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Background: Immune checkpoint inhibitors (ICIs), primarily anti-PD-1, are currently used
to treat patients with recurrent or metastatic head and neck squamous cell carcinoma
(HNSCC). However, only a minority of patients benefit from these costly therapies.
Therefore, there is an unmet need to better understand the effect of ICIs on immune
effector cells. This study aimed to investigate the effect of a PD-1 antibody and an IDO1
inhibitor on different lymphocyte populations (NK, CD4+, and CD8+ T cells) in term of
migration, cytotoxicity, and cytokine release in the presence of HNSCC cells.

Methods: Using a microfluidic chip, we injected HSC-3 cells (an oral tongue squamous
cell carcinoma cell line) embedded in a human tumor-derived matrix “myogel/fibrin”
together with NK, CD4+, and CD8+ T cells in separate channels. The two channels
were connected with microchannels. The PD-1 antibody nivolumab and IDO1 inhibitor
epacadostat were added to the microfluidic chips. Lymphocyte migration and cytotoxicity
were examined under fluorescent microscopy and cytokine release was measured using a
FirePlex Human Discovery Cytokines Immunoassay.

Results: Epacadostat significantly increased the migration and infiltration of NK and
CD4+ T cells, but not CD8+ T cells, towards the cancer cells. Nivolumab did not exhibit a
similar effect. While CD8+ T cells alone showed near to no migration, adding CD4+ T cells
enhanced migration towards the cancer cells. There was a mild nonsignificant increase
in apoptosis of HSC-3 cells after adding epacadostat to lymphocytes. In contrast, HSC-
3 proliferation was not affected by lymphocytes regardless of ICIs. Nivolumab
org March 2022 | Volume 13 | Article 8128221
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significantly increased release of MIP1-a, IL-6, and IL-8 from NK, CD4+, and CD8+ T
cells, respectively.

Conclusions: This study revealed that each subpopulation of lymphocytes respond
differently to ICIs. We also revealed the subpopulation of lymphocytes responsible for the
increases in specific serum cytokines after ICI treatment.
Keywords: head and neck squamous cell carcinoma, microfluidic chip, immune checkpoint inhibitors,
immunotherapy, PD-1, IDO1, PD-L1
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the eighth
most common cancer worldwide and accounts for 3% of cancer-
related deaths (1, 2). The incidence of HNSCC arising from the
tongue and oropharynx has increased approximately 30% in the
last 30 years (2). The increase in oropharyngeal squamous
cell carcinoma incidence is related to the rise in human
papillomavirus (HPV) infections; however, there is no known
specific etiology for the growing incidence of HPV-negative
tongue cancers (2, 3). Most HNSCCs are characterized by
rapid metastasis and a high recurrence rate (4, 5). Currently,
primary treatment of HNSCC patients consists of surgery and
(chemo-)radiotherapy either alone or in combination (6).
Immunotherapy is the newest treatment modality for recurrent
or metastatic HNSCC (7, 8).

There are currently two immune checkpoint inhibitors (ICIs)
approved for treating HNSCC: nivolumab (Opdivo®) and
pembrolizumab (Keytruda®), both of which are humanized
IgG4k monoclonal PD-1 antibodies (9). PD-1 is an inhibitory
receptor expressed on T cell surfaces. When bound to its ligand
PD-L1 or PD-L2, PD-1 transduces a signal to the T cell resulting
in its deactivation and inhibition of proliferation (10). Tumor
cells utilize this mechanism that safeguards natural homeostasis
to mediate immune escape via expressing a high abundance of
PD-L1 on their membranes (10).

Despite being approved for clinical use, only a minority of
HPV-negative HNSCC patients benefit from PD-1/PD-L1 axis-
based drugs. Thus, other immunotherapies that can modify
the immune landscape of the tumor to enhance the effect of
existing ICIs should be identified (11–13). A promising target
molecule may be indoleamine 2,3-dioxygenase 1 (IDO1), a
cytosolic heme-containing enzyme that catalyzes the initial
step of tryptophan catabolism kynurenine and its other
immunosuppressive catabolites (14). At present, the two most
advanced and investigated drugs for IDO1 inhibition are
indoximod and epacadostat (13).

The research focus on ICIs is shifting towards addressing the
challenges with the approved drugs. More in-depth knowledge is
needed on the immune responses elicited by ICIs in the tumor
microenvironment (TME) and how these therapies affect
different lymphocyte populations (8). Our previous study (15)
introduced a novel, three-dimensional (3D) humanized
microfluidic chip assay to test the effect of ICIs on lymphocyte
migration and cytotoxicity towards cancer cells. The use of
microfluidic chip in studying immune cell migration was
org 2
previously tested and validated by comparing it with a mouse
xenograft model by Lucarini et al., 2017 (16). Here, we sought to
explore the effect of ICIs nivolumab and epacadostat on the
behavior of natural killer (NK), CD4+, and CD8+ T cells in the
presence of HPV-negative HNSCC cells.
MATERIALS AND METHODS

Cell Culture of Human HNSCC Cells
A HPV-negative, highly aggressive metastatic human tongue
squamous cell carcinoma cell line (HSC-3, Japan Health Sciences
Foundation, Japan) was cultured with Dulbecco’s Modified
Eagle ’s Medium (DMEM)/F-12 (Gibco Paisley, UK)
supplemented with 10% heat-inactivated fetal bovine serum
(FBS; Gibco), 100 µg/ml streptomycin (Gibco), 100 U/ml
penicillin (Gibco), 5 µg/ml amphotericin b (Sigma-Aldrich, St.
Louis, Missouri, USA), and 50 µg/ml ascorbic acid (PanReac
AppliChem, Darmstadt, Germany) in 75 m2

flasks. Cells were
divided after reaching 80% confluence with 10% trypsin/EDTA
(Gibco). The HSC-3 cells were tested negative for mycoplasma
using a PromoKine PCR Mycoplasma Test Kit I/C (PromoCell,
Heidelberg, Germany). The cell line was authenticated by FIMM
Technology Center (Helsinki, Finland).

Lymphocyte Isolation
We obtained buffy coats from 6 healthy donors (median age 53
years, Supplement Table 1) provided by the Finnish Red Cross.
The ethical committee of the Finnish Red Cross approved the
sample collection (permission number 42/2020). First, we diluted
the buffy coats 1:2 with sterile phosphate-buffered saline (PBS)
without calcium and magnesium (Corning, Corning, NY, USA).
Using a density gradient technique, we then isolated the peripheral
blood mononuclear cells (PMNCs) with Ficoll-Paque™ Premium
(Sigma-Aldrich) by centrifugation at 800 RPM, acceleration 1, and
deceleration 0 for 30 minutes. The leukocyte ring was then
collected in a falcon tube and washed twice with PBS. We
utilized a MACS system with negative selection (Miltenyi,
Biotec, Germany) to isolate NK cells (NK Cell Isolation Kit
human, Miltney), CD4+ T cells (CD4+ T Cell Isolation Kit
human, Miltney), and CD8+ T cells (CD8+ T cell Isolation
Kit human, Miltney) according to the manufacturer's protocol.

The purity of the isolated lymphocytes was confirmed with a
panel offluorescent antibodies and flow cytometry. This included
antibodies for CD3-APC, CD56-PE-Cy7, CD4-PE, and CD8-
FITC (BD Biosciences, USA). Subsets for NK cells were identified
March 2022 | Volume 13 | Article 812822
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as CD3-CD56+CD8-CD4-, CD4+ T cells as CD3+CD56-

CD4+CD8-, and CD8+ T cells as CD3+CD56-CD4-CD8+. The
cells were calculated with FACS-Verse (BD Biosciences) and
analyzed using BD FacSuite™ software. Purities >90% were
accepted (Supplement Figure 1).

Viability Assay
To test if the ICIs used in this study affect cancer cell viability, a 96-
well plate was seeded with HSC-3 cells at a density of 1000 cells/
well in 100 µL of complete medium and incubated overnight. The
following day, four different concentrations of nivolumab
(Opvido®, Selleckchem, Houston, Texas, USA; 0.0005, 0.005,
0.05, and 0.5 µM) and epacadostat (MedChem Express,
Monmouth Junction, New Jersey, USA; 0.0013, 0.013, 0.13, and
1.3 µM) were added to the media and incubated for 3 days. The
plate was then taken to room temperature for 15 minutes before
starting the assay. 100 µL of CellTiter-Glo (Promega, Madison,
Wisconsin, USA) was dispensed in each well. The plate was
shaken with a plate shaker (Heidolph, Schwabach, Germany) for
5 minutes at 450 RPM and then rotated gently for 5 min at 1000
RPM with a plate spinner (Thermo Scientific, Waltham,
Massachusetts, USA). Cell viability was measured with BMG
Pheraster FS (BMG Labtech, Germany).

Neither nivolumab nor epacadostat affected HSC-3 cell
viability at any used concentration (Supplement Figures 2A,
B, p-value > 0.05). We decided to use 0.5 µM nivolumab and 1.3
µM epacadostat, as these concentrations correspond to those in
patient serum at the standard clinical dose (17, 18).
Frontiers in Immunology | www.frontiersin.org 3
Microfluidic Chip Assay
Our previously applied protocols (15) were adjusted for the
Probiont™ microfluidic platforms. A schematic representation
and phase-contrast microscopy images of the chip used in this
work are shown in Figure 1A. The HSC-3 cells were stained with
CellTrace™ Far Red (Invitrogen, Thermo Fisher) according to
the manufacturer’s instructions. The cells were then suspended
in Myogel/fibrin gel at the following concentrations: 2.4 mg/ml
Myogel (lab-made; 19), 0.5 mg/ml fibrinogen (Merck,
Darmstadt, Germany), 33.3 µg/ml aprotinin (Sigma-Aldrich),
and 0.3 U/ml thrombin (Sigma-Aldrich) diluted in DMEM/F12
media with 10% of FBS. 5 µM of IncuCyte Caspase-3/7 Green
(Sartorius, Göttingen, Germany) was added to detect apoptotic
cells. The HSC-3 cells were divided into the following three
groups: control without drug, 0.5 µM nivolumab, and 1.3 µM
epacadostat. 2 µL of each cell suspension containing 1000 cells in
gel were loaded into separate small “cancer cell channels” of the
microfluidic chip (Figure 1B).

The lymphocytes (NK, CD4+, or CD8+ T cells) were
stained with CellTrace™ Violet (Invitrogen) according to the
manufacturer’s instructions. For coculture of CD4+ T cells and
CD8+ T cells, CD4+ T cells were stained with CellTrace Violet
and CD8+ T cells with CellTracker Orange (Invitrogen)
according to the manufacturer’s instructions. Cell viability and
number were measured using trypan blue solution utilizing
CellCountess (Invitrogen). After staining, cells were suspended
in DMEM/F12 media supplied with 10% FBS, 10 ng/ml
recombinant human IL-2 (BioLegend, San Diego, California,
FIGURE 1 | Schematic of the microfluidic chips and semi-automated analysis of the three-dye system. The slide design contains three microfluidic chips (A) into
which cancer cells were injected into the smaller channels (B) and lymphocytes into the larger channels (C). The two channels were connected by microchannels,
which were initially filled by air but opened in the first 24 hours of injection (D). The slides were imaged daily under a fluorescence microscope to obtain a
multichannel image, which was then cropped for analysis to contain only the cancer cell channel (E; purple rectangle). The fluorescence signals were amplified and
autofluorescence signals decreased manually with Image J to represent the channel (F) where cancer cells are shown in red, lymphocytes in blue, and apoptotic
cells in green or yellow. Using the built-in features of ImageJ, our algorithm first separated the different channels for analysis and started by counting the positive cells
for the red channel (G) based on a minimum threshold, shape, and size. The green channel (H) was counted by checking the red intensities for a minimum green
intensity. The blue channel (I) was counted based on a minimum threshold, shape, and size. Scale bar (D) 50 µm and E-I 300 µm.
March 2022 | Volume 13 | Article 812822
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USA; 20), and 5 µM Caspase-3/7 green (Sartorius). Lymphocytes
were divided into the following groups: control without drug, 0.5
µM nivolumab, and 1.3 µM epacadostat. 100 µL of cell
suspension, containing 100 000 viable lymphocytes, was added
to the larger ‘lymphocyte channels’ of the chip (Figure 1C). In
controls without lymphocytes, 100 µL of DMEM/F12 media
supplied with 10% FBS and 5 µM Caspase-3/7 green
were injected.

After injections, the chips were incubated for 72 hours in a
cell culture laminar. The conditioned media was then collected
from the chips and stored at -80°C until further analysis.

Fluorescence Microscopy
Chips were imaged under a fluorescence microscope Nikon Ti-E
with Alveole Primo (Nikon, Tokyo, Japan) connected to
Hamamatsu Orca Flash 4.0 LT B&W camera (Hamamatsu
Photonics, Hamamatsu, Japan) and Lumencor Sola SE II 365
(Lumencor, Beaverton, Oregon, USA). Images for the following
transmitted light and fluorescent filters were acquired: DAPI
(Semrock 5060C, excitation 377/50, emission 447/60), GFP
(Semrock 3035D-NTE, excitation 472/30, emission 520/35),
TxRed (Semrock 4040C, excitation 531/40, emission 593/40),
and Cy5 (excitation 640/20, emission 700/75). Multiple chips
were placed on a microscope slide adapter. The NIS-Elements
Advanced Research program was automated to image at 20x
magnification and to scan 10 images horizontally to form a
complete representation of the channel producing a
multichannel composite image. Images of the chips were
acquired daily to confirm opening of the microchannels after
24 hours of incubation (Figure 1D).

Semi-Automated Counting of Cells
Before analysis, multichannel images were cropped to contain
just the cancer cell channel (Figures 1E, F). Using the built-in
algorithms of Image J (NIH, National Institutes of Health, USA),
we coded a semi-automated positive cell counter to quantify
intensities in the three different channels of the composite image.
The algorithm separated cancer cells from the background based
on intensity and morphology (Figure 1G). All detected red
cancer cells were analyzed for positive green intensity to
calculate the apoptotic cancer cells with a minimum threshold
to exclude artifacts (Figure 1H). The algorithm analyzed the
number of lymphocytes from the blue channel based on intensity
and morphology (Figure 1I).

The same counting method as in the three-dye system was
utilized in the coculture chips of CD4+ and CD8+ T cells for the
number of cancer cells, apoptotic cancer cells, and CD4+ T cells
by making an individual scoring picture with only these three
channels. To calculate the number of CD8+ T cells, the CD4+ T
cell channel and green channel were removed and the CD8+ T
cell orange channel was changed to blue to better visualize the
results (Supplement Figures 3A, B). To differentiate between the
background fluorescence from the red-stained cancer cells and
the now blue CD8+ T cells, the algorithm calculated the number
of any blue intensities with a positive red intensity (Supplement
Figure 3C). Based on size and morphology, the algorithm then
separately calculated the positive CD8+ T cells, from which the
Frontiers in Immunology | www.frontiersin.org 4
false-positive cell number of blue intensities with red was
subtracted to gain the final number of CD8+ T cells
(Supplement Figure 3D). To visualize the results clearly, we
changed the cancer cells to greyscale and CD8+ T cells to
magenta and added back the CD4+ T cell blue channel
(Supplement Figure 3E).

The regions of interest (ROIs) were saved automatically and
examined manually for any artifacts for all analyses.

Cytokine Release
Conditioned media from the microfluidic chips were collected
and diluted 1:1 with cell culture media. Cytokine profiling
was performed by Abcam FirePlex Service (Boston, USA).
Analysis was performed utilizing FirePlex®-96 Key Cytokines
(Human) Immunoassay Panel (Abcam, Cambridge, UK),
which detects the following 17 cytokines: granulocyte-
macrophage colony-stimulating factor (GM-CSF), interleukin-
(IL-)1beta, -2, -4, -5, -6, -8, -9, -10, -12p70, -13 and 17-A, IFN-g,
monocyte chemoattractant protein-1 (MCP-1), macrophage
inflammatory protein 1 alpha (MIP1-a), macrophage
inflammatory protein 1 beta (MIP1-b), and tumor necrosis
factor-alpha (TNF-a). Each sample was analyzed in duplicate.

Statistical Analysis
All experiments were repeated three times, each time using a
different donor and each in duplicate. SPSS software program
version 26.0 (IBM SPSS Statistics, SPSS, IL, USA) was utilized for
statistical analyses. The proliferation rate of the cancer cells was
calculated by dividing the number of cancer cells on days 2 and 3
by the number of cancer cells on day 1. One-way analysis of
variance (ANOVA) followed by the Bonferroni post-hoc test was
used to examine the statistical significance between the
different groups.

Flow cytometer output for cytokine release was analyzed
using FirePlex™ Analysis Workbench software (https://www.
abcam.com/kits/fireplex-analysis-workbench-software).
Concentrations were interpolated from the standard curve
obtained in duplicate. Due to donor variation, the data were
log-normalized and processed as fold changes (raw data included
as Supplement Table 2). Statistical analysis for cytokine release
was calculated with a One-Sample t-test.

P-values <0.05 were regarded as significant and are presented
as follows: * <0.05 and ** < 0.01.
RESULTS

Epacadostat, but Not Nivolumab,
Increased NK and CD4+ T Cell Migration
Towards HSC-3 Cells and Has a Mild
Effect on HSC-3 Cell Apoptosis
We previously reported that an IDO1 inhibitor enhances
migration of PBMNCs towards carcinoma cells using HSC-3
cell line and two patients derived cancer cells (15). We
investigated this migration further by studying specific
subgroups of lymphocytes. Lymphocyte migration towards
March 2022 | Volume 13 | Article 812822
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cancer cells was followed over 3 days. The IDO1 inhibitor
epacadostat significantly induced both NK and CD4+ T cell
migration compared to controls (Figures 2A, B). For NK cells,
the effect was significant only by day 3 (p=0.009, Figure 2A). For
CD4+ T cells, the effect was significant from the first day and over
the 3 days (day 1 p=0.027, day 2 p=0.003, day 3 p=0.033,
Figure 2B). On the other hand, the number of CD8+ T
cells migrating towards cancer cells was minimal and was not
affected by epacadostat stimulation (Figure 2C). As previously
observed (15), PD-1/PD-L1 blockade did not affect migration of
Frontiers in Immunology | www.frontiersin.org 5
lymphocytes towards cancer cells. A full representation of
channels is available as Supplement Figures 4A–C.

To study if adding CD4+ T cells could enhance CD8+ T cell
migration, we cocultured these lymphocytes isolated from two
donors. Coculturing CD4+ T cells with CD8+ T cells increased
migration of CD8+ T cells towards the cancer cells approximately
ten-fold when compared with CD8+ T cell monoculture
(Figure 3). However, ICIs did not affect CD8+ T cell migration
even after adding CD4+ T cells (data not shown). Full
representation of channels is available as Supplement Figure 4D.
A

B

C

FIGURE 2 | Migration of NK, CD4+, and CD8+ T cells towards cancer cells over 3 days. NK cells migrated significantly more with epacadostat incubation than in the
NK control on day 3 (A; **p=0.009). The effect was observed also with CD4+ T cells but on all the 3 days of the experiment (B; day 1 *p=0.027, day 2 **p=0.003,
day 3 *p=0.033). CD8+ T cells did not significantly differ in migration (C). HSC-3 cells are shown in red, lymphocytes in blue, and apoptotic cells in green in the
fluorescence images. Results are reported as the average number of lymphocytes migrated ± SD. The experiments were repeated three times, each time using a
different donor and each in duplicate. NK, natural killer cell; CD4, CD4+ T cells; CD8, CD8+ T cells.
March 2022 | Volume 13 | Article 812822

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sieviläinen et al. Combating Immune Cell Exclusion
We next analyzed whether increased migration of
lymphocytes affect cancer cell apoptosis and proliferation.
There was a mild, but not significant, trend of increased
apoptosis of HSC-3 cells after adding lymphocytes, especially
in the presence of epacadostat (Figure 4). Proliferation was
unaffected by lymphocytes alone or with either of the ICIs
(Figure 4). Coculture of CD4+ T cells with CD8+ T cells did
not affect apoptosis or proliferation of the cancer cells (data
not shown).

Nivolumab Significantly Increased MIP-1,
IL-6, and IL-8 Release From NK, CD8+, and
CD4+ T Cells, Respectively
We performed a FirePlex®-96 Key Cytokines (Human)
Immunoassay Panel to study the effects of epacadostat and
nivolumab on cytokine release of the lymphocytes in the
presence of HSC-3 cells. Based on the cytokine fold change,
samples collected from NK cell experiments clustered according
to ICI stimulation except for donor 6, which clustered
separately due to donor variation effect (Figure 5A). CD4+ and
CD8+ T cells showed no clustering based on ICIs or donors
(Figures 5B, C, respectively).

From the 17 cytokines studied, only after nivolumab
treatment, the release of 3 cytokines MIP1-a from NK
(p=0.016; Figure 6A), IL-6 from CD8+ T cells (p=0.038;
Figure 6I), and IL-8 from CD4+ T cells (p=0.011; Figure 6J)
were significantly increased. The other treatments exhibited
similar trends but were not statistically significant (Figure 6
and Supplement Table 2).

Incubation with epacadostat increased MIP1-a release from
NK cells (Figure 6A). MIP1-a levels from CD4+ T cells treated
Frontiers in Immunology | www.frontiersin.org 6
with nivolumab and CD8+ T cells treated with epacadostat were
increased (Figures 6B, C, respectively). With nivolumab
treatment, NK and CD4+ T cells released increased MIP1-b
(Figures 6D, E, respectively), which was also observed with
epacadostat treatment of NK cells (Figure 6D). NK and CD8+ T
cells incubated with epacadostat exhibited increased MCP-1
secretion (Figures 6F, G, respectively). Adding nivolumab to
NK cells increased IL-6 concentration (Figure 6H). Although
CD4+ T cells treated with epacadostat secreted increased IL-8
levels, the result was not significant (Figure 6J). Nivolumab
treatment increased the amount of IL-8 released from CD8+ T
cells (Figure 6K).
DISCUSSION

Despite the promising results of ICIs in some clinical trials, only
approximately 13-18% of HNSCC patients respond to currently
approved treatments (12, 21). Up to 60% of patients across
different cancer types have primary resistance (21). The
resistance mechanisms to ICI can be either tumor intrinsic or
can develop during treatment. These include T cell exclusion or
alterations in antigen presentation or cellular signaling pathways
(22, 23). Unfortunately, there are currently no reliable predictive
markers to identify patients who would benefit from ICIs, and
the predictive role of PD-L1 expression levels and tumor-
mutational burden remains controversial (20).

One proposed strategy to address resistance is to reverse T cell
exclusion by stimulating trafficking and infiltration of leukocytes
to “fire up cold tumors” (23). We have previously shown that
IDO1 inhibition increased migration of PMNCs towards cancer
A B

FIGURE 3 | Migration of CD8+ T cells in coculture chips of CD4+ and CD8+ T cells over 3 days. CD8+ T cells overall migrated more in coculture with CD4+ T cells
than alone (A). In the representative image (B), CD4+ T cells are shown in blue, CD8+ T cells in magenta, cancer cells in white, and apoptotic cells in green. Results
are reported as the average number of lymphocytes migrated ± SD. The experiments were repeated two times, each time using a different donor and each in
duplicate. Full channel representations are provided as Supplement Figure 4. CD8=CD8+ T cells, CD4=CD4+ T cells.
March 2022 | Volume 13 | Article 812822
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cells (15). Here, to our knowledge, we are the first to report that
IDO1 inhibition via epacadostat increased migration of NK and
CD4+ T cells towards cancer cells. This could reverse the T cell
exclusion in ICI-resistant “cold tumors” in vivo.

Epacadostat in combination with anti-PD1 therapy is being
tested in several ongoing clinical trials. Combination therapy had
promising results in phase 1 and 2 clinical trials for melanoma
(24). However, its phase 3 clinical trial was cancelled in 2019 due
to insufficient patient response, thus highlighting the need for
additional in-depth preclinical studies before conducting large-
scale, randomized clinical trials (24). We performed a
preliminary test on a few microfluidic chips combining
nivolumab and epacadostat but we did not observe any
differences for any of the studied parameters (data not shown).

Despite epacadostat-induced lymphocyte migration, we did
not observe a significant difference in apoptotic percentage or in
proliferation rate of HSC-3 cells, which suggests a more complex
underlying mechanism. In general, the ratio of cancer cells to
leukocytes in the in vitro experiments ranged from 1:5 to 1:10, thus
giving the leukocytes an advantage (13, 25, 26). In our experiment,
we set the cancer cell-lymphocyte ratio at 1:100. However, the
number of lymphocytes that actually migrated to the HSC-3 cells
site was minimal and yielded a final ratio of approximately 7:1. To
improve the accuracy of our model to capture even marginal
changes, in the future we may consider decreasing the cancer cell
Frontiers in Immunology | www.frontiersin.org 7
to lymphocyte ratio in favor of lymphocytes. More viable
lymphocytes and fewer cancer cells may yield realistic results.
This would also prevent crowding of the cancer cells in the chip.
Since the cancer cells were injected into a 3D environment, they
grow on top of each other, which may cause an innate error to the
visual analysis of the apoptotic cell layers.

Another proposed strategy to address ICI resistance are
cytokine-based drugs (27). Cytokines are a group of potent but
complex signaling molecules capable of modulating the immune
response exerting both stimulatory and suppressive effects (27,
28). They mediate the expansion, activation and trafficking of
effector lymphocytes but are also capable of recruiting regulatory
T cells (27). In the TME, the lack of several cytokines, such as
MIP1-b (CCL4), has been shown to lead to T-cell exclusion,
while elevated IL-8 (CXCL8) expression has been shown to be
associated with a reduction in the number of T cell in tumors
(23). Various clinical trials are testing a combination therapy of
cytokine-blockage and ICIs for different cancers (27). In addition
to their potential therapeutic value, cytokines are also the
molecules suggested to activate the effector lymphocytes after
the ICI initiation (29). Several studies are evaluating the
predictive value of inflammatory cytokine levels from patient
serum before and after ICI therapy in different cancers (29–32).

Cytokine levels from the conditioned media were analyzed to
explore the effect of ICIs on the signaling pathways that underlie
FIGURE 4 | Apoptotic cell percentages and proliferation rates of HSC-3 in the presence or absence of lymphocytes with or without ICIs. There were no significant
differences in apoptotic cell percentage or proliferation between the ICI groups and the lymphocyte or HSC-3 controls. Epacadostat treatment of NK cells exhibited a
trend of increased apoptotic percentage and decreased proliferation rate than in the HSC-3 control but not in the NK cell control. Proliferation rates are reported as
mean ± SD. The experiments were repeated three times, each time using a different donor and each in duplicate. NK, natural killer cell; CD4, CD4+ T cells; CD8,
CD8+ T cells.
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the cross-talk between lymphocytes and HNSCC cells. With the
exception of one donor, samples from nivolumab and
epacadostat clustered differently for NK cells. Donor variation
was further confirmed, as donor 3 exhibited high concentrations
of nearly all cytokines, suggesting that this donor had underlying
immune system activation due to inflammatory disease.

Both nivolumab and epacadostat had mild effects on cytokine
levels, but only nivolumab had some statistically significant
results. TNF-a, MIP1-a, MIP1-b, MCP-1, IL-6, and IL-8 had
the highest cytokine levels for all donors. The TNF-a
concentration varied without any trends between groups. The
role of the proinflammatory chemokines MIP1-a (CCL3),
MIP1-b (CCL4), and MCP-1 (CCL2) in the tumor remains
controversial, as described below.

MIP1-a mRNA expression is increased in oral squamous cell
carcinoma (OSCC) when compared with healthy gingival tissue
(33). Furthermore, MIP1-a serum levels were suggested as a
potential biomarker for diagnosing OSCC, as these levels are
associated with tumor size (34). We observed a significant
increase in MIP1-a levels for NK cells after nivolumab
treatment (similar to epacadostat), but this was not significant.
CCR5 (a receptor for MIP1-a) activation increases migration of
regulatory T cells, thus promoting immune evasion.
Interestingly, CCR5 blockade in hepatocellular carcinoma
had promising results with maraviroc, which was initially
developed as a human immunodeficiency virus medication
(#NCT01736813; 34). At present, there are three ongoing
studies investigating combinations of pembrolizumab and
maraviroc for metastatic carcinomas (35).

Plasma levels of MIP1-b were downregulated in
OSCC patients compared to the healthy controls. High
expression of MIP1-b is linked to anti-tumor responses
through chemoattraction of lymphocytes (T and NK cells) in
esophageal SCC and colorectal adenocarcinomas (36–38). Here,
no significant results were obtained for MIP1-b levels. However,
epacadostat treatment showed a trend of increased of MIP1-b
secretion from NK cells and nivolumab treatment showed a
trend of increased MIP1-b secretion from NK and CD4+ T cells.
On the other hand, MIP1-b is overexpressed in lung
adenocarcinomas and colorectal carcinomas, which is linked to
tumor development and progression through protumorigenic
macrophage recruitment (39, 40). Moreover, a case report of an
OSCC patient showed elevated level of MIP1-b secretion but
with no response to nivolumab treatment. This suggests that the
functional mechanisms of MIP1-b require further studies (41).

MCP-1 is a potent monocyte-attracting chemokine that
improves monocyte recruitment to the TME and promotes
HNSCC progression (42). Moreover, OSCC-associated
fibroblasts mediate protumorigenic features through MCP-1
signaling (43). On the other hand, in vivo MCP-1 elicits
effector T cell chemotaxis (44), but its role in recruiting T cells
to the TME is still unclear (45). In our study, NK and CD8+ T
cells showed a trend of elevated MCP-1 levels with
epacadostat treatment.

We demonstrated that IL-6 and IL-8 (CXCL8) levels were
significantly elevated after nivolumab treatment of CD8+ and
CD4+ T cells compared with controls. In various cancers, the
A

B

C

FIGURE 5 | Cytokine expression in the conditioned media of NK, CD4+, and
CD8+ T cells. Cytokine concentrations in the conditioned media were measured
using a FirePlex®-96 Key Cytokines (Human) Immunoassay Panel. Cytokine
concentrations were plotted in the heatmaps as fold change from control (HSC-3
alone). Heatmap of NK cells (A) showed apparent clustering for the ICIs
epacadostat and nivolumab, with donor six showing donor variance. Heatmaps of
the CD4+ T cells (B) and CD8+ T cells (C) did not show clustering based on ICI
group. The experiments were repeated three times, each time using a different
donor and each in duplicate. NK, natural killer cell; CD4, CD4+ T cells; CD8, CD8+

T cells; D, donor; IL-1b, interleukin 1-beta; IL-6, interleukin 6; IL-8, interleukin 8;
MCP-1, monocyte chemoattractant protein-1; MIP-1a, macrophage inflammatory
protein 1 alpha; MIP-1b, macrophage inflammatory protein 1 beta; TNFa, tumor
necrosis factor-alpha.
March 2022 | Volume 13 | Article 812822

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


D

H

eatment (A, *p=0.01). The CD4+ (B) and CD8+ T cells (C)
ith nivolumab and epacadostat treatment (D). CD4+ T cells had
nt. NK cells with nivolumab treatment exhibited an increasing
lumab treatment (*p=0.011); epacadostat treatment also resulted
ts one donor; the mean is presented as a small empty box and
e using a different donor and each in duplicate. NK, natural killer
CP-1, monocyte chemoattractant protein-1; IL-6, interleukin 6;

S
ieviläinen

et
al.

C
om

bating
Im

m
une

C
ellExclusion

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

M
arch

2022
|
Volum

e
13

|
A
rticle

812822
9

A B

E F G

I J K

C

FIGURE 6 | Cytokine analysis results for MIP-1a, MIP-1b, MCP-1, IL-6, and IL-8. MIP-1a levels increased significantly for NK cells with nivolumab tr
showed a similar trend of increase with nivolumab and epacadostat treatment, respectively. MIP-1b levels exhibited an increasing trend for NK cells w
similarly elevated MIP-1b levels with nivolumab treatment (E). MCP-1 levels were increased by CD8+ T (F) and NK cells (G) with epacadostat treatme
trend in IL-6 levels (H), while CD8+ T cells significantly elevated its levels (I, *p=0.038). IL-8 levels were significantly elevated for CD4+ T cells with nivo
in a similar increasing trend (J). In addition, CD8+ T cells exhibited an increasing trend for IL-8 levels with nivolumab treatment (K). Each dot represen
median as a black line. Grey box color indicates nivolumab and orange indicates epacadostat. The experiments were repeated three times, each tim
cell; CD4, CD4+ T cells; CD8, CD8+ T cells; MIP-1a, macrophage inflammatory protein 1 alpha; MIP-1b, macrophage inflammatory protein 1 beta; M
IL-8, interleukin 8.

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sieviläinen et al. Combating Immune Cell Exclusion
elevated systemic and tumor-associated levels of IL-6 and IL-8
are associated with reduced clinical benefit of anti-PD-1/PD-L1
treatment (46, 47). Furthermore, increased IL-6 and IL-8 serum
levels after anti-PD-1/PD-L1 treatment are associated with no
response in non-small cell lung carcinoma and melanoma
patients (30–32). In OSCC patients, IL-6 and IL-8 serum
levels are elevated (48–50). However, to our knowledge, there
is only one case report where some cytokines before and after
treatment were analyzed (41). Similar to our results, this patient
had elevated IL-6 and IL-8 levels after nivolumab treatment,
which was associated with disease progression (41). To our
knowledge, we are the first to report the actual lymphocytes
mediating the increased levels of IL-6 and IL-8. Elevated IL-6
levels compared to the respective lymphocyte control were
observed for CD8+ T cells with nivolumab treatment, while
NK cells showed a similar trend. Increased IL-8 levels were
observed for CD4+ T cells with nivolumab treatment, while
epacadostat incubation showed a similar trend. Additionally,
nivolumab treatment also increased IL-8 levels from CD8+ T
cells. Blockage of IL-6 and IL-8 in combination with nivolumab
is being investigated in phase 1 clinical trials for several
carcinomas, including HNSCC for IL-8 (clinical trial
identifiers #NCT03400332, #NCT04848116, #NCT03999749).

Due to the limited availability of blood samples and carcinoma
cells from HNSCC patients, we used lymphocytes harvested from
healthy individuals and a commercial OSCC cell line. Although
this was not ideal, obtaining sufficient lymphocytes and cancer
cells from the same patient is not feasible. Therefore,
methodologies similar to ours, where leukocytes are isolated
from healthy individuals, have commonly been used in the
literature (25, 26, 51). As our results show variable effects
depending on ICI on OSCC cell migration and apoptosis and
on lymphocyte cytokine secretion, further in vivo experiments are
warranted to validate these findings.

CONCLUSIONS

We showed that epacadostat stimulated migration of NK and
CD4+ T cells towards the site of carcinoma cells, thus potentially
enhancing antigen presentation in the TME. Nivolumab did not
affect cell migration. However, in the presence of nivolumab, NK,
CD4+, and CD8+ T cells secreted more MIP1-a, IL-6, and IL-8,
respectively, than controls. Importantly, since increased levels of
IL-6 and IL-8 in serum from OSCC patients after anti-PD1
treatment are associated with poor ICI response, blockage of
these cytokines may be a potential target for clinical trials.
Moreover, levels of these cytokines could potentially reflect
patient response to anti-PD1 treatment, which should be
further investigated. Blockage of the MIP1-a receptor may also
be a promising direction for future studies.
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Supplementary Figure 1 | Purity of natural killer (A), CD4+ T (B), and CD8+ T
cells (C) acquired using flow cytometer FACS-Verse. Natural killer cells were stained
with anti-CD3 APC, anti-CD56 PE Cy7, and anti-CD4 PE. CD4+ and CD8+ T cells
were stained for anti-CD3 APC, anti-CD4 PE, and anti-CD8 FITC.
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Supplementary Figure 2 | Neither nivolumab nor epacadostat affects HSC-3
viability. Four different concentrations of nivolumab and epacadostat were screened
for their cytotoxic effect on HSC-3 cells using a CellTiter-Glo assay. Viability did not
significantly (p>0.05) vary between any tested concentrations of nivolumab (A) or
epacadostat (B). Results are presented as means normalized to control wells
without drugs ± SD. The assays were performed as duplicates and repeated three
times independently.

Supplementary Figure 3 | Semi-automated analysis of coculture chips.
Coculture chips of CD4+ and CD8+ T cells were imaged under four fluorescent filters
to obtain a multichannel image (A), with HSC-3 cells in the red channel, CD4+ T cells
in the blue channel, apoptotic cells in the green channel, and CD8+ T cells in the
orange channel. The number of cancer cells, apoptotic cancer cells, and CD4+ T
cells were calculated as in the three-dye system. For analysis of the number of CD8+

T cells, the green channel containing apoptotic cells was removed (B) and the
orange channel containing the CD8+ T cells was changed to blue and overlayed
with the red channel only (C). The software then calculated all positive blue cells with
red intensity (D) and all positive blue cells with the same parameters as the CD4+ T
Frontiers in Immunology | www.frontiersin.org 11
cells in the three-dye system (E). Subtraction of these cells was considered to yield
the number of CD8+ T cells. To provide a clear representation of the migrated cells,
the representative image of the cocultures was edited such that the cancer cells are
shown in white, CD4+ T cells in blue, and CD8+ T cells in magenta (F). Scale bar A-E
100 µm.

Supplementary Figure 4 | Full representation of analyzed channels on day 3 for
NK cells, CD4+ T cells, CD8+ T cells, and CD4+ T cells with CD8+ T cells. In the
monoculture chip images (A–C), HSC-3 cells are shown in red, respective
lymphocytes (NK cells, CD4+ T cells, and CD8+ T cells) in blue, and apoptotic cells in
green. Apoptotic cancer cells appeared yellow due to overlay of red and green
colors. In coculture chip images (D), HSC-3 cells are shown in grey, CD4+ T cells in
blue, CD8+ T cells in magenta, and apoptotic cells in green. Scale bar A-D 300 µm.

Supplementary Table 1 | Clinical characteristics of the six donors.

Supplementary Table 2 | Cytokine concentrations of the conditioned media.
Values are in pg/ml. D, donor.
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