeeping genes

and controls plus 88 human miRNAs that have previously been identified or predicted to

Fig 1. Lymphatic vessel isolation and classification. A. LV isolation technique. B. Tissue sample containing LV. C. Isolated and cleaned vessel for RNA extraction.

D&E, Quantification of LVs inflammation was determined using the ratio of MPO staining to cell nuclei (DAPI), in this example 1.0%/6.3% = 0.16, to divide samples

into low, medium and high inflammatory states with thresholds of<3%, 3–10% and>10% respectively.

https://doi.org/10.1371/journal.pone.0230092.g001
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target genes involved in the regulation of inflammatory responses and autoimmunity. One

well was populated with a negative control sample. The array was run using a StepOnePlus

Real-Time PCR System (Applied Biosystems), according to the manufacturer’s instructions.

Immunofluorescence staining and imaging

Samples embedded in OCT were sectioned at 10–16μm and stored at -80˚C. Both standard

Haematoxylin and Eosin (H&E) and immunofluorescent staining were subsequently per-

formed. For immunofluorescent staining, slides were washed with Tris Buffered Saline (TBS)

(Sigma-Aldrich, UK) and 0.05% Triton-X (Sigma) and blocked for 1hour with 10% goat

serum/TBS (Sigma-Aldrich). Slides were incubated overnight at 4˚C with primary antibodies

diluted in 5% goat serum/TBS at ratios of 1:200 for inflammatory marker Myeloperoxidase

(MPO) (ab9535), 1:200 for ovarian carcinoma marker Wilms Tumour-1 (WT1) (ab89901),

1:50 for ovarian carcinoma marker Paired-Box-Gene 8 (Pax-8) (ab189249), and 1:200 for LEC

marker Podoplanin (PDPN) (ab10288). Alexa-488 conjugated secondary antibody, anti-

Mouse (ab150113) or anti-Rabbit (ab150077) were applied at a dilution of 1:250 in 5% goat

serum/TBS at room temperature for 1 hour. Samples were stained with DAPI (4’,6-diamidino-

2-phenylindole) solution (Sigma-Aldrich) and mounted with Fluoroshield (Sigma-Aldrich).

Confocal Z-stacks and multi-channel images were processed and analysed using FIJI imaging

software [24].

Assessment of H&E staining confirmed cryo-sections of LV samples stored at -80˚C main-

tained sufficient morphology to quantify inflammation and cancer cell presence. The identifi-

cation of LVs was confirmed by the positive staining with Podoplanin. The LV were

subsequently classified into a low, medium or high inflammatory group with thresholds of

<3%, 3–10% and>10% of MPO staining to nuclei (DAPI) staining ratio (Fig 1D and 1E). The

level of cancer-cell infiltration was determined by the number of cancer cells detected in a LV

cross-section, as shown by positive staining with WT1 and Pax-8.

Statistical analysis

Clinical correlation between different combinations of LV state (inflammation, high-inflam-

mation, cancer-infiltration), and patient relapse, and cancer-stage were assessed by applying

Fishers exact test, to identify significant non-random associations, and calculation of Cohen’s

Kappa coefficient of inner agreement (κ), interpreted according to the methods of Vierra and

Garett 2005 [25]. A P value below 0.05 was considered statistically significant. Kaplan Meier

estimates of probability of non-relapse were also calculated for cancer-infiltration, inflamma-

tion and age. Prior to further analysis, the miRNA expression of each LV (ΔCT) was normal-

ized to the expression of a stably expressed gene in each array, confirmed with NormFinder

(http://moma.dk/normfinder-software) and GeNorm (http://www.biogazelle.com/qbaseplus)

software. SNORD96 was selected as a reference “housekeeping” gene. The fold change between

imaging-informed groups of LVs was calculated as ΔΔCT Group2/ΔΔCT Group1 where

ΔΔCT = 2ΔCT. Fold regulation was normalised to values greater than 1, noting up- or down-

regulation. Principle component analysis (PCA) was used to transform multivariate data line-

arly into a set of uncorrelated variables to identify patterns in the variance amongst the data.

We applied PCA to the miRNA expression recorded across all our samples to calculate two

principle components (PC) that account for the greatest sources of miRNA variation within

samples, using online software ClustVis (https://biit.cs.ut.ee/clustvis/) [26]. In cases where

more than 1 miRNA was identified as significantly up-regulated or significantly down-regu-

lated, pathway analysis was carried out using Diana-MiRPath v3 [27]. After removing miRNA

that did not show a>1.8 fold-regulation change, a student-t-test, assuming equal variance,
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was applied to further confirm variation between groups. To visualise the distributions of the

individual miRNA for which statistical significant difference was identified between groups,

the probability density functions for miRNA expression in each group were estimated using

Kernel Density Estimated distributions.

A number of widely used automatic classification methods were then used to predict the

binary outcomes of the individuals (relapse vs. non-relapse, cancer infiltration vs. no cancer

infiltration, medium or inflammation versus low inflammation), based on the LV miRNA

expression of the individuals as predictor (input) variables. We used the supervised classifica-

tion methods Logistic Regression, K-Nearest Neighbours, Support Vector Machine, Random

Forest, and Gaussian Naïve Bayes. Evaluation of each method was performed using a leave-

one-out cross validation procedure: each patient was considered in turn as a new patient (i.e.

the test patient), while the remainder were considered as the training set. The predicted and

actual outcome for each test patient was then compared with method accuracy measured as

the percentage of correct predictions. Two other measures of accuracy were also used: the

Cohen’s Kappa coefficient (κ) of inner agreement between predicted and actual values, and

the McNemar’s test measuring the significance of equality of predicted probability (inner accu-

racy) between groups for each outcome. In each method, we also split the cases according to

the binary outcome variable and measured the percentage of correct predictions in each

group. A set of only the miRNA that were significantly differentially expressed between groups

was then used to train new classifiers. We then assessed whether use of the new classifiers

could improve predictions when compared to the performance of classifiers built using the

entire miRNA expression set.

Results

Post-operative assessment of patients

Ten patients were included in the present analysis. Nine of those patients had a high grade

serous histology, and one patient had a clear cell carcinoma (Table 1). 60% of the lymph vessels

were harvested at primary debulking surgery and 40% at interval debulking surgery (S1 Table).

Only one positive para-aortic LN was detected at final histopathology. In the 13.2±3.6 months

follow up period, 4 of the 10 patients had relapsed. Of the four patients that relapsed, three ves-

sels demonstrated high inflammation and one vessel showed medium inflammation. Vessels

from patients that did not relapse showed low inflammation in 4 cases and medium inflamma-

tion in the remaining 2 cases. Of the four relapse cases, cancer-cell infiltration was detected in

three vessels (two with high inflammation and one showing medium inflammation). The over-

all relative range of inflammation in the lymphatic vessels was small with high inflammation

defined as an average of>10% MPO:DAPI ratio and a narrow range of an average of 3–10%

MPO:DAPI ratio for medium inflammation. All vessels showed less inflammation than simi-

larly stained ovarian tumour tissue (Fig 2I). Consequently, to compare LVs with a notable dif-

ference in inflammation we focused initially on comparison of the LVs with high

inflammation versus low inflammation.

Clinical correlation of LV inflammatory state or cancer-cell infiltration and

patient relapse

Of the four cancer-infiltrated LVs identified, 2 presented with high inflammation and the

remaining 2 samples presented with medium inflammation. Cancer-free LVs presented with

generally lower degrees of inflammation (Table 1). Tumour cells were detected in 50% of LVs

with medium inflammation and two-thirds of LVs displaying high inflammation. The LVs
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presented with high inflammation in 3 of 10 samples, two of which were also positive for can-

cer cells. Three LV samples presented with medium inflammation, two of which contained

cancer cells, and the remaining 4 LV samples presented with low inflammation and no detect-

able cancer cell infiltration (Table 1). The samples were macroscopically normal in appearance,

however positive staining for the ovarian tumour markers WT1 and Pax8 was observed in four

of the 10 samples collected (Fig 2G and 2K). The LVs with cancer cells showed a moderate

agreement (κ = 0.583) with patient relapse but this was not significant (Table 2) (p = 0.114). A

moderate but statistically non-significant agreement was found between cancer-infiltrated LVs

and Stage IV and inflammation (κ = 0.583, 0.61 respectively).

As the degree of inflammation in the LVs increased, so did correlation with patient relapse.

Fig 2. Lymphatic vessel imaging. A. H & E stained sections of the LVs, show that the nuclei were sufficiently preserved for subsequent Paired-Box-Gene 8 (Pax-8) and

WT1 (Wilms-Tumour-1) staining. B-D. LVs with high, medium and low/no inflammatory state determined with myeloperoxidase (MPO) staining. E. Confirmation of

LV status was carried out using LEC marker Podoplanin (PDPN) that stained around the LV lumen. F-H. Imaging with WT1, (F) negative LV, (G) positive LV (H)

positive control. I. Tumour MPO positive control. J-L. Imaging with Pax-8, (J) negative LV, (K) positive LV and (L) positive control. An Ovarian tumour sample was

used as a positive control and stained for both (M) WT1 and (Q) Pax-8. Scale = 140μm.

https://doi.org/10.1371/journal.pone.0230092.g002
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The presence of LVs showing high inflammation significantly correlated with patient relapse

(κ = 0.783, p = 0.03) (Table 3). The presence of medium or high inflammation within LVs

showed a moderate agreement with patient relapse (κ = 0.615, p = 0.07) and patients with Stage

IV, relapse and cancer-cell infiltration (κ = 0.615, p = 0.07) (Table 2). The presence of highly

inflamed LVs compared to the presence of low inflammation only, resulted in a stronger corre-

lation involving high inflammation status (Table 3). LVs exhibiting high degrees of inflamma-

tion showed near perfect agreement with patient relapse compared to those with low

inflammatory state (n = 7, κ = 1.0, p = 0.029). Additionally, there were indications of a relation-

ship between highly inflamed vessels with cancer-infiltration and Stage IV cancer (κ = 0.695),

but this lacked statistical significance (p = 0.143). These results therefore support the earlier

identified correlation between high inflammation and relapse. Kaplan Meier estimates of non-

relapse according to inflammatory state, cancer-infiltration and age thresholds (>55, >60,>70,

>75 years) indicate that probability of non-relapse is decreased in patients with LVs displaying

medium or low inflammation and patients with cancer-infiltrated LVs (S2 Fig). Probability of

non-relapse showed that patients>55 years age were more likely to relapse (S3 Fig).

Lymphatic vessel miRNA expression during EOC

Expression analysis of a panel of miRNA involved in auto-immunity and inflammation was

carried out. This showed that let-7 was differentially expressed in the highly-inflamed LVs

Table 2. Cohen’s Kappa Coefficient for inner-agreement between different sample states (1 = perfect agreement) and Fisher’s exact test for identification of signifi-

cant non-random association (p<0.05) (n = 10).

Cohen’s Kappa Co-efficient

Relapse� Inflam. High Inflam. Cancer-cell inf. Stage IV

Relapse x 0.615 0.783 0.583 0.583

Inflam. 0.615 x x 0.615 0.615

High Inflam. 0.783 x x 0.348 0.348

Cancer-cell inf. 0.583 0.615 0.348 x 0.583

Stage IV 0.583 0.615 0.348 0.583 x

Fishers Exact Test (p-value)

Relapse� Inflam. High Inflam. Cancer-cell inf. Stage IV

Relapse x 0.071 0.033 0.114 0.114

Inflam. 0.071 x x 0.071 0.071

High Inflam. 0.033 x x 0.3 0.3

Cancer-cell inf. 0.114 0.071 0.3 x 0.114

Stage IV 0.114 0.071 0.3 0.114 x

Inflam = comparison of LVs with high or medium inflammation to low inflammation. High Inflam. = comparison of LVs with high inflammation to low or medium

inflammation. Cancer-cell inf. = cancer-cell infiltration.

� Mean time since surgery = 13.2 months ±3.6.

https://doi.org/10.1371/journal.pone.0230092.t002

Table 3. Comparison of LVs with high inflammation vs those with low inflammation only (n = 7) using Cohen’s

Kappa Coefficient and Fisher’s exact test, as described in Table 2.

Relapse� Cancer Stage IV

Cohen’s Kappa Co-efficient 1 0.695 0.695

Fishers Exact Test 0.029 0.143 0.143

� Mean time since surgery = 13.2 months ±3.6.

https://doi.org/10.1371/journal.pone.0230092.t003
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(Table 4, S2 Table). Significant differential expression of 8 miRNA was identified when com-

paring miRNA expression of LVs presenting with high inflammation versus low inflammation

(p<0.05, n = 7). Of the 8 miRNA, 6 belonged to the let-7 family with miR-23a-3p and miR-

23b-3p completing the set. Differential expression can also be clearly visualised when the esti-

mated probability density functions, calculated using kernel density estimation for inner

groups, for the differentially expressed individual miRNA are compared (S4 Fig). Correction

for multiple testing by applying a post-hoc Bonferroni correction showed that differential

expression of three miRNA, let-7b, let-7c and let-7d remained significant (p<0.0017). Com-

parison of miRNA expression in LVs displaying low inflammation versus medium or high

inflammation showed a similar trend towards down-regulation of the let-7 family (Table 4, S3

Table). Six miRNA were down-regulated >1.8 fold with significant down-regulation of let-7g-

5p and let-7i-5p (p<0.05).

Similar trends were observed in the differential miRNA expression identified in the

inflamed LVs and the differential miRNA expression in LVs collected from patients who

underwent relapse during the study. Four significantly differentially expressed miRNA

(p<0.05) were identified in relapse LVs (let-7c-5p, let-7b-5p, miR-23b-3p and miR-186-5p),

with three of these (let-7c-5p, let-7b-5p, miR-23b-3p), also significantly differentially expressed

in highly inflamed LVs (Table 5). Differential expression of miRNA with correction criteria of

p<0.002 was not identified. Of the 17 miRNA that were down-regulated >1.8 fold in relapse

vessels, 8 were also down-regulated in inflamed LVs, and 11 in the highly-inflamed LVs,

including 5 and 6 members of the let-7 family respectively and miR-23b-3p (S2, S3 and S5

Tables).

In the cancer-infiltrated LVs, most miRNA expression changes involved miRNA up-regula-

tion such as miR-16-5p, miR-93-5p and miR-497-5p, miR-381-3p, miR-144-3p and miR-

181a-5p (p<0.05) (Table 5). Of these, up-regulation of miR-93-5p and miR-144-3p remained

significant with application of a Bonferroni correction (p<0.002). In contrast, inflamed LVs

presented with primarily down-regulated miRNA, in particular, significant down-regulation

of members of the let-7 family along with miR-23a-3p, miR-23b-3p and tumour suppressor

miR-15-5p [29]. In the cancer-containing LVs, only 7 miRNA showed a>1.8 fold down-

Table 4. Differential expression of miRNA between LV groups displaying low, medium or high inflammation.

Low versus High Low versus [Medium or High]

miRNA Fold regulation t-test (p) miRNA Fold regulation t-test (p)

let-7a-5p -188.20 0.0389 let-7g-5p -2.39 0.0308

let-7b-5p� -11.42 0.0006 let-7i-5p -2.02 0.0130

let-7c-5p� -6.43 0.0003 miR-545-3p -2.77 0.0739

let-7d-5p� -5.06 0.0009 miR-93-5p 1.77 0.0856

let-7e-5p -2.67 0.0802

let-7f-5p -3.20 0.0378

let-7g-5p -2.99 0.0969

let-7i-5p -2.23 0.0328

miR-15b-5p -5.24 0.0696

miR-23a-3p -3.44 0.0401

miR-23b-3p -15.17 0.0152

miR-98-5p -4.63 0.0823

Listed are miRNA that showed a fold-change ±1.8, with subsequent t-test with p<0.1, with miRNA displaying a significant difference of p<0.05 highlighted in bold.

� = Bonferroni correction p<0.0017.

https://doi.org/10.1371/journal.pone.0230092.t004
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regulation, 6 of which were members of the let-7 family (S4 Table). Of these six, five were also

down-regulated >1.8-fold in the LVs of patients who relapsed during the study period.

Similar trends in the differential miRNA expression in cancer-infiltrated LVs and highly

inflamed LVs were also identified, as 15 miRNA were found to undergo an expression change

of>1.8 fold (up- or down-regulated) in both of the comparisons (S2 and S4 Tables). Six of the

7 miRNA that were down-regulated in both groups belonged to the let-7 family. This common

trend in the fold-regulation difference in the highly inflamed and cancer-infiltrated LVs may

be reflective of the fact that 50% of the cancer-infiltrated LVs also presented with high inflam-

mation. We also noted that the number of differentially expressed miRNA was higher when

comparing LVs presenting with high or low inflammation than when comparing vessels with

or without cancer-infiltration. Expression of several miRNA were consistently below qPCR

detection levels and thus omitted from further analysis.

Pathway analysis of miRNA found to be dysregulated in inflamed or

cancer-infiltrated LVs

Pathway analysis indicated that significantly dysregulated miRNAs are involved in maintain-

ing LV integrity. The 7 miRNAs that were significantly upregulated in cancer-infiltrated LVs,

and the 7 miRNAs that were significantly down-regulated in inflamed LVs have known

involvement in various pathways related to the TGFβ-pathway, fatty acid biosynthesis, proteo-

glycans in cancer, glycosaminoglycan synthesis and glycan biosynthesis as well as the extracel-

lular matrix receptor interactions pathway and adherens junction pathway (Table 6). No

significantly up-regulated miRNAs were identified in highly inflamed LVs and only one signif-

icantly down-regulated miRNA was identified in cancer-infiltrated LVs. Pathway analysis car-

ried out with the 4 significantly dysregulated miRNAs in the relapse LVs showed a range of

potential target pathways including adherens junction, ECM-receptor interactions and mucin

type O-Glycan biosynthesis (S6 Table).

Principle component analysis of miRNA expression in LV samples

PCA showed that differential miRNA expression identified in inflamed and cancer-infiltrated

LVs could also be identified without grouping the samples. This can be seen when assessing

Table 5. Differential expression of miRNA between cancer-infiltrated versus non-cancer infiltrated LVs and LVs from relapse versus non-relapse patients within

13.2±6 months.

Cancer-infiltrated LVs LVs from patients that relapsed

miRNA Fold regulation t-test (p) miRNA Fold regulation t-test (p)

miR-144-3p� 14.02 0.0010 miR-144-3p 5.07 0.0906

miR-181c-5p 10.63 0.0170 miR-186-5p 4.93 0.0294

miR-101-3p 5.08 0.0740 miR-497-5p 2.29 0.0672

miR-381-3p 4.07 0.0140 miR-34a-5p 2.09 0.0828

miR-497-5p 2.9 0.0260 miR-98-5p -3.43 0.0673

miR-93-5p� 2.25 0.0010 let-7d-5p -3.68 0.0645

miR-16-5p 2.08 0.0310 let-7c-5p -4.33 0.0385

let-7i-5p -2.08 0.0210 let-7b-5p -6.94 0.0383

let-7b-5p -2.27 0.0700 miR-23b-3p -8.53 0.0278

let-7c-5p -2.56 0.0780

Listed are miRNA that showed a fold-change ±1.8, with subsequent t-test with p<0.1, with miRNA displaying a significant difference of p<0.05 highlighted in bold.

� = Bonferroni correction p<0.002.

https://doi.org/10.1371/journal.pone.0230092.t005
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the top 16 miRNA whose expression contributed the most to the first and second Principle

Components (PC1 and PC2). These components capture factors responsible for the most and

second most variation in the data set, respectively. Samples with the most similar miRNA

expression profile cluster together and clusters may vary over PC1/PC2 or both (S5 Fig).

Twelve miRNA identified in the fold-change analysis of highly inflamed or cancer-infiltrated

LVs, were among the top 20 miRNA that contributed to PC1, with 5 of those showing signifi-

cant differential expression. Furthermore, 8 miRNAs of the top 20 miRNA that contributed to

PC2 were all identified as significantly downregulated >1.8 fold in highly inflamed LVs. The

remaining miRNA varied greatly between the patient samples, e.g., miR-20, but were not iden-

tified by analysis of fold change between groups. The expression levels of these miRNA were

therefore spread equally between the compared groups. Overall, variation over PC2

Table 6. Pathway analysis using MiRNA that were significantly up-regulated in cancer-infiltrated LVs (left-hand side) and miRNA significantly down-regulated

>1.8 fold (right-hand side) in highly inflamed LVs.

Upregulated miRNA in cancer-infiltrated LVs Down-regulated miRNA in highly inflamed LVs

KEGG pathway p-value Genes miRNA KEGG pathway p-value Genes miRNA

TARBASE TARBASE

Proteoglycans in cancer 3.02E-

15

96 5 Adherens junction 5.86E-

13

52 8

Adherens junction 3.09E-

09

44 5 Proteoglycans in cancer 5.86E-

13

107 8

Prion diseases 3.09E-

09

14 5 TGF-β signaling pathway 3.29E-

09

49 8

Viral carcinogenesis 1.64E-

08

91 5 Viral carcinogenesis 5.77E-

09

99 8

Hippo-signaling pathway 2.37E-

08

68 5 Cell cycle 2.79E-

08

74 8

TGF-β signaling pathway 9.56E-

08

41 5 Hippo signaling pathway 1.24E-

07

74 8

TARGETSCAN TARGETSCAN

Fatty acid biosynthesis 7.90E-

38

2 2 Fatty acid biosynthesis 2.92E-

53

3 1

Fatty acid metabolism 8.15E-

15

3 2 Fatty acid metabolism 1.03E-

21

4 1

Metabolism of xenobiotics by cytochrome P450 7.48E-

06

2 2 Signaling path-ways regulating pluri-potency of stem

cells

2.58E-

09

17 7

Signaling pathways regulating pluri-potency of stem

cells

6.26E-

05

11 3 Metabolism of xenobiotics by cytochrome P450 8.99E-

07

3 3

TGF-β signaling pathway 0.0387 5 3 N-Glycan biosynthesis 0.00466 5 3

Micro-CT-DS Micro-CT-DS

Fatty acid biosynthesis 7.90E-

38

5 2 Fatty acid biosynthesis 7.39E-

26

6 9

Fatty acid metabolism 8.15E-

15

11 2 ECM-receptor interaction 3.21E-

07

17 9

Signaling pathways regulating pluri-potency of stem

cells

3.74E-

12

47 3 Signaling pathways regulating pluri-potency of stem

cells

1.01E-

06

43 9

Hippo signaling pathway 2.06E-

06

29 2 Mucin type O-Glycan biosynthesis 5.38E-

06

9 9

Proteoglycans in cancer 2.70E-

06

59 4 Proteoglycans in cancer 2.34E-

05

53 9

p53 signaling pathway 3.13E-

05

27 9

https://doi.org/10.1371/journal.pone.0230092.t006
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differentiates between highly-inflamed and non-inflamed LVs, supporting the suggestion that

miRNA expression could distinguish LV states (S5 Fig).

Application of machine-learning algorithms to predict LV state or clinical

outcome based on miRNA expression

Patterns of miRNA expression showed some potential in predicting clinical outcomes by

applying classification algorithms. When predicting patient relapse (Table 7), all of the classifi-

cation methods presented with quite high accuracy values and McNemar’s probabilities of

p<0.05, meaning that no significant difference was found between the predicted grouping,

based on miRNA expression, and the grouping based on the known clinical data. Of the meth-

ods applied, use of k-Nearest Neighbours and logistic regression produced the highest classifi-

cation accuracy with similar prediction accuracy achieved between methods. Classification of

cancer-cell infiltrated LVs based on miRNA expression (Table 8) showed a similar prediction

accuracy compared to classification of relapse LVs, but the Random Forest classifier achieved

the best accuracy. Classification of inflamed and< = Stage IV samples did not show a high

accuracy (S7 Table). As a further evaluation, we examined the effect of keeping as predictors

only those miRNAs that have significant associations with the outcome variables. Analysis was

performed on classifiers build using only significantly differentially expressed miRNAs

(p<0.05). In the cancer-infiltrated LVs, the differentially expressed miRNAs enhanced the

accuracy of the predictive algorithm to 80–100% (S8 Table). Prediction of relapse based on

miR-23b-3p and miR-186-5p expression, improved the accuracy of classification with all

methods by 10%, except when using the Support Vector Machine, where no improvement was

observed (see S8 Table & S1 File). The addition of miR-let-7b-5p and let-7c-5p improved the

accuracy of the Support Vector Machine from 80% to 90% but decreased the accuracy of

Logistic Regression from 80% to 70%. However, the use of miR-23b and miR-186-5p only

showed a bias towards classifying the samples as non-relapsed when using Logistic Regression,

which decreased when using all 4 miRNA. These results suggest that the miRNAs with

Table 7. Classification analysis performance for various supervised classification algorithms for the prediction of patient relapse based on LV miRNA expression.

Method Accuracy McNemar’s Test-pval Cohen’s Kappa No Relapse Yes Relapse

Logistic Regression 70% 0.999 0.375 67% 75%

K-Nearest Neighbours 80% 0.289 0.583 100% 50%

Support Vector Machines 80% 0.289 0.583 100% 50%

Random Forests Classifier 50% 0.375 -0.042 67% 25%

Gaussian Naive Bayes 60% 0.031 0.167 100% 0%

This illustrates the accuracy of the method (percentage of correct predictions), the per-group accuracy (No Relapse, Yes Relapse), Cohen’s Kappa of inner agreement

between predicted and actual outcome, and McNemar’s test of significance of equality of predicted probability (inner accuracy) between groups for each outcome.

https://doi.org/10.1371/journal.pone.0230092.t007

Table 8. Classification performance of various supervised classification algorithms for the prediction of cancer infiltration based on LV miRNA expression. Details

are similar to Table 7.

Method Accuracy McNemar’s Test-pval Cohen’s Kappa No Cancer Yes Cancer

Logistic Regression 70% 0.44 0.38 83% 50%

K-Nearest Neighbours 50% 0.37 -0.04 67% 25%

Support Vector Machines 70% 0.13 0.37 100% 25%

Random Forests Classifier 100% 1.00 1.00 100% 100%

Gaussian Naive Bayes 50% 0.37 -0.04 67% 25%

https://doi.org/10.1371/journal.pone.0230092.t008
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significant associations to the outcome variables have a capacity to be used as predictors for

predicting the outcomes of interest in new patients.

Discussion

To our knowledge, this is the first analysis of inflammatory and miRNA alterations in tumour

draining LVs in ovarian cancer. In this feasibility study, we aimed to provide insights into LV

features that might be associated with patient relapse. Our results may contribute to a better

prediction of patient relapse, and could guide future experimental work seeking to improve

patient outcome via therapeutic targeting of miRNA.

Macroscopically normal LVs, remote from the tumour site that exhibited high or medium

inflammation correlated with cancer relapse. Despite cancer-cell infiltration in 66% of these

vessels, a moderate but non-significant association was identified between inflamed and can-

cer-infiltrated LVs (p = 0.07). The staging of LNs is routinely used to quantify cancer progres-

sion but the status of the connecting LVs has not previously been investigated. While case

numbers are small, the presence of high inflammation in the LVs showed the strongest signifi-

cant correlation with cancer relapse (p = 0.03 κ = 0.783). The Kaplan Meier estimates of non-

relapse also showed that relapse became less likely without the presence of LV inflammation or

cancer-cell infiltration, and age did not increase likelihood of relapse (S2 and S3 Figs).

Whether inflammation is a consequence of factors that contribute to relapse, or the inflamma-

tion-induced changes directly affect relapse, is an area for future work.

Analysis of the effect of cancer cell infiltration of the LVs, without considering LV inflam-

matory state, identified a trend towards a non-significant association with relapse (p = 0.07, κ
= 0.783). This suggests that cancer-infiltration of LVs alone may not necessarily predict

relapse, but rather accompanying changes in vessel inflammation may increase the likelihood

of relapse. Furthermore, cancer-cell infiltration did not show a significant association with

high inflammation. The lack of a significant correlation in both cases may also be simply due

to the possible scenario that cancer cells are just transiting through these vessels, so detecting

their presence becomes a matter of timing. Overall, this study suggests that nearby LVs appear

to play an important role in the immune response to cancer and the association between

inflammatory lymphatic changes and relapse deserves further exploration while potentially

representing a therapeutic target.

The use of miRNA expression classification algorithms also showed potential to predict

relapse, with relatively high accuracy for these 10 patients when applying a k-Nearest Neigh-

bours algorithm or a Support Vector Machine model (80%), rising to 90% when using signifi-

cantly differentially expressed miRNA only (Tables 7 and S8). Further studies spanning a

larger number of patients should therefore be performed. Clinically, the prediction of a

patient’s outcome based on miRNA expression of tissue collected during surgery could be of

considerable value. Despite the presence of inflammation showing a moderate agreement with

relapse and high inflammation displaying a significant correlation with relapse, a classifier

based on miRNA expression in high or medium inflamed LVs did not show a high accuracy

(Tables 2, 3, S7 and S8). Furthermore, due to the limited number of highly inflamed LVs, it

was not possible to build a reliable classifier based on miRNA expression in LVs with high

inflammation versus miRNA expression in LVs with low or medium inflammation. Indeed, all

the classifiers are limited by the number of samples required to train the predictive algorithms.

Therefore, whilst providing insight, these observations require increased sample input to

maintain confidence in miRNA classification.

Analysis of miRNA expression of highly inflamed LVs compared to LVs with no or low

inflammation, showed down-regulation of 6 members of the let-7 family, 3 of which remained
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significant with a Bonferroni correction (p<0.0017). A similar trend was observed when com-

paring miRNA expression of LVs presenting with high or medium inflammation to those with

low inflammation. In this case 6 members of the let-7 family showed down-regulation >1.8

fold but only two members showed significant down-regulation (p<0.05), which may be

reflective of less difference in mean LV inflammatory state between the two groups compared.

The change in let-7 miRNA expression was large enough that without designating groups, the

overall variability in sample miRNA expression due to let-7 expression could be detected using

PCA (S5 Fig). In ovarian tumour tissue, let-7 expression is down-regulated and associated

with poor prognosis and chemo-resistance [17,30,31]. Let-7 family members target oncogenes

HMAG2 and RAS, and loss of let-7 is also associated with the development of aggressive can-

cers [32]. Chemo-sensitivity of tumours may also be affected by let-7 expression. Manipulation

of let-7e in EOC cells in-vitro and in-vivo confirmed that expression is reduced in cisplatin-

resistant cell lines and application of let-7e mimics alongside cisplatin, reduced tumour growth

in mice more than with cisplatin alone [33]. Furthermore, chimeric-mediated delivery of let-7i

miRNA to EOC cells in-vitro reversed paclitaxel-induced chemo-resistance [34]. Expression of

let-7 is also associated with control of the Cdk-dependent cell cycle network, that drives the

cell transformation network, allowing cells to undergo an epigenetic switch between non-

transformed and a malignant transformed state [35].

The implications of let-7 down-regulation in LVs include changes in immune response and

LV permeability. Members of the let-7 family can target inflammatory cytokines, such as IL-6

by let-7a and IL-13 by let-7f, shown to contribute to cancer-cell apoptosis and anti-inflamma-

tory action respectively [36,37]. In addition to affecting immune cells in transit, drainage of

cytokines to LNs could impact immune response at the LN, potentially contributing to the loss

of immuno-suppression observed in draining LNs [38]. Cytokines may also affect LV trans-

port, as IL-6 can increase LV permeability while intradermal administration of cytokines IL-

1β, TNF-α, and IL-6 have been shown to decrease lymphatic contraction frequency [39,40].

Down-regulation of let-7 in vascular endothelial cells is associated with increased TGF-β sig-

nalling leading to promotion of epithelial-to-mesenchymal transition and thus increased vessel

permeability, but the effects in LVs are currently unknown [41]. The observed up-regulation

of several miRNA (miR-381-3p, miR-93-5p, miR-16-5p and miR-497-5p) in cancer-infiltrated

LVs may inhibit Vascular Endothelial Growth Factor (VEGF) expression or VEGF receptors,

both directly and indirectly via Bcl-2 inhibition [42–45]. The inhibition of VEGF secretion in

tumours has been a target of several drug trials but manipulation of VEGF secretion in con-

necting LVs may present as a future therapeutic area [46]. Expression of miR-144 has been

shown to target RUNX-1 in EOC lines and SRF in HUVECs, both contributing to anti-prolif-

erative action. A more extensive list of potential targets is provided in Table 9. A logical pro-

gression of this study would be to confirm targets in LECs.

Further studies of the relationship between inflammatory markers in LVs and differential

miRNA expression would increase the potential for diagnostic capabilities. Jones et al. and Yee

et al., analyzed LEC responses to inflammation and identified a total of 16 differentially

expressed miRNA, one of which (miR-17-5p) overlapped with the panel of miRNAs screened

in our study [18,19]. Chakraborty et al., identified differentially expressed miRNA associated

with autoimmunity and inflammation in rat LECs, with different sets of miRNAs identified at

2 hours, 48 hours and 96 hours after induction of inflammation [13]. Our results showed no

overlap with the miRNAs regulated at the 2-hour time-point but did show similar upregulation

of miR-19a detected at 48 hours and induction of miR-497, miR-19b and miR-19a observed at

96 hours [13]. Additionally, there was no evidence of dysregulation of the let-7 family in the

rat LECs. Taken together, chronic inflammation of LVs in EOC patients may impact miRNA
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expression differently, aligning more closely with the later time-points post-inflammatory

induction in the controlled rat experiments.

The pathway analysis of the dysregulated miRNA identified involvement in transforming-

growth factor TGF-β2 signalling, as well as glycoproteins in cancer and molecules that contrib-

ute to the glycocalyx of the LV lumen (Table 6). LECs possess a glycocalyx composed of glyco-

protein side chains, a backbone that includes adhesion molecules, and a proteoglycan core.

Therefore, changes to glycoproteins or adherens junctions may affect integrity of the LV wall

[68]. Furthermore, a study by Zolla et al. showed aged collecting LVs in rats presented with a

thinner endothelial cell glycocalyx and a loss of gap junction proteins [69]. Functionally this

resulted in hyper-permeability of the LVs that allowed pathogens to escape into surrounding

tissue. This may suggest that the miRNA changes that accompany cancer cell infiltration and

inflammation may also alter LV permeability and barrier function. This in turn could aid can-

cer cell infiltration but may also impact similar movements of immune cells such as macro-

phages and dendritic cells [70]. Further studies to assess the impact of inflammation-induced

Table 9. Confirmed targets of miRNA in primarily endothelial and cancer cell lines identified as significantly differentially regulated between groups.

miRNA Target Cell type Pathway/Function Ref.

let7 family RAS EOC lines tumour/Ras/MAPK-suppressor [47]

HMAG2 EOC lines anti-apoptotic, tumour-suppressor [48]

indirect HUAECs inhibits TGFβ pathway, pro-EMT [41]

let7a-5p IL6 Epithelial cells pro-cancer-cell survival [36]

TGFBR3 HUVECs anti-angiogenenic, anti-tube formation [49]

LOX-1 HUVECs anti-apoptotic, pro NO synthesis [50]

let7b-5p LOX-1 HUVECs anti-apoptotic, pro NO synthesis [50]

let7c-5p Bcl-xl HUVECs pro-apoptotic, via ox-LDL induced apoptosis [51]

let7d-5p IFI44L HUVECs anti-proliferation/migration [52]

let7e-5p Ilββ HUVECs pro-Nfκ βpathway [53]

let7f-5p IL10 CD4⁺ T cells pro-inflammatory [54]

IL3 Lymphocytes anti-inflammatory [37]

let7g-5p LOX-1 VSCMs anti-apoptotic [55]

TGFBR3/ SMAD2 /THBS HUVECs pro-angiogenic, targets TFβ pathway [56]

IL10 TH1/TH17 T cells pro-inflammatory [57, 58]

miR-93-5p EPLIN HUVECS pro-proliferative/migration/angiogenesis [59]

PTEN OC lines anti-apoptotic miR93-5p/PTEN/pAkt [60]

RhoC EOC lines pro-apoptotic, anti-migration [61]

IL8 Neuroblastoma anti-angiogenic [43]

VEGF Neuroblastoma anti-angiogenic [43]

miR-144-3p Meis1 Embryotic (Zebrafish) decreases runx-1,c-myc, haematoepeoeisis [62]

SRF HUVECs anti-proliferative, pro-apoptotic [63]

RUNX-1 EOC lines anti-proliferation, anti-migration [64]

miR-23a-3p ZO-2 & JAM-C HUVECs inhibit permeability [65]

RUNX2 HUVECs anti-angiogenic, suppresses VEGF-A [66]

miR-23b-3p JAM-C & ZO-2 HUVECs pro-angiogenic, increase permeability [65]

TAB2,TAB3, IKKa Lymphocytes suppresses IL-17-associated inflammation [67]

EOC = Epithelial ovarian cancer.

EMT = Epithelial-to-Mesenchymal Transition.

HUVEC = Human umbilical vascular endothelial cells.

HUAEC = Human umbilical arterial endothelial cells.

https://doi.org/10.1371/journal.pone.0230092.t009
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miRNA expression changes on LV integrity may identify new avenues to prevent transmigra-

tion of cancer cells across LV walls.

The response to cancer may also be mediated by inflammatory cells normally present in the

LV. Analysis of rat mesenteric, pre-nodal and post-nodal LVs has shown the presence of innate

inflammatory immune cells accumulating on the walls of the LVs including neutrophils,

monocytes and macrophages [70]. Microarray analysis of mesenteric collecting vessels has also

shown significant accumulation of MHCII+ antigen-presenting cells [71]. Furthermore, both

antigen-presenting cells and T cells are transported in LVs, with proportions depending on the

status of the upstream tissues [72]. We have not assessed the status of all of the tissues drained

by these LVs, but in any case we would expect some immune cells to be captured in our

images. However, the overall proportion of T cells to LV wall structural cells should be low

enough not to impact overall miRNA expression.

The expression of the enzyme myeloperoxidase (MPO) was selected as an inflammatory

marker due to evidence supporting MPO as a reliable inflammatory marker in a range of path-

ogenesis including cancer, rheumatoid arthritis and cardiovascular disease in addition to tissue

injury [73]. The expression of MPO has also been associated with ovarian epithelial carcinoma

cells in early stage carcinomas [74]. Presence of MPO is also specifically associated with vascu-

lar vessel inflammation [75,76]. Furthermore, MPO has been used as a reliable indicator of

lymphatic vessel inflammatory status to quantify LPS-induced lymphatic vessel inflammation

in rats in conjunction with Masson Trichome staining to indicate fibrotic vessel areas [13].

Other indicators of inflammatory state could be used, perhaps benefitting the prognostic value

for relapse.

A significant limitation of our feasibility study is the small sample size. Although we have

successfully identified associations with high potential for outcomes prediction, further sam-

ples could both strengthen the trends observed and uncover more obscure alterations associ-

ated with inflammation and/or relapse. Additionally, it is possible that increasing sample size

could result in the identification of inflamed but non-cancer infiltrated LVs. However, there is

no guarantee that increasing sample size would lead to the emergence of this group. The sam-

ple size also contributed to the decision to perform real time PCR with a relatively small num-

ber of pre-selected targets. A broader microarray study would require many more samples to

avoid false positives. We screened for miRNA with known involvement in inflammatory and

autoimmunity due to the previous characterization of inflammatory vessel state and patho-

physiological changes associated with inflammation and lymphatic function in rat lymphatic

vessels [13].

A further limitation to this study is the lack of samples from healthy controls. Harvesting

equivalent lymphatic tissues from healthy patients would not be ethical. However, this means

that the changes in LV status noted here are more directly relevant to identification of factors

that aid prognosis than identifying systemic EOC changes compared to healthy subjects. Epi-

thelial ovarian cancer surgical techniques and types of cytotoxic treatments do not differ, as of

yet, between the various histological subtypes. We therefore included all available epithelial

subtypes, even the clear cell case, to have a broader representation of the clinical reality.

Although our results support a link between systemic inflammation and cancer cell dissemina-

tion, a larger study is warranted to validate our findings and to allow further analysis to better

identify miRNA patterns using predictive algorithms with greater confidence.

Conclusions

In conclusion, we have demonstrated that LVs appear to show quantifiable inflammatory and

infiltrative alterations in patients with advanced EOC and that a high inflammatory LV state
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significantly correlates with higher risk of post-surgical relapse. Macroscopically normal lym-

phatic LVs show accompanying alterations in miRNA expression that may impact LV integrity

and secretion of VEGF and inflammatory cytokines. Whether LV inflammation is a cause or

consequence of cancer-cell infiltration is yet to be determined, but our results suggest systemic

inflammation as a new area to target.
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