
In Silico Gene Prioritization by Integrating Multiple Data
Sources
Yixuan Chen1., Wenhui Wang1., Yingyao Zhou2, Robert Shields1, Sumit K. Chanda3, Robert C. Elston4,

Jing Li1,4,5*

1 Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, United States of America, 2 Genomics Institute of the

Novartis Research Foundation, San Diego, California, United States of America, 3 Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La

Jolla, California, United States of America, 4 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America,

5 Joint Institute of Systems Biology, College of Computer Science and Technology, Jilin University, Changchun, China

Abstract

Identifying disease genes is crucial to the understanding of disease pathogenesis, and to the improvement of disease
diagnosis and treatment. In recent years, many researchers have proposed approaches to prioritize candidate genes by
considering the relationship of candidate genes and existing known disease genes, reflected in other data sources. In this
paper, we propose an expandable framework for gene prioritization that can integrate multiple heterogeneous data sources
by taking advantage of a unified graphic representation. Gene-gene relationships and gene-disease relationships are then
defined based on the overall topology of each network using a diffusion kernel measure. These relationship measures are in
turn normalized to derive an overall measure across all networks, which is utilized to rank all candidate genes. Based on the
informativeness of available data sources with respect to each specific disease, we also propose an adaptive threshold score
to select a small subset of candidate genes for further validation studies. We performed large scale cross-validation analysis
on 110 disease families using three data sources. Results have shown that our approach consistently outperforms other two
state of the art programs. A case study using Parkinson disease (PD) has identified four candidate genes (UBB, SEPT5, GPR37
and TH) that ranked higher than our adaptive threshold, all of which are involved in the PD pathway. In particular, a very
recent study has observed a deletion of TH in a patient with PD, which supports the importance of the TH gene in PD
pathogenesis. A web tool has been implemented to assist scientists in their genetic studies.
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Introduction

Dissecting genetic architectures of human diseases is a

fundamental task in human genetics and has profound implica-

tions in biomedical research. However, great challenges exist

because many common diseases are caused by multiple disease

genes with small to moderate effects. Even diseases that show

Mendelian inheritance may involve multiple genes due to

heterogeneity. Gene-gene interactions, as well as gene-environ-

ment interactions, also play an important role in the development

of diseases. Classifications of diseases, which are mostly based on

observed phenotypes, may not necessarily reflect their underlying

mechanisms. In addition, researchers have increasingly realized

that there are many levels of controls along the paths from

genotypes to phenotypes, resulting in a weaker relationship

between genotypes and phenotypes [1] that may or may not be

captured using traditional linkage or association approaches.

Furthermore, linkage analysis usually can only identify chromo-

somal intervals that may contain up to hundreds of candidate

genes owning to the limited number of crossovers in sampled

families. Genome-wide association studies may also return many

regions that show moderate to high signals. Experimental

validations of so many candidate genes are usually beyond the

ability of individual researchers owning to prohibitively high costs,

both in terms of fund and time.

Another limitation of linkage or association studies is that their

results only partially reflect the relationship between genes and

traits on account of many reasons, such as small genetic effects,

limited sample sizes, and limitations of statistical approaches. On

the other hand, it is well understood that genes have to be

transcribed and then translated into proteins, and proteins and

other molecular entities have to function in a synchronized matter

in the form of biological networks/pathways to perform normal

functionalities or to cause pathological phenotypic changes. A

variety of technologies exist to measure the levels of many such

activities. Over the years, a vast amount of data from different

sources has been accumulated and stored in a huge number of

biological databases, many of which are publicly available. For a

particular disease, such as breast cancer, tissue gene expression

data might exist in some databases. Known disease genes and their
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interacting parters may have been recorded in protein-protein

interaction (PPI) databases. Researchers may have also collected

and constructed disease pathways based on previous studies. All

these different data sets both confirm and complement each other,

which helps researchers study the biological phenomenons from

different aspects and levels. However, the conventional paradigm

that aims to establish a direct relationship between genotypes and

diseases through linkage and association studies mostly ignores all

the intermediate processes and data associated with them.

To solve this dilemma, researchers recently have proposed

approaches to prioritize candidate genes by using information

from different data sources, such as sequence-based features [2,3],

functional annotation data [4,5], protein interaction data [6–9],

gene expression data [10], or a combination of multiple data

sources [11–14]. The general idea of all these approaches is to

rank candidate genes from linkage/association results according to

their relationships with some known disease genes, reflected in

these data sources. For many data sources, one has to measure the

relationships between candidate genes and disease genes directly.

For other data sources, such as PPI networks, one can either

choose to measure the gene-gene relationships locally, or measure

them globally. Köhler et al. [7] have shown that global measures

perform better than local measures for prioritizing disease genes

using PPI networks. A fundamental issue in studies using a single

data source is the potential bias of their results caused by the

incompleteness and noise of one particular data set. Intuitively,

multiple data sources tend to provide better signal-to-noise ratio,

and thus may improve prediction accuracy. ENDEAVOUR

[11,14] is a popular online gene prioritization tool that utilizes

multiple data sources. It first ranks each candidate gene according

to each individual data source using various metrics. The ranks

from all data sources are then combined by using order statistics to

obtain an overall rank. Though it might provide better results

compared to approaches using a single data source, it has its own

limitations. First, different metrics have to be derived for different

data sources. It is not a trivial task if users need to add some new

data sources that are not available from its web server. Second, for

some data sources, such as PPI networks, simple local measures

are used, which may provide inferior results as shown in [7]. In

addition, each data source has its own noise or systematic errors.

The ranks obtained by ENDEAVOUR from each individual data

source are likely to be affected by those errors. When combining

the ranks, such effects can hardly be evaluated or quantified.

In this paper, we propose a general framework (Figure 1) for

candidate gene prioritization that can utilize multiple data sources

by taking advantage of a unified graphic representation. Gene-

gene relationships and gene-disease relationships are then defined

for each network based on a global measure (i.e., a diffusion

kernel). These measures are in turn normalized to derive an

overall measure across all networks, which is used to rank all

candidate genes. For each candidate-disease gene pair, only the

most informative network will contribute to the final gene-disease

relationship. In this way, we can automatically minimize errors

from unreliable data sources. We performed large scale cross-

validation analysis on 110 disease families from the OMIM

database using three data sources, based on protein interactions,

gene expressions and pathway information. Results have shown

that our approach consistently outperforms other two state-of-the-

art programs (i.e., random walk with restart [7] and ENDEAV-

OUR [11,14]). We also confirmed that approaches based on

global measures outperform approaches using local measures, and

the performance of our approach improves with increase in the

number of data sources. We have also defined a measure to

quantify the informativeness of networks with respect to each

disease. Improved performance has been observed on more

informative diseases for all approaches. Based on the informative-

ness measure, we also propose an adaptive threshold score that can

be used to select a small subset of candidate genes for further

validation studies. Taking Parkinson disease (PD) as a case study,

we tested our approach by considering all 3,243 genes that are

shared by all three data sources. We identified four candidate

genes (UBB, SEPT5, GPR37 and TH) that ranked higher than

our adaptive threshold, all of which are involved in the PD

pathway. In particular, a very recent study [15] has observed a

deletion of TH in a patient with PD, which supports the

importance of the TH gene in PD pathogenesis. A web tool has

been implemented to assist scientists in their genetic studies, which

can be accessed at http://cbc.case.edu/dir.

Methods

Data
Data Representation. One practical difficulty in integrating

different data sources lies in the fact that different types of data are

represented in different ways that are not directly comparable. To

solve this problem, we consider each data source at a conceptual

level. Essentially, we view a data source as evidence supporting

relationships among genes. More specifically, for each gene pair, a

data source can either support (to a certain degree) or not support

the fact that these two genes have a relationship within the context

of the given data. This is apparent in terms of PPI networks. A

direct interaction between a pair of proteins either has been

observed or has not been observed yet. The relationships between

a candidate gene (encoding the corresponding protein) and all

other genes/proteins can be thus defined. Such information can

also be obtained from other data sources. For example, gene

expression data can be transformed into gene co-expression

networks by connecting genes with similar expression patterns. To

represent known knowledge from biological pathways, a simple

network can be built by connecting genes (or their products) that

coexist in any pathway. Co-existence networks can also be built

Figure 1. The proposed integrative framework.
doi:10.1371/journal.pone.0021137.g001
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from other data sources, such as text. In such a representation,

each data source is encoded by a graph, where nodes represent

genes and edges (with possible weights) represent relationships

between genes. It is obvious that such a representation only

partially captures information from original data sources and

inevitably inherits incompleteness and noise from its original data.

However, information loss as well as noise can be assumed to be

independent for the different data sources. Our hypothesis is that,

when one observes strong evidences from multiple sources using

this graph representation, it implies a possible true signal that is

worth further investigation. In this work, we primarily focus on

three specific data sources, namely, PPI, gene co-expression and

pathway networks. Knowledge from mining the literature is not

considered directly because it is known that methods relying on

text mining may produce biased results [7].

Protein-Protein Interaction Data. The protein-protein

binding data used in this study were derived from the HyNet

yeast-two-hybrid database [16] and curated molecular interaction

databases including Reactome [17], BIND [18], MINT [19] and

HPRD [20]. Duplicated edges between the same pair of nodes

were combined and edges connecting a node to itself were deleted.

The final protein-protein interaction network contains 11,006
human genes that encode proteins in the network and 54,732
edges. This exact dataset has been used in other previous

biological studies [21,22].

Human Gene Expression Data. The human tissue

expression dataset was obtained from GNF’s SymAtlas web site

[23]. This dataset consists of 79 human tissues in duplicates,

measured using the Affymetrix U133A array that consists of

22,215 probe sets. All array measurements were processed and

normalized using the Affymetrix MAS5 algorithm. Pairwise

Pearson correlation coefficients were calculated and a pair of

genes were linked by an edge if their correlation coefficient is

greater than 0:5. The correlation coefficients were then assigned as

weights for edges. The final network consists of 12,700 genes and

10,013,679 edges among them.

Pathway Data. The pathway dataset was obtained from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [24]

pathway database, which is a collection of manually curated

biological pathways. For simplicity, an edge was constructed

between two genes (or gene products), if they coexist in any

pathway. The ‘‘pathway network’’ constructed this way consists of

5,305 nodes and 1,176,449 edges.

Known Disease-Gene Associations. OMIM [25] is a large

database about genes and disease phenotypes curated by domain

experts. We have extracted the disease-gene relationships using the

software BioMart [26]. In addition, Köhler et al. [7] have

investigated similarities among diseases based on the entries in

OMIM and classified those with similar or even indistinguishable

phenotypes into disease families. By doing so, the number of

disease genes per family will be much greater than the number of

genes per disease. We adopted this classification of diseases and

further updated the disease families with new information by

adding newly discovered disease genes since Köhler et al. ’s paper

was published. There are total 944 distinct genes from 110 disease

families. The largest family contains 44 genes whereas the smallest

one contains 3 genes. The average number of genes per family is

8.58.

Approach
Candidate Gene Ranking Using a Single Source. Once

the information from a data source is represented by a network,

the relationship between a candidate gene and a disease can be

measured by the relationship between the candidate gene and all

known disease genes. The basic assumption of the Guilt-by-

Association principle [27] is that genes that are ‘‘close’’ to each

other in a network are expected to perform similar functions, thus

genes that are closer to disease genes will be more likely to be

associated with the same disease, and they should be ranked

higher. This principle is largely true for many networks, such as

PPI networks, and has been validated by many previous studies.

To define the closeness of a pair of genes or one gene to a group of

genes in general, several distance/similarity measures have been

proposed by considering the topology (as well as edge weights

when possible) of a network, either locally (such as direct

neighbor(DN ), shortest path(SP)) or globally (such as diffusion

kernel (DK ) and random walk with restart (RWR)). All of these

measures have been used in previous studies (e.g., in [7]). For the

sake of completeness, we briefly introduce them here and show

how they can be used in gene ranking. We will compare the

performance of our proposed approach with these methods.

Let M denote the adjacency matrix of a given network. For an

unweighted network such as the PPI or the pathway network,

M(i,j)~1 if there is an edge between gene i and gene j, and

M(i,j)~0 otherwise. For a weighted network such as the co-

expression network, M(i,j) is the Pearson correlation coefficient of

the two genes i and j if their correlation is greater than 0:5, and

M(i,j)~0 otherwise. Let DN, SP and DK denote the pairwise

distance/similarity matrix for measures based on direct neighbor,

shortest path and diffusion kernel, respectively. The direct

neighbor distance DN(i,j) between two genes i and j is defined

as 1, if M(i,j)w0, and z? otherwise. The shortest path distance

SP(i,j) between two genes i and j is defined as the length of a

shortest path between the two genes, which can be easily

calculated based on standard graph algorithms. The diffusion

kernel is defined as: DK~e{cL, where c is a tuning parameter

and L~D{M, D being a diagonal matrix with the diagonal

elements containing the node degrees. The diffusion kernel

represents a global similarity between nodes in a graph, with

higher values representing closer relationships. For nodes that are

not connected, their values will be 0. For a specific disease family

G with a set A of known disease genes, and for a candidate gene b
in a set B of candidate genes, the relationship between b and G is

represented by the average distance between b and all

known disease genes in A. For example, for the DN measure,

DN(b)~
1

jAj
X

a[A
DN(b,a). Such a proximity score can then

be used to rank all the genes in B.

Different from the three measures defined above, the RWR
approach [7] directly defines the relationship of a gene with a

group of disease genes. It is described as an iterative walker’s

transition from its current node to a randomly selected neighbor

starting at a set of given seed nodes (disease genes). Formally, the

RWR is defined as: ptz1~(1{r)M
0
ptzrp0, where M

0
is the

column-normalized adjacency matrix M and pt is a vector where

the ith element holds the probability of being at node i at time step

t. The initial probability vector p0 is constructed such that equal

probabilities are assigned to the nodes in set A, with the sum of the

probabilities equal to 1. The parameter r represents the restart

probability. The proximity score of a candidate gene b[B is then

defined as the corresponding element in the steady-state

probability vector p?, which is usually approximated by pt when

jpt{pt{1j is smaller than a predefined threshold. K€oohler et al. [7]

compared the performance of these four measures in prioritizing

candidate genes using the PPI network. They showed that the two

global measures (RWR and DK ), which incorporate all the

connectivity information in a network and have similar perfor-

mance, clearly outperformed the two local measures (DN and SP).

Gene Prioritization by Integration

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21137



Integrating Multiple Sources. Significant challenges exist

in integrating different data sources, even if they all have been

represented using networks, because the distances defined in

different networks may not be directly comparable. In this study,

we propose an importance measure that is defined based on the

relative strength of the distance between a pair of genes among all

pairwise distances within each network. On assuming different

networks are independent, these measures from different networks

can be directly compared with one another. Such a framework can

be applied to any measures that can define pairwise distances/

similarities, such as direct neighbor, shortest path and diffusion

kernel. However, it cannot be directly applied to the RWR [7].

Because global distance measures are much better in capturing the

overall relationships in a network, we mainly focus on the

framework in combination with the diffusion kernel approach.

More specifically, let M1,M2, . . . ,Mm denote the adjacency

matrices derived from m different datasets, respectively. Let

DKl ,l~1,2, . . . m denote their diffusion kernels. The importance

of the similarity between a gene pair i and j is defined as:

DKPCl(i,j)~
jf(s,t)jDKl(s,t)§DKl(i,j)gj
jf(s,t)jDKl(s,t)w0gj ,l~1,2, . . . ,m:

The numerator measures the number of pairs that are closer than

the pair (i,j). The denominator counts the total number of

connected pairs. Intuitively, for each gene pair, its DKPC value is

equal to one minus the percentile of its original diffusion kernel

similarity among all connected pairs. Therefore, the value is

smaller (or more significant) when the two genes are more similar.

If gene i and gene j are not connected in network l,

DKPCl(i,j)~1. With this definition, all relationships between

pairs of genes are scaled between 0 and 1 for all networks and can

be compared across different networks. Based on this importance

score, we further define our final data integration rank (DIR) score

for each candidate gene b from B with respect to a specific disease

family G with a set A of known disease genes as:

DIR(b)~

P
a[A maxf{log(DKPCl(b,a)),1ƒlƒmg

jfa[Ajmaxf{log(DKPCl(b,a)),1ƒlƒmgw0gj :

The numerator sums the evidence over all disease genes within the

disease family. And for each disease gene a[A, it chooses the most

informative network to use by taking the max. The denominator

just counts the number of disease genes that provide information

in the numerator (i.e., those that are connected to the candidate

gene). This score reflects the overall relationship between gene b
and all known disease genes in A. By taking the max instead of

average, it potentially yields better performance because when

some networks are incomplete, which happens frequently, the

average score is usually much lower. The {log is mainly for the

stability of the score. The normalization by dividing the number of

disease genes that provide information can further account for the

incompleteness of some networks.

Meta Score and Declaration of Positives. One can directly

use the DIR score defined above to select genes that might be

associated with diseases. The greater DIR(b) is, the more likely

gene b will be associated with the disease and it will have higher

rank. Conventionally, researchers select a fixed number of

candidate genes (so called top-k approach) to report prioritization

results for all disease families. However, different disease families

usually have different numbers of known disease genes. It may not

be appropriate to use a global threshold in such a case. Following

the idea proposed by Zhou et al. [28], we define and automatically

calculate a meta score QG for a specific disease family G with a set A
of known disease genes based on the relationships of all these known

disease genes in all networks. Let C2
jAj denote the binomial

coefficient with parameters jAj and 2. QG is defined as:

QG~

P
i=j[A maxf{log(DKPCl(i,j)),1ƒlƒmg

C2
jAj

:

Intuitively, the meta score QG measures the average ‘‘closeness’’ or

significance of all disease genes of this disease family from all the

networks. If a candidate gene is closer to the disease genes than the

disease genes are to themselves on average, this candidate gene is

more likely to be associated with the disease, too. This meta score

can be used as a threshold for declaring significant candidate genes.

In the Results section, we will discuss the use of QG and its variants

as ‘‘adaptive ranking thresholds’’ and evaluate their performance in

comparison with the top-k approach.

Informativeness of a Network
The informativeness of networks is different for different disease

families. Even though the networks are quite comprehensive, some

disease genes may not occur in a network at all, or may have

limited connections. Therefore, for some disease families, it is not

appropriate to use the data sources to prioritize genes if the

networks themselves do not contain enough information about

these disease families. To formally quantify the informativeness of

a network with respect to a disease family G, we define a measure

of informativeness I l
G of a network l for a disease family G with a

set A of disease genes as the average pairwise relationship between

known disease genes:

I l
G~

P
i=j[A ({log(DKPCl(i,j)))

C2
jAj

:

In our experiments below, in addition to the overall performance

using all disease families, we also perform evaluations by

separating the disease families according to their informativeness.

Validation Method and Evaluation Criteria
We evaluate the proposed method using the leave-one-out

cross-validation approach, which has been adopted by many

previous studies (e.g., [7]). Briefly, for each disease gene in each of

the 110 disease families, we obtain 100 genes located nearest to

this disease gene on the same chromosome and rank all of them

together with this disease gene according to the score defined

above. The process is repeated for all disease genes to obtain final

results. We use two measures to measure the performance of our

approach. First, for each run, the enrichment factor is defined as

50/(rank of the tested disease gene), which will be highest if the

tested gene ranks first. Second, we also use the measure of the

receiver operating characteristic (ROC) curve, which shows the

relation between the sensitivity (true positive) and the specificity

(true negative rate) by varying the threshold for declaring positives.

The area under the ROC curve (AUC), which provides an overall

measure of the performance, is used to compare different

approaches.

Results

We first constructed the gene co-expression network, the PPI

network and the pathway network as described earlier, and

calculated the DKPC scores for each of them as the knowledge

Gene Prioritization by Integration

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21137



base of our approach. We performed extensive experiments to test

the performance of our proposed approach under different

scenarios and compared its performance with two existing

cutting-edge approaches, RWR [7] and ENDEAVOUR [11,14].

We first evaluated the performance of our measure and all the

three other measures (i.e., DN, SP, and RWR) on a single

network, followed by the experiments using different number of

networks. We then compared our results with those by

ENDEAVOUR using three similar networks. We also examined

the results by separating the disease families according to their

mechanisms and their informativeness. Lastly, as a test case, we

present our results on the Parkinson disease family. The approach

has been implemented as a web tool and can be accessed freely.

Performance Using All Disease Families
By using the leave-one-out cross-validation, we first compared

the performance of our algorithm on all of the updated 110 disease

families with several state of the art algorithms that utilize single as

well as multiple data sources. More specifically, we tested our

approach (DIR) on the three networks that we constructed. Results

from ENDEAVOUR were obtained from three comparable data

sources that were listed in their package (i.e., PPI from HPRD,

pathway from KEGG and the same expression data from Su et al.

[23]). We also included the three approaches (RWR, DN and SP)

as well as our own approach on the PPI network alone (denoted as

DIR-PPI). The PPI network was chosen in the study of

performance on a single network because it has higher coverage

and is more informative than the other two networks, and PPI

networks have been widely used in previous studies (e.g., [21,22]).

In our implementation, if the disease gene left out for testing is not

in any network, it was assigned a random rank between 1 and 101.

Figure 2A shows the ROC curves of all the approaches tested. The

AUC values are also listed (in parenthesis) for each method. It is

apparent that DIR has the best overall performance, with the AUC

around 80.0%. The two approaches DIR and ENDEAVOUR,

using multiple data sources outperform all the approaches using the

PPI network alone. This is consistent with the general belief that by

collecting more evidences from different data sources, the prediction

results can be improved. The significant improvements of DIR

compared to DIR-PPI, as well as to RWR, further illustrate the

value of integrating multiple data sources. Though DIR is only

slightly better than ENDEAVOUR in terms of the AUC values

(80.0% vs. 78.5%), the total number of tested genes that were ranked

first by DIR is much greater than the number of first ranked genes

by ENDEAVOUR (330 vs. 243). Consequently, the enrichment

factor achieved by DIR is better than that of ENDEAVOUR (21.9

vs. 18.5). The flat area in the middle of the ROC curve generated by

ENDEAVOUR is due to the way it deals with missing information

(see supplemental materials of [11]). On a single network, the two

approaches incorporating the global topology (RWR and DIR-PPI)

outperform the two approaches using local measures (DN and SP).

RWR is slightly better than DIR-PPI, which is also consistent with

previous studies [7]. Therefore, we dropped the three approaches

using a single network (DIR-PPI, DN and SP) from further

comparisons.

In general, disease genes usually receive more attention and

usually have been studied more intensively after they were

discovered. This is reflected by the fact that normally the average

degree (i.e., the number of links) of disease genes in some networks

is much greater than the average degree of non-disease genes (e.g.,

15.5 vs 9.5 in the PPI network). To assess whether our method

critically relies on this degree bias, we randomly shuffled the

networks while keeping the degree of each node unchanged. We

performed the same leave-one-out experiment. Roughly speaking,

Figure 2. A: ROC curves of cross-validation results by different approaches. The suffix ‘‘-PPI’’ after each method indicates it uses the PPI network only.
B: The ROC curve of DIR using the re-wired networks.
doi:10.1371/journal.pone.0021137.g002

Gene Prioritization by Integration
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the results (Figure 2B) show that the ROC curve is close to the

diagonal of the coordinate plane, which illustrates that our results

were not driven by the underlying degree distribution. However,

the AUC based on re-wired networks is not 0.5, which suggests

some bias that may be due to other reasons. We suspect the density

of the expression and pathway networks might affect this result.

Figure 3. Robustness assessments of DIR and RWR for their parameters ranging from 0.1 to 0.9 (left), as well as DIR from 0.01 to
0.09 (right).
doi:10.1371/journal.pone.0021137.g003

Figure 4. Left: The average performance of the five approaches using 100 randomly selected control sets. Right: The performance of the approaches
using all genes in the PPI network as the control set.
doi:10.1371/journal.pone.0021137.g004

Gene Prioritization by Integration
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Parameter Tuning. Notice that both DIR and RWR have

some user-defined parameters in their framework. We performed

robustness analysis of both approaches and the results presented

above were obtained using the parameters that achieved the best

performance for both approaches. More specifically, the RWR

method has a parameter r that indicates the restart probability.

We varied r from 0:1 to 0:9 at increments of 0:1. The best result

was obtained when r~0:7. Therefore, we fixed r at 0:7 in our

experiments. DIR has a parameter c. We tested c in the same

manner from 0:1 to 0:9. The best result was obtained when

c~0:1 (Figure 3A). We further tested the performance of DIR for

c from 0:01 to 0:09 at increments of 0:01 for all three networks

together and separately. No significant changes were observed

(Figure 3B). Overall, the performance was very robust to c. We

selected c~0:04 in our experiments. When we performed the

analysis on each network individually here, only genes that were

in the network were considered. This was different from the

experiment using all networks, as well as the experiments using

single networks elsewhere, in which cases all genes in a defined

control set were considered and a random rank was assigned to a

gene not in a network. When ignoring missed genes, using the

pathway alone actually can achieve better results when c is small

(Figure 3B), which is consistent with the fact that tight/direct links

in the pathway network are much more important than indirect

links.

Performance Using Alternative Control Sets. In our

experiments, we selected the 100 closest genes for each disease

gene as its control set. In order to test the robustness of our approach

with respect to the selection of control sets, we performed large scale

cross-validation experiments using two alternatives. In the first

experiment, for each disease gene, we randomly selected 100 genes

from the PPI network as the control set. We performed the leave-

one-out cross-validation and obtained the performance result of

each approach. We further repeated this procedure 100 times to

obtain the variance of the AUC values. Results show that the

variances of the AUC values of all approaches tested are very small

and our method consistently performs better than RWR and other

approaches based on local measures (Figure 4A). The average

performance of DIR using control sets from the PPI network is not

as good as its performance using the closest neighboring genes. We

suspect this is mainly caused by the missing of some neighboring

genes in these networks. In the second experiment, we examined the

performance of these approaches using a genome-wide control set.

We took all the genes in the PPI network excluding those disease

genes as the control set. Once again, the leave-one-out cross-

validation was performed. Our method again consistently performs

better than RWR and other approaches based on local measures

(Figure 4B). Owing to its efficiency issue, ENDEAVOUR could not

finish the analysis on these two experiments in several days,

therefore we could not obtain its results.

Figure 5. Cross-validation results of three approaches on different disease categories. (A) ROC curves for monogenic diseases. (B) ROC
curves for polygenic diseases. (C) ROC curves for cancers. (D) AUC values on all disease families and on the three categories. (E) Percentage of first-
ranked disease genes for all diseases and the three categories. (F) Percentage of disease genes ranked in top-10 for all diseases and the three
categories.
doi:10.1371/journal.pone.0021137.g005
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Performance on Different Categories of Diseases
On the basis of the mechanisms of diseases, Köhler et al. [7]

separated the 110 families into three categories: namely,

monogenic diseases, polygenic diseases, and cancers. The number

of families and the number of total disease genes in each of the

three categories are 85/615, 13/186, 12/143, for monogenic,

polygenic, and cancer diseases, respectively. We evaluated and

compared the three approaches (DIR, RWR and ENDEAV-

OUR) over the three categories of disease families separately.

DIR achieved the best overall performance and outperformed

both RWR and ENDEAVOUR in all three categories

(Figure 5A–D) in terms of the AUC values. Interestingly, all

three approaches have the best performance (i.e., best AUC

values) for the cancer disease families (Figure 5D). DIR

performed much better than RWR and ENDEAVOUR for the

polygenic disease families, while DIR and ENDEAVOUR

performed much better than RWR for the monogenic diseases.

In terms of the fraction of disease genes ranked in the first place

(Figure 5E), both DIR and RWR had about 35% of all tested

genes ranked first, while the fraction of first ranked genes by

ENDEAVOUR was much lower (about 25%). Similarly, when

separated into three categories, the fraction of genes ranked first

by ENDEAVOUR was much smaller than those of DIR and

RWR. ENDEAVOUR was able to catch up in terms the number

of genes ranked in the top ten list (Figure 5F), which explains why

it has better overall AUC than RWR. For different disease

categories, all approaches had better results for the monogenic

diseases when considering the first ranked genes. The highest

enrichment factor was achieved by DIR in the monogenic disease

families (23.0) and the lowest was ENDEAVOUR in the

polygenic diseases (13.8).

Informativeness of Networks and Performance Using
Different Numbers of Networks

We advocate the use of our approach for its capability of being

able to incorporate multiple data sources when prioritizing

candidate genes. To explore this further, we evaluated the

informativeness of the three networks with respect to the disease

families using the measure defined earlier, and examined the

performance of our approach using different combinations of data

sources. First of all, DIR has shown consistent improvements for

all the measures (the AUC values, the number of first-ranked

disease genes, the number of disease genes in the top-10 highest

ranked genes, and the average enrichment factors) when

increasing the number of data sources (Table 1), which again

verified our hypothesis that the approaches with multiple data

sources are preferred in gene prioritization. Second, among the

three networks, the gene co-expression network was the least

informative one, which is consistent with observations from

previous studies (e.g., [29]) that physical interaction data including

PPI usually provides stronger evidence for gene function

predictions compared to expression correlation. It seems counter

intuitive that the PPI was more informative than the pathway

network. This is mainly due to the difference in size/coverage of

the two networks. The number of genes in the pathway network is

significantly less than the number of genes in the PPI network.

Disease genes not in the pathway network received a random rank,

which contributed to the relative low performance of the pathway

network. When only considering genes that appear in the pathway

network, the pathway network is actually more informative (e.g.,

see Figure 3B). The combination of the PPI network and the

pathway network performs very well. Overall, the three networks

together show the best performance. Although the gene co-

expression network is not very informative as the PPI network and

the pathway network, including it increases the coverage of genes

and thus enables prioritizing candidate genes not captured by the

other two networks.

Table 1. Cross-validation results using different combinations
of data sources.

Data
Source EXP PWY PPI EXP+PWY EXP+PPI PPI+PWY ALL

AUC 58.3% 64.8% 72.5% 71.9% 76.5% 77.3% 80.0%

Ranked first 57 175 278 179 291 320 330

In top-10 199 339 466 391 513 520 561

Enrichment 6.7 13.5 18.7 13.7 19.9 21.1 21.9

EXP: co-expression network, PPI: protein-protein interaction network, PWY:
pathway network.
doi:10.1371/journal.pone.0021137.t001

Table 2. Three examples show improvements of DIR by integrating multiple data sources.

Disease Family/Informativeness Gene Name (Entrez ID) DIR RWR ENDEAVOUR

Generalized epilepsy with SCN2A(6326) 6 66 1

febrile seizures plus SCN1A(6323) 7 - 2

Exp PPI Pathway SCN1B(6324) 7 61 1

4.09 0.10 0.46 GABRG2(2566) 6 62 4

GABRD(2563) 1 50 7

Pituitary dwarfism LHX3(8022) 1 1 4

Exp PPI Pathway POU1F1(5449) 1 1 3

0.90 8.08 0.00 HESX1(8820) 1 1 1

PROP1(5626) 1 1 1

Aicardi-Goutieres syndrome RNASEH2A(10535) 1 29 23

Exp PPI Pathway RNASEH2B(79621) 2 72 16

2.29 0.31 4.10 RNASEH2C(84153) 1 - 72

The first column also lists the informativeness of each network contributing to each disease family.
doi:10.1371/journal.pone.0021137.t002
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The results above have shown the overall improvement of DIR

when including more data sources. To further showcase the

improvement of prioritization on specific disease families by

integrating more data sources, we calculated the informativeness

of each network with respect to each disease family (i.e., I l
G ). We

selected three disease families as an example to show the

improvement by approaches using multiple data sources

(Table 2). The informativeness of networks on all diseases can

be found in Dataset S1. In one example, the disease family

‘‘Generalized epilepsy with febrile seizures plus’’ obtains little

information from the PPI network. Therefore it was not surprising

that the RWR, which depends on the PPI network solely, could

not correctly predict disease genes in the cross-validation. In

contrast, the gene co-expression network provided sufficient

information about their connections. Consequently, the two

approaches DIR and ENDEAVOUR using the gene co-

expression network returned much better results. In another

example, the disease family ‘‘Pituitary dwarfism’’ has strong

information from the PPI network and has little information from

the other two networks. All three approaches performed well on

this family, which also illustrated that the performance of both

DIR and ENDEAVOUR were not weakened by including more

networks, even if some of them were not informative. In a last

example (Aicardi-Goutieres syndrome), both the gene co-expres-

sion network and the pathway network contributed to the success

of DIR in ranking the three genes. Relying on the PPI network

alone, RWR could not successfully rank these genes and missed

one gene (RNASEH2C) because it was not in the PPI network.

Performance on Informative Diseases
When using other data sources to prioritize candidate genes for

a disease, the effectiveness of any approach is essentially

determined by the coverage and information content in those

data sources, which represents the existing knowledge about

the disease. Based on the network informativeness (I l
G ), we

ranked the disease families according to the maximum value of

the informativeness of the three networks. We chose a subset

of diseases that were more informative, defined as

maxfI l
G,1ƒlƒ3g§2:0 (which roughly corresponded to an

average DKPC score of 0.01 or lower). There was a total of 66

such families, consisting of 490 disease genes, and the top 15

families are listed in Figure 6A. The list of all disease families can

be found in Dataset S1. We summarize the cross-validation

experiment results of the three approaches again but using only

this set of 66 families (Figure 6B). Apparently, the performance of

all three approaches improved dramatically. For example, the

AUC values increased significantly: from 80:0% to 91:4% for DIR,

74:9% to 84:3% for RWR, and 78:5% to 88:4% for ENDEAV-

OUR. This suggests that with more information available,

network-based approaches can make better prioritization. Re-

searchers can always first evaluate the informativeness of the

networks with respect to their own diseases before applying any in

silico gene prioritization approaches.

Performance Using an Adaptive Rank Threshold
After obtaining a ranked list of all candidate genes, one needs to

define a rank threshold to declare disease susceptibility genes for

further studies. Ideally, such a threshold should be able to capture

the true disease genes while keeping the number of non-disease

related genes as small as possible. In practice, one has to balance

between the True Positive Rate (TPR) and the False Positive Rate

(FPR). To increase the TPR, one may always increase the FPR. A

straightforward method to declare positives is the Top-k criterion

(e.g., k~1 or 10) that declares all the top k best ranked candidate

genes as disease susceptibility genes. Our framework can naturally

utilize the meta score Q (i.e., QG for disease G) as the selection

criterion. The Q score reflects the relationship between known

disease genes. Our hypothesis is that the relationship between a

disease susceptibility gene and known disease genes should be

similar to the relationship among known disease genes themselves.

Our approach ranks candidate genes together with known disease

genes as well as with the meta score Q. If a candidate gene is

ranked better than Q, it is likely to be a true disease gene given that

Figure 6. A: A partial list of disease families that are most informative. B: Cross-validation results excluding disease families with
maxfI l

G,1ƒlƒ3gv2:0.
doi:10.1371/journal.pone.0021137.g006

Table 3. True Positive Rate and False Positive Rate using
different criteria.

Criterion Top-1 Q+1 Q+1OR10 Top-10

True Positive Rate 54.0% 68.8% 68.8% 81.6%

False Positive Rate 0.46% 3.64% 2.49% 9.18%

doi:10.1371/journal.pone.0021137.t003

Gene Prioritization by Integration

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e21137



Q is also ranked relatively high. In the case that no candidate gene

is ranked better than Q, we declare the first ranked candidate gene

as the disease susceptibility gene. We call such a criterion the

‘‘Q+1’’ rule. In some cases, the relationship among existing disease

genes is not so strong, resulting in a low Q score. To avoid too

many false positives, we use the Q score only if it itself ranks in the

top-10 (excluding known disease genes). We call this one the

‘‘Q+1OR10’’ criterion. We have evaluated the Top-1, Top-10,

Q+1, and Q+1OR10 criteria on the 66 informative disease

families defined above. We calculated the TPR as the ratio of

successfully detected disease genes out of the total number of

disease genes. The non-disease genes that ranked higher than each

criterion are the false positives. The FPR is calculated as the

number of false positives divided by the total number of candidate

genes. Table 3 shows the TPR and FPR under each of the four

criteria. Although the Top-1 criterion has the smallest FPR, it also

suffers from the smallest TPR. On the contrary, the Top-10
criterion gives the highest TPR, but also the highest FPR. Our

criteria Q+1 and Q+1OR10 lie in between the two. In particular,

the performance of Q+1OR10 is appealing. Compared to the

Top-1 criterion, it can actually increase the TPR by 14:8% while

only increasing the FPR by 2:03%.

A Case Study
We chose the disease family ‘‘Parkinson Disease’’ (PD) as a case

study to perform a large scale de novo test of our proposed

algorithm. Parkinson disease is one of the most common

neurodegenerative disorders. For the PD disease family, we have

used the same definition in Köhler et al. [7], which consists of

several forms of Parkinson diseases such as, PARK, PARK1,

PARK2 (See Table 4 for details). The disease family has 8 known

disease genes and the cross-validation experiment ranked seven of

them at the first place and one of them (LRRK2) at the second

place. To identify some potential new PD disease genes, we

constructed the candidate gene set by including all 3,243 genes

that have appeared in all three networks. We ranked the candidate

genes together with the known disease genes and used the Q-score

to declare positives. Taking all 3,243 genes together, the Q-score

ranked number 9, and 4 disease genes and 4 candidate genes had

higher scores than Q (Figure 7). The four candidate genes are

ubiquitin B (UBB), septin 5 (SEPT5), G protein-coupled receptor

37 (GPR37) and Tyrosine hydroxylase (TH), all of which have

been involved in the Parkinson disease pathway (Figure 8). UBB

encodes ubiquitin, one of the most conserved proteins known.

Ubiquitin is required for ATP-dependent, nonlysosomal intracel-

lular protein degradation of abnormal proteins. Aberrant forms of

this protein have been noticed in patients with Alzheimer and

Huntington diseases [30], but not PD, though all three diseases

share a common feature in the accumulation of insoluble protein

deposits. SEPT5 is a member of the septin gene family of

Table 4. Disease genes from the Parkinson disease family and
related disorders.

Genes (OMIM ID) Disorder (OMIM ID)

SNCA (168601) Parkinson disease , familial, type 1 (PARK1) (163890)

PARK2 (600116) Parkinson disease 2, AR, juvenile (PARK2) (602544)

UCHL1 (191342) Parkinson disease 5 (191342)

PINK1 (605909) Parkinson disease 6, AR, early-onset (608309)

PARK7 (602533) Parkinson disease, autosomal recessive, early-onset
(606324)

LRRK2 (607060) Parkinson disease 8 (609007)

HTRA2 (610297) Parkinson disease 13 (606441)

SNCAIP (603779) Parkinson disease (603779)

doi:10.1371/journal.pone.0021137.t004

Figure 7. In the case study of the PD disease family, four candidate genes (in read) and four disease genes (in green) ranked higher
than the Q score (in blue), all of which are ordered according to their DIR values.
doi:10.1371/journal.pone.0021137.g007
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nucleotide binding proteins, which is shown as CDCrel1 in the PD

pathway (Figure 8). GPR37 is a substrate of parkin (PARK2), and

its insoluble aggregates accumulate in brain tissue samples of

Parkinson’s disease patients [31] (shown as PaelR in Figure 8). The

protein encoded by TH is involved in the conversion of tyrosine to

dopamine. It is the rate-limiting enzyme in the synthesis of

catecholamines, hence plays a key role in the physiology of

adrenergic neurons. Mutations in this gene have been associated

with autosomal recessive Segawa syndrome. Missense mutation in

both alleles of the TH gene is known to cause dopamine-related

phenotypes, including dystonia and infantile Parkinsonism. Most

recently, a study has found a rare novel deletion of the entire TH

gene in an adult with PD [15]. The result from this study had not

been entered into the OMIM database. This clearly shows the

value of our in silico prioritization approach, and the top ranked

genes returned by our approach should receive more attentions in

follow-up or validation studies. We have also tested RWR and

ENDEAVOUR on the same data set. All the four genes reported

by DIR are in the top 10 list of ENDEAVOUR, and five other

genes in the top 10 list of ENDEAVOUR are also ranked high by

DIR (i.e., in top 25 among more than 3000 candidates). The other

gene, ALS2, ranked number 2 by ENDEAVOUR, is not in the

top 100 by DIR. Literature search reveals that ALS2-related

disorders include Autosomal Recessive Juvenile Amyotrophic

Lateral Sclerosis, Infantile-Onset Ascending Hereditary Spastic

Paralysis and Juvenile Primary Lateral Sclerosis, but not PK.

Results from RWR are quite different from DIR and ENDEAV-

OUR, which is not surprising given that RWR has only utilized

the PPI network. The top 100 genes from each method can be

found in the supplemental Dataset S2.

Discussion

In this paper, we have proposed a candidate gene prioritization

approach that can integrate multiple data sources by taking

advantage of a unified graphic representation of information. Our

results have shown that based on a single network, both our

approach and the RWR approach have better performance than

Figure 8. The PD pathway obtained from the KEGG pathway database.
doi:10.1371/journal.pone.0021137.g008
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measures based on local topology (i.e., DN and SP), which is

consistent with observations made by previous studies. Our

experiments have also shown that by integrating multiple sources,

DIR significantly outperformed all approaches relying on single

sources. Consistent improvements have been observed for DIR

when increasing the number of data sources from one to three.

Using three data sources and large scale cross-validations, we have

shown that the proposed approach outperforms two cutting-edge

methods. In terms of the AUC values, the improvement of DIR

over RWR is more impressive than the improvement of DIR over

ENDEAVOUR. Actually, in both cases, the improvements should

be statistically significant. Though one cannot directly estimate the

errors for these experiments, robustness analysis using different

control sets have shown that the estimated standard error of DIR

is very small (0.0026, Figure 4A), almost an order of magnitude

smaller than the performance difference. Furthermore, the

fraction of first ranked genes by DIR is much greater than the

fraction by ENDEAVOUR. The improvement of DIR over RWR

can be attributable to the inclusion of more data sources.

Comparing to ENDEAVOUR, in which case it first ranks a gene

based on an individual data source, the definition of the DIR

score, which utilizes only the most informative network for each

individual disease gene, may give us some advantage.

We have also presented an adaptive threshold to automatically

select a small subset of most promising candidate genes, which can

significantly improve the true positive rate while keeping the false

positive rate low. Our results have confirmed that global measures

are better than local measures in capturing gene-gene relation-

ships. Based on a global measure of gene-gene relationship, we

have proposed a measure of network informativeness, which can

be used to guide gene prioritization studies. We have shown that

the accuracy of our approach has been improved when using data

with higher quality. A case study on Parkinson disease has

illustrated the potential of the proposed approach.

The framework can be easily extended to include more data

sources, as long as there is an appropriate definition of gene

relationships for each data source. On the other hand, it is not

always easy to capture all the information from some original data

sources by using a graph representation. We will investigate the

inclusion of more data sources in our future work. For a specific

disease, the prediction result will be limited by existing knowledge

about the disease, including the number of known disease genes

and their relationships within the existing data sources. We have

used the concept of disease families in order to increase the

number of known disease genes in each family. Some recent

studies have considered relationships/similarities between diseas-

es/phenotypes [32] and have utilized phenotype similarities in

their gene prioritization approach [33–35]. We will investigate

approaches to incorporate phenotype similarities into our

framework.

Supporting Information

Dataset S1 The informativeness measures for all disease

families.

(XLSX)

Dataset S2 Top genes ranked by the three approaches on the

PD dataset.

(XLSX)

Acknowledgments

We thank Dr. R. Jiang from Tsinghua University for helpful discussion.

Author Contributions

Conceived and designed the experiments: JL YZ SKC. Performed the

experiments: YC WW. Analyzed the data: YC WW. Contributed

reagents/materials/analysis tools: YC WW RS. Wrote the paper: JL YC

WW YZ RCE.

References

1. Strohman R (2002) Maneuvering in the complex path from genotype to

phenotype. Science 296: 701–3.

2. Turner FS, Clutterbuck DR, Semple CA (2003) Pocus: mining genomic

sequence annotation to predict disease genes. Genome Biol 4: R75.

3. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2006) Suspects:

enabling fast and effective prioritization of positional candidates. Bioinformatics

22: 773–4.

4. Perez-Iratxeta C, Bork P, Andrade MA (2002) Association of genes to genetically

inherited diseases using data mining. Nat Genet 31: 316–9.

5. Freudenberg J, Propping P (2002) A similarity-based method for genome-wide

prediction of disease- relevant human genes. Bioinformatics 18 Suppl 2: S110–5.

6. Xu J, Li Y (2006) Discovering disease-genes by topological features in human

protein-protein interaction network. Bioinformatics 22: 2800–5.

7. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for

prioritization of candidate disease genes. Am J Hum Genet 82: 949–58.

8. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using

protein-protein interactions. J Med Genet 43: 691–8.

9. Pattin KA, Moore JH (2008) Exploiting the proteome to improve the genome-

wide genetic analysis of epistasis in common human diseases. Hum Genet 124:

19–29.

10. Ala U, Piro RM, Grassi E, Damasco C, Silengo L, et al. (2008) Prediction of

human disease genes by human-mouse conserved coexpression analysis. PLoS

Comput Biol 4: e1000043.

11. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, et al. (2006) Gene

prioritization through genomic data fusion. Nat Biotechnol 24: 537–44.

12. Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, et al.

(2006) Reconstruction of a functional human gene network, with an application

for prioritizing positional candidate genes. Am J Hum Genet 78: 1011–25.

13. Chen J, Xu H, Aronow BJ, Jegga AG (2007) Improved human disease candidate

gene prioritization using mouse phenotype. BMC Bioinformatics 8: 392.

14. Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, et al. (2008)

Endeavour update: a web resource for gene prioritization in multiple species.

Nucleic Acids Res 36: W377–84.

15. Bademci G, Edwards TL, Torres AL, Scott WK, Zuchner S, et al. (2010) A rare

novel deletion of the tyrosine hydroxylase gene in parkinson disease. Hum Mutat

31: E1767–71.

16. http://www.ariadnegenomics.com/products/databases/prolexys-hynet/.

17. Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, et al. (2007)

Reactome: a knowledge base of biologic pathways and processes. Genome Biol

8: R39.

18. Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, et al. (2005) The

biomolecular interaction network database and related tools 2005 update.

Nucleic Acids Res 33: D418–24.

19. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, et al.

(2007) Mint: the molecular interaction database. Nucleic Acids Res 35: D572–4.

20. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, et al. (2006)

Human protein reference database–2006 update. Nucleic Acids Res 34:

D411–4.

21. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, et al. (2008) Global

analysis of host-pathogen interactions that regulate early-stage hiv-1 replication.

Cell 135: 49–60.

22. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, et al. (2011) Human host

factors required for influenza virus replication. Nature 463: 813–7.

23. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad

Sci U S A 101: 6062–7.

24. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al. (2006) From

genomics to chemical genomics: new developments in kegg. Nucleic Acids Res

34: D354–7.

25. Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, et al. (2002) Online

mendelian inheritance in man (omim), a knowledgebase of human genes and

genetic disorders. Nucleic Acids Res 30: 52–5.

26. Smedley D, Haider S, Ballester B, Holland R, London D, et al. (2009) Biomart–

biological queries made easy. BMC Genomics 10: 22.

27. Altshuler D, Daly M, Kruglyak L (2000) Guilt by association. Nat Genet 26:

135–7.

Gene Prioritization by Integration

PLoS ONE | www.plosone.org 12 June 2011 | Volume 6 | Issue 6 | e21137



28. Zhou Y, Young JA, Santrosyan A, Chen K, Yan SF, et al. (2005) In silico gene

function prediction using ontology-based pattern identification. Bioinformatics

21: 1237–45.

29. Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D (2003) A

bayesian framework for combining heterogeneous data sources for gene function

prediction (in saccharomyces cerevisiae). Proc Natl Acad Sci U S A 100:

8348–53.

30. Dennissen FJ, Kholod N, Steinbusch HW, Van Leeuwen FW (2010) Misframed

proteins and neu- rodegeneration: a novel view on alzheimer’s and parkinson’s

diseases. Neurodegener Dis 7: 76–9.

31. Marazziti D, Di Pietro C, Golini E, Mandillo S, Matteoni R, et al. (2009)

Induction of macroautophagy by overexpression of the parkinson’s disease-
associated gpr37 receptor. Faseb J 23: 1978–87.

32. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A

text-mining analysis of the human phenome. Eur J Hum Genet 14: 535–42.
33. Wu X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of

human disease genes. Mol Syst Biol 4: 189.
34. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating genes

and protein complexes with disease via network propagation. PLoS Comput Biol

6: e1000641.
35. Li Y, Patra JC (2010) Genome-wide inferring gene-phenotype relationship by

walking on the heterogeneous network. Bioinformatics 26: 1219–24.

Gene Prioritization by Integration

PLoS ONE | www.plosone.org 13 June 2011 | Volume 6 | Issue 6 | e21137


