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Abstract
We have established a platform for the isolation of tumour-specific TCR from T cells of patients who experienced clinical 
benefit from cancer vaccination. In this review we will present the rationale behind this strategy and discuss the advantages 
of working with “natural” wild type TCRs. Indeed, the general trend in the field has been to use various modifications to 
enhance the affinity of such therapeutic TCRs. This was done to obtain stronger T cell responses, often at the cost of safety. 
We further describe antigen targets and recent in vitro and in vivo results obtained to validate them. We finally discuss the 
use of MHC class II-restricted TCR in immunotherapy. Typically cellular anti-tumour immune responses have been attrib-
uted to CD8 T cells; however, we isolated mainly CD4 T cells. Importantly, these MHC class II-restricted TCRs have the 
potential to induce broad, long lasting immune responses that enable cancer control. The use of CD4 T cell-derived TCRs 
for adoptive immunotherapy has so far been limited and we will here discuss their therapeutic potential.
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Abbreviations
ACT​	� Adoptive cell therapy
CAR​	� Chimeric antigen receptor
hTERT	� Human telomerase reverse transcriptase
MSI	� Microsatellite instability
NY-ESO-1	� New York esophageal squamous cell carci-

noma 1
pMHC	� Peptide MHC
TCR​	� T cell receptor
TGFβRII	� Transforming growth factor β receptor II

Introduction

Adoptive cell therapy

Adoptive cell therapy (ACT) has been greatly enhanced 
when the injected T cells were genetically modified to 
express specific antigen receptors. In cancer therapy, two 
types have emerged, the natural T cell receptor (TCR) and 
the artificial Chimeric Antigen Receptor (CAR) [1]. The lat-
ter is a fusion of different protein domains, normally con-
sisting of an antibody recognition domain on its external 
part which will be targeted towards a surface antigen. This 
extracellular domain is, through a transmembrane domain, 
connected to a series of signalling modules derived from the 
TCR signalling machinery. Despite the recent success and 
approval of CAR therapy for haematological malignancies 
[2] treatment of solid tumours still represents a challenge 
[3].

TCR therapy may have certain advantages over CARs for 
attacking solid tumours such as the number of targets avail-
able. Indeed, TCRs could in principle recognize any protein 
expressed by a cell, because all proteins are processed which 
in turn generates peptides that will be loaded on Major his-
tocompatibility complex (MHC) class I and II molecules, 
whereas CAR recognition is restricted to surface molecules, 
limiting the tumour-specific pool of target antigens avail-
able. Furthermore, TCR recognition is highly subtle, and a 
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single amino acid change on the target peptide can trigger 
the effector function of the TCR. Hence, peptides presented 
on MHC molecules can be derived from mutated proteins, 
rendering the recognition cancer-specific, an attribute that 
-although not impossible- is challenging to achieve with an 
antibody. Another argument in favour of TCR is that these 
molecules can be more sensitive to lower antigen densities 
on the target cell surface compared to CAR [4]. Direct com-
parisons of TCR and CAR are difficult because of differ-
ences in the ligands recognized and antigen. When Harris 
et al. [5] compared TCR αβ heterodimers and single-chain 
TCRs coupled to CAR signalling tails, both recognizing 
the same peptide-MHC (pMHC) complexes, they demon-
strated that CARs were much less sensitive than TCR to 
lower pMHC densities, but induced higher cytokine secre-
tion. Finally, although the cytokine response generated by 
classical CAR molecules upon stimulation is often far more 
intense than what is observed with TCRs, recent data dem-
onstrated that lower CAR-derived T-cell stimulation might 
improve clinical outcome [6, 7]. In this perspective TCR-
modified T cells can be seen as “soft” living drugs, yet able 
to generate serious side effects [8, 9] compared to CAR-T 
and, if well calibrated, they should represent the solution of 
choice for solid tumour-based ACT.

Isolating TCRs from vaccinated patients

The isolation of therapeutic TCRs has been a technical chal-
lenge. Firstly, because interesting T cells isolated from the 
blood or the tumour are never pure, and therefore require 
selection and expansion. Secondly, although the TCR 
sequence identification has benefitted from technological 
advances [7, 8], the validation procedures following the 
expression and testing of the TCR are still costly and time 
consuming. As previously mentioned, the signal detected 
upon TCR stimulation normally gives a weaker cytokine 
response compared to that of a CAR construct [10]. How-
ever, weaker signal observed in vitro does not preclude good 
clinical efficiency, rather the contrary as exemplified by 
recent studies with lower affinity [6, 7]. In other words, our 
in vitro methods of TCR stimulation may lead to an underes-
timate of their efficacy in vivo. Consequently, this has driven 
an effort to manufacture supranatural TCRs through affinity 
maturation [11], murinization [12] or modification of the 
TCR structure to stabilize it (reviewed in [13]). TCR affinity 
increased beyond the physiological range comes with the 
risk of creating novel molecules with unpredictable bind-
ing specificities to structurally related peptide sequences 
from different antigens, creating off-target toxicity [8, 9]. 
Moreover, TCR variants were tested and the existence of a 
TCR affinity-related activation threshold was demonstrated 
both in vitro [14] and in vivo [15]. Here the authors of the 
two studies proposed that this threshold marked the limit 

between epitope recognition and autoimmunity. It was fur-
ther shown that enhancing the peptide affinity, thus modify-
ing the binding threshold on the peptide side, had similar 
deleterious effect on the in vivo potency of the TCR [16]. 
Together these reports suggest that TCRs with normal affin-
ity, or unenhanced TCR, might be more optimal and safer for 
TCR-based therapy. For these reasons, we generally consider 
the manipulation of TCRs to be too hazardous and unpre-
dictable to be exploited as a living drug. We have therefore 
implemented a therapeutic TCR platform which only pro-
duces “natural” TCRs (Fig. 1). Blood from long-term sur-
viving cancer patients who experienced clinical benefit after 
treatment with therapeutic cancer vaccines was collected. 
To find tumour-reactive TCRs, the T cells were isolated 
and analysed for their pMHC specificity against autologous 
presenting cells [17–21]. We see three critical advantages 
of using these TCRs: (1) they were not toxic to the patient 
who carried them, (2) they were selected in a human thymus, 
and (3) these TCRs were likely part of the immune response 
involved in the survival of the patients. Furthermore, these 
patients can be a source of discovery of TCRs with specifici-
ties for alternative antigens; indeed we have previously iso-
lated TCRs targeting tumour antigens other than the vaccine. 
This suggests that the immune response against these new 
epitopes was generated by epitope spreading which occurred 
during the immune attack of the tumour and shown to cor-
relate with clinical response [21]. T-cell clones isolated from 
these patients can be tested and compared to find the optimal 
candidates for TCR therapy. The criteria of selection are 
several, with the most important being (1) a focus on fre-
quently expressed MHC alleles for a broad population cov-
erage, and (2) public rather than personal cancer antigens. 
Isolating such TCRs and transferring them to new cells will 
only transfer the properties of the TCR with its specificity 
and affinity for the target whereas the avidity of the origi-
nal T cell clone comprising more than the TCR properties 
will of course not be transferred. The New York esophageal 
squamous cell carcinoma 1(NY-ESO-1) is by far the most 
frequently targeted antigen in clinical trials of TCR therapy 
to date [22]. TCRs specific for this antigen have been tested 
in several clinical trials ([23–25] and unpublished clinical 
studies) with variable success. Still, NY-ESO-1 is a perfect 
target: it is not expressed in normal tissues and is present 
in different tumour types. In addition, hotspots of antigenic 
peptides inducing CD4 and CD8 T-cell responses have been 
well characterized [26, 27]. Recently, the team of D. Balti-
more reported on a procedure to isolate the most efficient 
candidates directly from patient blood [28]. It will be inter-
esting to follow the clinical progression of these TCRs.

We have previously reported on the isolation of a public 
neoantigen-specific TCR, Radium-1 [29, 30]. Here micro-
satellite instable (MSI)+ colorectal cancer patients had 
been vaccinated with a long peptide covering a frequent 
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Transforming growth factor β receptor II (TGFβRII) 
frameshift mutation as a result of the dysfunctional DNA 
mismatch repair mechanisms ([31] and Inderberg and Gaud-
ernack et al., unpublished data). From one of these patients, 
a TCR specific for a known HLA-A*02:01 epitope was 
isolated [29]. The TCR, named Radium-1, is currently in 
clinical testing (NCT03431311). We also isolated two MHC 
class II-restricted TCRs from two other vaccinated patients 
in this study ([32] and Inderberg, Wälchli et al., unpublished 
data) which shifted the focus of our development platform 
to CD4 T-cell derived TCRs due to the central role of CD4 
T cells in anti-tumour immune responses.

The rise of T helper TCRs

Whereas cellular anti-tumour immune responses have typi-
cally been attributed to CD8 T cells, CD4 T cells play a 
critical role in tumour elimination and in the priming and 
maintenance of CD8 T-cell responses (recently reviewed in 
[33], Fig. 2). Moreover, CD4 T cells activate innate cells 
such as macrophages and NK cells to contribute to anti-
tumour responses and can also have direct cytotoxic effect 
against tumour cells expressing MHC class II [34–36]. The 
use of MHC class II-restricted CD4 T cells for adoptive 
immunotherapy has been limited due to (1) a lack of well-
characterized shared tumour antigens presented by MHC 
class II, (2) the majority of tumour cells being class II nega-
tive and therefore not directly presenting antigen to CD4 T 
cells, and (3) the lack of tools to evaluate CD4 TCR efficacy. 

However, the use of CD4 T cells in ACT should also cir-
cumvent one of the common tumour escape mechanisms, 
which is the loss of MHC class I to prevent recognition by 
the immune system [37]. All clinical studies of TCR therapy 
published to date, except one [38], have used MHC class I 
restricted TCRs (recently reviewed in [39]). MHC class II-
restricted CD4+ T cells are able to induce more robust and 
broader anti-tumor immune responses which could improve 
outcomes in cancer immunotherapy. One of the antigens we 
have focused on is human telomerase reverse transcriptase 
(hTERT) with several academic vaccination studies carried 
out [17–19, 40, 41]. This is a well characterized antigen 
which is almost universally expressed in cancer cells due 
to its essential role in unlimited cell growth, metastasis and 
expression in cancer stem cells (reviewed in [42]). One con-
cern regarding this antigen has been that as an overexpressed 
tumour-associated antigen (TAA), it is also present at lower 
level in normal cells such as activated lymphocytes, stem 
cells and germ cells (reviewed in [42]).

Two MHC class I-restricted TCRs specific for hTERT 
have previously been published [43, 44]. The HLA-A*02:01 
restricted TCR was isolated from a vaccinated HLA trans-
genic mouse whereas the HLA-A*24:02 restricted TCR 
was isolated from healthy donor blood. Both were of high 
affinity and deemed safe by pre-clinical testing, but have not 
yet reached the clinic. We have, however, not been able to 
generate tumour-recognizing MHC class I restricted T cell 
clones against hTERT as the cells may commit fratricide, 
although there exists conflicting evidence for this [45, 46]. 

Fig. 1   Pre-clinical TCR development platform. Successful vaccina-
tion of cancer patients gives rise to an increased frequency of tumour 
specific T cells. After isolation of the clones and characterization of 

their pMHC specificity, the TCR sequence is identified. After pre-
clinical validation, these therapeutic TCRs are used to treat non-
responding MHC-matched patients
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Thus, TAA can become dangerous as target for CD8 TCR 
due to the risk of “on-target, off-tumour toxicity”. Since only 
a limited number of normal cells are MHC class II positive, 
it is tempting to speculate that a CD4 TCR might be less 
toxic against overexpressed TAA. In agreement with this, 
we reported that the patients carrying these hTERT-specific 
T cell clones performed well clinically and had no signs of 
toxicity. Bone marrow function was indeed monitored in 
long-term surviving lung cancer patients post vaccination 
without showing toxicity [18]. In addition, the presence of 
these hTERT-specific CD4 T cells after vaccination has been 
shown to correlate with enhanced survival of the patient 
[19, 20, 40].

We have therefore focused on the development of non-
modified patient-derived hTERT-specific TCRs. From a 
long-term surviving pancreatic cancer patient, we have iso-
lated an hTERT-specific TCR restricted to the very com-
mon allele HLA-DP4, which we named Radium-4, which 
demonstrated surprising qualities (Dillard et al., in revi-
sion), such as the capacity to directly eliminate MHC class 
II positive target cells loaded with peptide, but also to reduce 
tumour growth in a melanoma xenograft model. The TCR 
transfected and transduced T cells did not show any signs of 
fratricide or reactivity against normal cells.

We are also developing additional hTERT-specific TCRs 
recognising alternative hTERT epitopes after vaccination-
induced epitope spreading which are restricted to various 
HLA alleles [21]. These TCRs are isolated from several 
patients vaccinated with a hTERT peptide vaccine [21]. 
Developing CD4 T-cell based therapy comes with the 

technical challenge that although they can kill tumour cells, 
their primary mode of action is by engaging with other play-
ers in the immune system to orchestrate a broad attack of the 
tumour. This is impossible to fully reproduce in our in vitro 
models or in mouse xenograft models using immunodefi-
cient animals. We therefore depend on demonstrating the 
direct killing effect or cytokine production, which is more 
circumstantial evidence for their activity, whereas we may be 
largely underestimating the effect this may have in humans 
if successfully implemented.

CD4 T-cell derived TCRs are also being developed 
against other antigens, including neoantigens such as the 
abovementioned TGFβRII frameshift mutation found in 
MSI + colorectal and endometrial cancer. Two of the iden-
tified MHC class II restricted TCRs were shown to recognise 
the same mutation as our MHC class I restricted TCR [29, 
30].

These TCRs, named Radium-5 and -6, were identified in 
patients from the same clinical vaccination trial (Inderberg, 
Gaudernack et al., unpublished data) and shown to efficiently 
redirect T cells [32]. Preliminary data from our in vivo xeno-
graft model indicate that these TCRs could be as efficient 
at reducing tumour growth as their MHC class I restricted 
counterpart (Dillard, Wälchli and Inderberg et al., unpub-
lished observations). The TCRs are restricted to frequently 
expressed MHC class II molecules and it could be interest-
ing to also combine their use with the Radium-1 TCR.

Finally, the TCRs that we have identified so far do 
seem to be able to function without their CD8 or CD4 co-
receptor. A good illustration was done when we expressed 

Fig. 2   CD4 T-cell anti-tumour 
responses. Tumour-specific 
CD4 T cells can activate and 
maintain CD8 T cell responses 
and can also induce tumour cell 
killing by activating tumour-
infiltrating macrophages. 
Graphical elements adapted 
from Servier Medical Art 
repository (https​://www.servi​
er.com)

https://www.servier.com
https://www.servier.com
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these TCRs in a cell line devoid of co-receptor, such as 
an NK cell line, the NK-TCR [47]. When we transduced 
our TCRs into NK92, which had been modified to overex-
press human CD3, we observed that Radium-1 TCR was 
functional in this system, independently of the presence of 
CD8. Likewise, when we tested some of our CD4 T cell-
derived TCRs to generate NK-TCR cells, we observed that 
these cells killed MHC class II+ antigen presenting tumour 
cells (Mensali, Inderberg and Wälchli et al., unpublished 
data). These data suggest that vaccinated patient-derived 
TCR can function without co-receptors.

Future perspectives

TCR-based therapy also encounters hurdles for eradicating 
metastatic tumour due to the immunosuppressive tumour 
microenvironment (TME) or T cell exhaustion. There 
are several initiatives to remedy this by improving T cell 
trafficking through the modification of homing receptors 
[48–50], resistance to TGF-β [51], modification or block-
ing of immune checkpoints [52]. Such strategies will likely 
be increasingly implemented in future clinical trials. Addi-
tionally, there are numerous therapy combinations that, if 
designed wisely, could have an impact on the efficacy of 
ACT, such as the combination with immune checkpoint 
blockade, post-transplant vaccination to improve T-cell 
persistence, and specific targeting of the TME immuno-
suppression. To date, few CD4 T-cell based therapies have 
been tested clinically [38, 53–55], but have shown clear 
evidence of clinical activity.

Combining HLA class I- and class II-restricted TCRs 
for T-cell redirection may also provide a more potent 
therapeutic effect in adoptive T cell therapy [56]. MHC 
class II-restricted TCRs may additionally have direct ther-
apeutic value both in haematopoietic malignancies and in 
melanoma where tumour cells frequently express MHC 
class II. Importantly, CD4 T cells and MHC class II TCRs 
therefore have the potential to orchestrate broad and long-
lasting immune responses that enable cancer control.
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