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KymographClear and KymographDirect: two 
tools for the automated quantitative analysis 
of molecular and cellular dynamics using 
kymographs

ABSTRACT  Dynamic processes are ubiquitous and essential in living cells. To properly under-
stand these processes, it is imperative to measure them in a time-dependent way and analyze 
the resulting data quantitatively, preferably with automated tools. Kymographs are single 
images that represent the motion of dynamic processes and are widely used in live-cell imag-
ing. Although they contain the full range of dynamics, it is not straightforward to extract this 
quantitative information in a reliable way. Here we present two complementary, publicly 
available software tools, KymographClear and KymographDirect, that have the power to 
reveal detailed insight in dynamic processes. KymographClear is a macro toolset for ImageJ 
to generate kymographs that provides automatic color coding of the different directions of 
movement. KymographDirect is a stand-alone tool to extract quantitative information from 
kymographs obtained from a wide range of dynamic processes in an automated way, with 
high accuracy and reliability. We discuss the concepts behind these software tools, validate 
them using simulated data, and test them on experimental data. We show that these tools 
can be used to extract motility parameters from a diverse set of cell-biological experiments 
in an automated and user-friendly way.

INTRODUCTION
Different forms of dynamics can be found in the living cell. Diffusive 
motion is effective over short length scale, in the cytoplasm, on 
membranes, and along DNA or microtubules, whereas directed 
motion governs processes on larger length scales, including DNA 
synthesis, intracellular transport, cytoskeletal rearrangements, and 
mitosis (Bray, 2001; Phillips et al., 2012). Using fluorescence micros-
copy or other types of optical microscopy, it is possible to capture 

the dynamics of these processes by generating time series of two- 
or three-dimensional images. For quantitative understanding of 
biological processes using, for example, mathematical models, it is 
crucial to quantify all parameters that underlie the dynamics of the 
process (e.g., determine directions, speeds, diffusion coefficients, 
and fluxes), which can be a difficult and time-consuming task. Sin-
gle-particle tracking (Saxton and Jacobson, 1997) provides the 
most detailed information but is severely hampered by high particle 
density and low signal-to-noise ratio (SNR). In many cases, image 
quality is not sufficient to allow accurate particle tracking, and ky-
mographs can be a convenient means to obtain insight into motility 
(Snow et  al., 2004; Ou et  al., 2005; Renkawitz et  al., 2009; Hao 
et al., 2011; Burkel et al., 2012; Moughamian and Holzbaur, 2012; 
Smith et al., 2012; Prevo et al., 2015). A kymograph is a time–space 
plot in which the intensity along a given track is plotted as a func-
tion of time. Particles moving with constant velocity show up as 
straight lines, with the slope representing velocity, whereas diffus-
ing particles produce more complex, sinuous trajectories. The in-
tensity of these trajectories depends on the number of particles 
moving together, and the density of the trajectories is a measure of 
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accurate determination of trajectories, even at very low SNR. It is de-
signed to process kymographs generated with KymographClear. In a 
first step (Figure 1E), it prepares the kymographs for analysis by per-
forming (optional) background and bleaching corrections (Supple-
mentary Information). Kymographs are Fourier filtered (Figure 1F; as 
noted earlier) to limit analysis to distinct motility components. The key 
step in kymograph analysis (Figure 1G) is the automated tracking of 
individual trajectories in the kymograph (Supplementary Information), 

particle flux. Kymographs thus provide direct, qualitative insight 
into key motility parameters. In principle, quantitative information 
can be extracted from kymographs (Ou et al., 2005), but automated 
kymograph analysis is rarely pursued. Most existing algorithms 
work well only for data with high SNR and low particle densities and 
are often applicable to only specific data sets (Welzel et al., 2009; 
Chenouard et al., 2010; Chetta and Shah, 2011; Mukherjee et al., 
2011; Zhang et al., 2011; Goshima et al., 2012; Chiba et al., 2014). 
In addition, few of these kymograph-analysis tools are publicly 
available; furthermore, they require significant input from the user 
(Chenouard et al., 2010; Chiba et al. 2014). The experimental data 
we and other laboratories typically obtain for intracellular transport 
show a large range of dynamics, with many particles moving in dif-
ferent directions with varying velocities (e.g., in living eukaryotic 
cells or Caenorhabditis elegans (Snow et al., 2004; Ou et al., 2005; 
Hao et  al., 2011; Moughamian and Holzbaur, 2012; Smith et  al., 
2012; Shih et al., 2013; Prevo et al., 2015). In our experience, these 
data are too complex and noisy to be accurately and reliably ana-
lyzed by the existing tools. Consequently kymographs are most 
often analyzed by human, visual inspection, which is time consum-
ing and prone to user bias and irreproducibility.

Here we present two freely available (www.nat.vu.nl/~erwinp/
downloads.html) software tools, KymographClear and Kymograph-
Direct, to generate kymographs and perform automated, quantita-
tive analysis of kymographs obtained from a wide range of dynamic 
events in living cells or organisms. These tools work on data ob-
tained with low SNR and high particle density and have been de-
signed for ease of use and wide applicability. They allow the user to 
extract, in a highly automated way, key motility parameters that are 
essential for understanding the dynamics of the biological process 
of interest. We describe the concepts behind these two tools, dem-
onstrate their accuracy and reliability using simulated data, and ap-
ply them to experimental data as diverse as in vitro protein diffusion 
and translocation on DNA, in vitro microtubule dynamics, intracel-
lular transport in C. elegans chemosensory cilia, and axonal trans-
port in primary neurons.

RESULTS
KymographClear and KymographDirect workflow 
and features
The workflow of the two software tools discussed here is presented 
in Figure 1 (also see Supplemental Figures S1–S6).

KymographClear (Figure 1, A–D) is an ImageJ (Schneider et al., 
2012) macro toolset that allows for the generation of kymographs 
from image sequences. In this toolset, first (Figure 1A) an averaged 
or maximum-intensity image is calculated from the image sequence. 
Within this image, the user can define a track, which can be a straight 
line, a segmented line, a freehand line, or a spline. An important dif-
ference of our macros from existing ImageJ plug-ins is that it uses the 
subpixel interpolation capabilities of ImageJ, a feature that is essen-
tial for correct length determination, in particular along curved tracks. 
After selection of a track, a macro generates a kymograph that is 
stored for further analysis (Figure 1B). Another macro can estimate 
and store background levels for subsequent correction in Kymograph-
Direct and can optionally be background corrected (Figure 1C and 
Supplementary Information). Another feature of KymographClear is 
Fourier filtering of the kymograph (Chenouard et al., 2010), which 
allows discrimination of forward-moving, backward-moving and 
pausing components within the kymograph (Figure 1D, Supplemen-
tal Figure S1, and Supplementary Information).

KymographDirect (Figure 1E–I) is a stand-alone software tool 
written in LabVIEW that automates kymograph analysis and allows 

FIGURE 1:  Schematic representation of the workflow of image-
sequence analysis using KymographClear (A–D) and KymographDirect 
(E–I). (A) Loading of an image stack and computation of averaged- or 
maximum-intensity image of the sequence. (B) Generation of the 
kymograph along a track defined by the user on the averaged- or 
maximum-intensity image. (C) Background evaluation by measuring 
the average intensity obtained from a user-selected (background) 
region of interest. (D) Extraction of forward-moving (red), backward-
moving (green), and static components (blue) of the kymograph by 
Fourier filtering. (E) Optional background and bleaching correction 
applied to the kymograph generated by KymographClear. 
(F) Extraction of forward-moving, backward-moving, and static 
components of background- and bleaching-corrected kymograph. 
(G) Automated detection of trajectories in the kymographs (white 
curves overlaid on the kymograph). (H) Optional linking of 
trajectories. (I) Quantitative and statistical analysis of trajectories, 
including position and time dependence of velocity and intensity, 
their averages, and SDs.
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backward-moving particles. In most cases, 
Fourier filtering is used to select the direc-
tion of motion that is analyzed. We demon-
strate the wide applicability of the tools by 
using them to analyze data ranging from in 
vitro motility assays to intracellular motility 
in living multicellular organisms.

Tracking single-particle motion
Simulated data of particles undergoing 
directed motion.  We start with a validation 
of KymographDirect using simulated data 
of an individual particle moving directionally, 
for example, driven by molecular motors 
(Cho et al., 2008; Su et al., 2013), focusing 
on the effects of stochastic velocity 
variations and SNR. The initial velocity of 
the particle is 2 pixels/frame. Subsequently 
it undergoes a stochastic, normally distri
buted acceleration, ranging from 0 to 
0.25 pixel/frame2. In addition, particle 
and background intensities are Poisson 
distributed (with SNR defined as the ratio 
between the average intensity of the particle 
and the SD of the background). Example 
kymographs are shown in Figure 2A. Figure 
2B shows that the algorithm can extract the 
trajectory with subpixel accuracy also for the 
most stochastic motion, even at SNR < 1. 
The ability of the algorithm to accurately 

extract single-particle trajectories at such low SNR is substantially 
helped by Fourier filtering and by low-pass filtering the local velocity, 
evaluated in the first step of the algorithm. Apart from reliably 
determining the positions of the particles, the algorithm also 
performs well in extracting their velocities (Figure 2C), with 
particularly high accuracy when velocities are almost constant.

Simulated data of diffusing particles.  Another type of motion that 
can be analyzed using kymographs is diffusion. Kymographs have 
been used, for example, to follow one-dimensional (1D) diffusion of 
proteins along microtubules (Sheng and Cai, 2012; Moughamian 
and Holzbaur, 2012), and DNA (Biebricher et al., 2013; Heller et al., 
2013). To validate our algorithms for the analysis of such data, we 
first simulate the random walk of a single particle on a 1D track and 
vary its diffusion constant from 0 to 2 pixels2/frame. Particle and 
background intensities are Poisson distributed to explore a large 
range of SNR. Examples are shown in Figure 3A. Next we apply 
KymographDirect in the diffusive particle mode. The program can 
be set to extract trajectories from kymographs that have been 
Fourier filtered (which is beneficial for extracting trajectories of 
pausing particles) or not. In the latter mode, the algorithm 
successfully extracts trajectories of particles, in particular with low 
diffusion constants (Figure 3, B and C). In these cases, subpixel 
localization accuracy is achieved. Localization of particles with 
higher diffusion constants is less accurate, but almost complete 
trajectories are extracted, even at SNR close to 1 (Figure 3C). When 
the program is used using Fourier filtering, the accuracy of the 
extracted trajectories is slightly lower, except for static particles, for 
which the accuracy is the same as without filtering (Figure 3D). This 
slight loss of accuracy can be explained in the smoothening of the 
trajectories after Fourier filtering (Supplemental Figure S7). In most 
cases, complete trajectories are extracted, in particular for particles 

which is performed as follows. First, when nondiffusing particles are 
analyzed, KymographDirect uses an algorithm that evaluates the 
average local velocity in the kymograph on the basis of a cross-cor-
relation–based calculation. Next it detects trajectories with peak 
detection and links particle positions using the average particle ve-
locity obtained in the previous step. When static or diffusing parti-
cles are analyzed, the same algorithm is used, with one exception: 
the average velocity, which directs the search for the next point in 
the trajectory, is set to zero. Once trajectories are extracted from the 
kymograph, they can be further analyzed. In principle, particles can 
display different motility components, and in KymographDirect, 
these components are treated separately, resulting in split trajecto-
ries, which can be linked straightforwardly by the user within the 
software (Figure 1H). Finally, KymographDirect can evaluate the ve-
locity and intensity along trajectories and perform a statistical analy-
sis of these quantities (Figure 1I and Supplementary Information). 
KymographDirect can also be used to extract dynamics from the 
moving edge of an object. In this case, the strategy to analyze the 
data is simplified: the kymograph is not Fourier filtered, and the 
edge of the object is determined using a thresholding algorithm. 
The edge trajectory is then extracted in the same way as static or 
diffusing particles.

Validation of KymographDirect with simulated 
and experimental data
To test the validity of our kymograph-analysis tools in an unbiased 
way, we use them to analyze the motion of particles or moving 
edges in a variety of simulated data sets, mimicking different experi-
mental conditions, such as varying SNR, crowding, particle crossing, 
and stochasticity conditions. KymographDirect can analyze this 
wide range of data by using different algorithms that can be readily 
selected for edge detection, particle diffusion, or forward- or 

FIGURE 2:  Validation of the kymograph-analysis tools using simulated data mimicking single-
particle trajectories. (A) Examples of kymographs generated with stochastic acceleration with a 
spread α ranging from 0 to 0.25 pixel/frame2 and with various SNRs. (B) Average distance 
between detected trajectory positions and input (simulated) trajectory positions for different 
stochastic accelerations with spread α against SNR. Note that even for high SNR and low 
stochasticity, a residual distance remains. This is due to pixilation effects creating a small offset 
between the simulated trajectory and the one detected by the algorithm. (C) Average relative 
error of the software in measuring particle velocity for different stochastic accelerations with 
spread α against SNR.
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with low diffusion constants. For faster-
diffusing particles, trajectory extraction is 
less efficient, since many particles move 
>1 pixel between frames and thus are 
filtered out and cannot be extracted. 
Nevertheless, >70% of lengths can be 
extracted at low SNR and > 90% at a SNR > 
4 (Figure 3E). For best performance, the 
Fourier filtering algorithm should only be 
used for trajectories that show pauses or 
cross each other frequently. In other cases, 
the algorithm without Fourier filtering 
should be used since it is more accurate and 
efficient in extracting trajectories.

Experimental data: proteins diffusing and 
translocating along extended DNA.  Next 
we apply KymographDirect to experimental 
data of single proteins moving along DNA 
extended with optical tweezers in vitro: the 
Plk1-interacting checkpoint helicase (PICH; 
Biebricher et  al., 2013), which translocates 
along the DNA, regularly switching 
direction, and mitochondrial transcription 
factor A (TFAM; Heller et al., 2013), which 
diffuses (Figure 4, A and B). In both cases, 
the relatively low SNR kymographs are 
treated in KymographDirect in the diffusive 
data mode. Trajectories are successfully 
detected (Figure 4, A and B), allowing 
further analysis. Figure 4C shows the 
instantaneous velocities in the PICH 
trajectories and their distributions, clearly 
indicating the switches of direction. 
Velocities obtained with KymographDirect 
are similar to the velocity reported in the 
original article as obtained from single-
particle tracking analysis (Figure 3D of 
Biebricher et al., 2013); note that the original 
article took into account only motile events, 
whereas here we do not discriminate static 
and motile events. For TFAM, the mean 
square displacement of proteins was 
calculated (Figure 4D), which allows for the 
determination of the distribution of diffusion 
constants. The distribution obtained with 
KymographDirect is very similar to the 
distribution presented in the original article, 
which was obtained by Gaussian fitting of 
the fluorescent spots (Figure 6D of Heller 
et  al., 2013). These analyses of data from 

FIGURE 3:  Validation of the kymograph-analysis tools on simulated data mimicking single 
diffusing particle trajectories. (A) Examples of kymographs generated with diffusion coefficient 
D from 0 to 2 pixel2/frame and with various SNRs. (B, C) The diffusion coefficient has the values 
0 (black), 0.5 (dark red), 1 (red), and 2 (light red) pixel2/frame. (D) Average distance between 
detected trajectory position and input (simulated) trajectory position for different values of D. 
(E) Line coverage: ratio between the total length of found trajectories and the total length of the 
input (simulated) trajectory as a function of SNR.
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subpixel localization accuracy. For higher 
diffusion constants, localization is more 
challenging and as a result less accurate. In 
all simulated kymographs, the algorithm 
extracts edge trajectories robustly, with 
>95% of a given trajectory extracted, 
regardless of the diffusion constant or SNR 
(Figure 5C). An accuracy of <1 pixel is 
obtained for trajectories extracted from 
kymographs with SNR > 0.5. For highest 
accuracy, the software should be applied to 
experimental data taken with a frame rate 
fast enough that particles do not move at 
>1 pixel/frame.

Experimental data: in vitro microtubule 
dynamics.  We next test KymographDirect 
on experimental data of microtubule 
dynamics in vitro, which can grow and shrink 
in bursts (Gardner et al., 2011; Zanic et al., 
2013). We generated kymographs from an 
image sequence (a kind gift of the Zanic lab) 
using KymographClear and extracted the 
trajectory of the microtubule tips using the 
edge-detection mode of KymographDirect 

(Figure 6A). KymographDirect allows extraction of mobility 
parameters, such as the instantaneous growth rate, which can be 
represented in a histogram (Figure 6B), allowing the user to extract 
a distribution of growth rates and not only the average.

Another tool has been used to analyze microtubule dynamics on 
basis of kymographs (Smal et al., 2010). This tool segments growth 
phases into monotonic growth phases, which is helpful to obtain the 
average microtubule growth rate but not ideal to capture the com-
plex dynamics of microtubule growth, which are characterized by 
large variations in growth rate (Figure 6). Other tools use filament 
tracking and can extract both filament direction and the extremities 
of the filament. One such tool is FIESTA (Ruhnow et al., 2011), which 
we tested on the experimental data of in vitro growing microtu-
bules. In our test, FIESTA could detect position and extremities of 
only part of the microtubules: four of nine could be tracked over the 
entire image sequence, two were only tracked during half of the 
sequence, and three were not detected at all. KymographDirect, on 
the other hand, extracted all positions of all microtubules. Both pro-
grams extracted similar distributions of microtubule growth rates 
(Figure 6B and Supplemental Figure S8), with an average growth 
rate of 0.53 ± 0.13 μm/min (10 μM tubulin at saturating GTP condi-
tion), similar to values reported in the literature (Zanic et al., 2013). 
Use of FIESTA could be advantageous when the orientation of 
the microtubules changes over the image sequence, something that 
is more difficult to analyze with kymographs. For other data, 
KymographDirect appears to be more robust. This analysis of micro-
tubule data demonstrate that KymographDirect can be used to ex-
tract quantitative motility parameters from kymographs of moving 
edges, including cytoskeletal polymers and edges of a cell.

Tracking complex dynamics under crowded conditions
Simulated data: crowded conditions.  Kymographs are often used 
to extract the motility of many crowded moving particles. Such data 
are obtained, for example, when one is following a moving cell by 
tracking multiple particles in the cell (Giannone et al., 2004; Gomes 
et al., 2005; Renkawitz et al., 2009; Burkel et al., 2012). Because of 
particle crowding and poor contrast of such data, tracking of 

single protein complexes moving along DNA highlight the 
capabilities of KymographDirect to track complex motility data with 
low SNR on the single-molecule level with an accuracy comparable 
to single-particle tracking analysis of the data.

Tracking moving edges
Simulated data.  Kymographs are widely used to analyze the 
dynamics of objects such as microtubules (Gardner et  al., 2011; 
Zanic et al., 2013) and cells (Giannone et al., 2004; Gomes et al., 
2005; Renkawitz et  al., 2009; Burkel et  al., 2012). In these cases, 
the point of interest is the moving edge of the object. For such 
data, the algorithm is simplified by not applying Fourier filtering. To 
test the performance of the algorithm in analyzing this kind of data, 
we simulated a fluorescent segment with a leading edge undergoing 
a random walk. The edge diffusion coefficient is varied from 0 to 
2 pixels2/frame, and the segment and background intensities are 
Poisson distributed to explore a large range of SNRs. Examples are 
shown in Figure 5A. The algorithm successfully identifies trajectories 
of edges in particular for low diffusion constants (Figure 5B) with 

FIGURE 5:  Validation of the kymograph-analysis tools on simulated data mimicking single 
diffusing edge trajectories. (A) Examples of kymograph generated with diffusion coefficient D 
ranging from 0 to 2 pixel2/frame and with various SNRs. (B, C) The diffusion coefficient has the 
values 0 (black), 0.5 (dark red), 1 (red), and 2 (light red) pixel2/frame. (B) Average distance 
between detected trajectories and input (simulated) trajectories for different values of D. 
(C) Line coverage: ratio between the total length of found trajectories and the total length of 
the input (simulated) trajectory as a function of SNR.
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individual particles is impractical, and 
quantification of motility parameters has 
rarely been performed. Our automated 
kymograph analysis tools can deal with such 
kymographs, allowing reliable, quantitative 
analysis.

We mimic crowded conditions by ran-
domly distributing 30 particles along a line 
of motion that is used to generate the ky-
mographs. The fluorescence intensities of 
the particles are Poisson distributed, each 
particle being assigned a random, time-
averaged intensity ranging from one to 
three times the average of the dimmest par-
ticle. To test a wide range of SNRs, each 
kymograph is simulated with different fluo-
rescence and background intensities 
(Figure 7A), in the same way as in the single-
particle tracking case; SNR is calculated with 
the average intensity of all particles used in 
the kymograph. The algorithm extracts tra-
jectories reliably with subpixel resolution, 
even at low SNR (Figure 7B), and velocities 
are determined accurately, within a few per-
cent (Figure 7C). The algorithm is also very 
efficient: in this simulation, for SNR > 3, 
>90% of the trajectories are detected 
(Figure 7D). Even in the range of SNR = 1–3, 
the majority of trajectories are found. The 
analysis of these simulated kymographs 
shows that our algorithms are very efficient 
in obtaining quantitative parameters from 
crowded, low-SNR kymographs.

Simulated data: bidirectional motion and 
crossing particles.  Motion in opposite 
directions is often observed in intracellular 
transport (Ou et al., 2005; Hao et al., 2011; 
Moughamian and Holzbaur, 2012; Smith 
et al., 2012; Wei et al., 2012; Prevo et al., 
2015). Kymographs generated from image 
sequences obtained from these processes 
are difficult to analyze because particles 
trajectories can cross. Furthermore, particles 
can be very numerous, and their motion can 
vary stochastically from particle to particle 
and time to time.

To test the applicability and accuracy of 
our tools on this kind of data, we simulate 
two data sets: one with all particles moving 
only in one direction (Figure 8A), and one 
with particles moving in either the forward 
or backward direction, creating ∼100 cross-
ing points in the kymographs (Figure 8B). In 
both cases, stepping of the particles is sto-
chastic: at each time point, a forward-mov-
ing particle steps randomly in the range of 
0–5 pixels, whereas a backward-moving 
particle makes a step in the range of 0 to 
−5 pixels. The particle and background in-
tensities are Poisson distributed and varied 
in order to test a wide range of SNRs. 

FIGURE 7:  Validation of the software for crowded particles. (A) Examples of kymographs 
obtained from simulations of multiple particles accelerating simultaneously, generated with 
different SNRs. (B) Average distance between detected trajectory position and input (simulated) 
trajectory position as function of SNR; error bars represent SD. (C) Average relative error in 
measuring particle velocity against SNR; error bars represent SD. (D) Line coverage: ratio of the 
total length of found trajectories and the total length of the input (simulated) trajectories as a 
function of SNR.
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active transport of protein complexes by 
motor proteins (Snow et  al., 2004; Ou 
et al., 2005; Hao et al., 2011; Prevo et al., 
2015). Kymographs obtained from image 
sequences of IFT in living C. elegans 
often suffer from poor contrast, complicat
ing analysis and quantification of motility 
parameters. KymographDirect is very well 
suited to analyze this kind of data and ex-
tract parameters such as position-depen-
dent velocities and intensities. We recorded 
the motion of enhanced green fluorescent 
protein (EGFP)–labeled OSM-3 kinesin in 
the phasmid cilia of C. elegans using laser-
illuminated epifluorescence microscopy 
(Figure 9A and Supplemental Movie S1). 
KymographClear was used to generate a 
kymograph (Figure 9B) from this image se-
quence. Forward-moving, backward-mov-
ing, and static components can be clearly 
discriminated using Fourier filtering (Figure 
9C). KymographDirect was next used to ex-
tract trajectories of groups of OSM-3 kines-
ins moving together (Figure 9D). The SNR 
(defined as the ratio between the average 
intensity along a trajectory and the SD of 
the background), ranges between 2 (for 
the dimmest trajectories) and 8 (for the  
brightest). Most trajectories that can be  
seen in the kymograph are automatically 
extracted by KymographDirect within 
1 s, yielding 64 trajectories. From these tra-
jectories, KymographDirect can determine 
velocity and intensity (Figure 9, E and G) 
and perform statistical analysis. Shown here 
are position-dependent, trajectory-aver-
aged velocities and intensities, including 
their SDs (Figure 9, F and H). It is important 
to note that the algorithm is successful in 
tracking particles in these data, even though 
trajectories frequently cross. Furthermore, 
KymographDirect allows extraction of posi-
tion-dependent velocities of IFT-compo-

nents, providing important additional insights into the transport 
mechanism (Prevo et al., 2015).

Experimental data: axonal transport in primary neurons.  Axonal 
transport of vesicles exhibits very rich dynamics, with frequent 
changes of direction and pauses. To test whether our tools can 
accurately extract trajectories displaying such changeability and 
complexity, we use an image sequence published by Moughamian 
and Holzbaur (2012; top sequence of their Supplemental Movie S2, 
scrambled case). In these data, LAMP1-RFP is used to monitor 
lysosome dynamics. We generated a kymograph and color-coded 
static and forward- and backward-moving motion components with 
KymographClear (Figure 10, A and B). We analyzed the different 
components separately and determined the corresponding 
trajectories (Figure 10C). The diffusive component of motion is very 
well captured, as are the majority of the directional trajectories. 
Note that for this type of data, the range of intensities is very large 
(in this example, brightest and dimmest trajectories differ 30-fold in 
intensity) and the intensity of the dimmest trajectories is close to the 

Analysis of these kymographs with KymographDirect shows that 
the output of the algorithm is only slightly affected by particle 
crossings: even in kymographs displaying many crossing lines, the 
algorithm successfully and accurately detects individual trajecto-
ries running in both directions with subpixel accuracy even at very 
low SNR (Figure 8C). Compared to similar data without trajectory 
crossings, the loss of accuracy in detecting individual trajectories is 
limited to ∼0.1 pixel over the range of SNR tested (Figure 8C). The 
efficiency of the algorithm to find trajectories is not noticeably af-
fected by the occurrence of crossing lines (Figure 8D). This ability 
of KymographDirect to analysis complex, bidirectional data stems 
from the effective discrimination of the different directions of mo-
tion using Fourier filtering.

Experimental data: C. elegans intraflagellar transport dynamics.  
To test KymographDirect on complex bidirectional experimental 
data, we applied it to fluorescence image sequences of intraflagel-
lar transport (IFT) in living C. elegans. IFT is required for the building 
and maintenance of chemosensory cilia and depends on the 

FIGURE 9:  Application of KymographClear and KymographDirect to experimental fluorescence 
image sequences representing EGFP-tagged OSM-3 kinesin dynamics in phasmid cilia of living 
C. elegans. (A) Top, time-averaged image of the image sequence (Supplemental Movie S1). The 
structure observed is the overlap of two phasmid cilia. Bottom, same as top, with a user-defined 
nonlinear track overlaid, which is used to generate a kymograph (B). Scale bars, 1 μm. 
(B–D) Kymographs generated from the data in A and Supplemental Movie S1. Scale bars, 1 μm 
(horizontal), 2 s (vertical). (B) Raw kymograph. (C) Kymograph Fourier-filtered for motion in the 
forward direction (red) and backward (green) directions and for static particles (blue). 
(D) Kymograph of forward-moving groups of OSM-3 kinesins (red) with trajectories extracted 
by KymographDirect overlaid (64, gray). (E–H) Results of automated kymograph analysis. 
(E) Position-dependent velocities of six of the trajectories extracted. (F) Average (solid line) 
and SD (dashed line) of the position-dependent velocities obtained from all 64 trajectories. 
(G, H) Same as E and F, for intensities of trajectories.
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intensities extracted from the trajectories (Figure 10D). Applying a 
velocity threshold of ±0.15 μm/s, we find that 22 and 16% of the 
time points in the extracted trajectories correspond to anterograde 
and retrograde motion, respectively, whereas in 62%, no motion is 
detected, in agreement with the analysis in the original study 
(Moughamian and Holzbaur, 2012). Using KymographDirect, these 
fractions can be further analyzed taking into account the intensity 
information, that is, the quantity of proteins involved. We find that, 
averaged over time, 72% of proteins are nonmotile, whereas 16.5 
and 11.5% move in anterograde and retrograde directions, 
respectively. This quantification is in agreement with the more 
intense appearance of the nonmotile trajectories in the kymograph.

These analyses demonstrate that KymographDirect can identify 
single-particle trajectories in kymographs of complex transport pro-
cesses in vivo to accurately extract quantitative motility parameters. 
In our view, tools like these are essential to unravel the complex 
dynamics of intracellular transport in vivo.

Comparison of KymographDirect with kymograph automated 
analysis tools.  The automated analysis of kymographs representing 
complex dynamics is highly desired, since manual analysis can be 
time consuming and potentially inaccurate. Several algorithms have 
been reported to improve the automation of trajectory extraction 
(Chenouard et al., 2010; Chetta and Shah, 2011; Mukherjee et al., 
2011; Zhang et  al., 2011; Goshima et  al., 2012) and estimate 
velocities (Welzel et  al., 2009) from kymographs. Most of these 
algorithms are not publicly available and have been validated on 
limited data sets, making a thorough comparison with the tools 
presented here difficult. One application, Kymotracker (Chenouard 
et  al., 2010), implemented in ICY (De Chaumont et  al., 2012), is 
publicly available and has been designed to help users extract 
trajectories in a semiautomated way. In the following, we compare 
the performance of KymographDirect with Kymotracker. Kymotracker 
allows for kymograph generation and Fourier filtering for 
anterograde- and retrograde-moving particles but does not allow 
analysis of pauses as KymographDirect can do. A semiautomated 
routine helps the user to extract trajectories manually in the 
kymographs generated, which requires substantially more user 
interaction than KymographDirect. We tested Kymotracker on the 
kymographs generated from IFT data (Figure 9B) and found that in 
our hands, Kymotracker introduces horizontal sections on most 
trajectories, which would indicate very large velocities, incompatible 
with kinesin or dynein motion (unpublished data). Such artifacts were 
not observed with KymographDirect (Figure 9, E and F). Kymotracker 
did not produce this kind of artifact when analyzing axonal transport 
data (Figure 10A), presumably because the SNR of these data is 
higher and the kymograph is less dense. Because in Kymotracker, 
trajectories are obtained by the user, almost all trajectories can be 
extracted, including the ones missed by KymographDirect. In 
Kymotracker, additional software tools are needed for further 
analysis of the trajectories, whereas KymographDirect can perform 
key analysis tasks. In conclusion, KymographDirect is the most 
advanced and comprehensive tool publicly available for efficient 
and accurate automated analysis of kymographs.

DISCUSSION
Quantitative analysis of molecular and cellular dynamics is crucial to 
understand their underlying mechanisms. Kymographs are a very 
powerful way to display the time dependence of these processes 
and can in principle be used to obtain quantitative insight into their 
dynamics. Automatizing kymograph analysis has been difficult, 
however, in particular for complex and low-SNR data. As a 

background. Under such demanding conditions, the algorithm can 
identify some trajectories that are actually noise. KymographDirect 
allows straightforward deletion of such undesired trajectories by the 
user. In addition, KymographDirect allows manual linking of the 
trajectories that arise from the three different motion components 
obtained using Fourier filtering. In this way, linked trajectories can 
be obtained that contain the full extent of dynamics. Overall ∼90% 
of trajectories are extracted, with most missed trajectories being 
low-intensity ones. In axonal transport, it is of particular interest to 
determine the fraction of time during which particles are taking part 
in active transport (Moughamian and Holzbaur, 2012); in 
KymographDirect, this can computed using the velocities and 

FIGURE 10:  Experimental data from axonal transport in primary 
neurons. (A) Kymograph generated from the top sequence of Movie 
S2 of Moughamian and Holzbaur (2012). (B) Same kymograph as A, 
Fourier-filtered for motion in the forward direction (red) and backward 
(green) directions and for pausing and diffusing particles (blue). 
(C) Kymograph A overlaid with trajectories obtained with 
KymographDirect (red). Some trajectories coming from different 
components of motion have been linked together by the subprogram 
Link of KymographDirect to obtain the trajectories presented. Scale 
bars, 5 μm (horizontal), 10 s (vertical). (D) Intensity of extracted 
trajectories as a function of their velocity; these quantities are 
obtained from KymographDirect analysis. Each dot corresponds to 
a single time point of a given trajectory.
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In the analysis of simulated data, we used the setting “noise re-
duction” in KymographDirect, which is accessible in all modes of 
analysis (Supplementary Information). We found that this mode 
gives the most precise and reliable results. Custom-written pro-
grams were used to validate KymographDirect. The fraction of tra-
jectories identified by the program (the “coverage”) corresponds to 
the fraction of time points extracted from simulated trajectories of 
diffusive particles (Figures 2 and 4) and to the fraction of locations 
extracted from simulated trajectories of or particles with directed 
motion (Figures 7 and 8).

C. elegans imaging
Microscopy images were acquired using a custom-built epi-illumi-
nated wide-field fluorescence microscope operated by a MicroMan-
ager software interface (μManager, MicroManager 1.4, www.micro-
manager.org; Edelstein et  al. 2014) and built around an inverted 
microscope body (Eclipse Ti; Nikon, Amsterdam, Netherlands) fit-
ted with a 60× water-immersion objective (CFI Plan Apo IR 60× wa-
ter immersion, numerical aperture 1.27; Nikon). Excitation light was 
provided by a diode-pumped solid-state laser (Calypso 50, 491 nm; 
Cobolt, Solna, Sweden). Images were captured with an electron-
multiplying charge-coupled device camera (iXon 897; Andor, 
Belfast, UK). One camera pixel corresponded to 92 nm × 92 nm in 
the image plane.

The C. elegans strain expressing EGFP-tagged OSM-3 kinesin 
motor proteins (Snow et  al. 2004) was a kind gift of Jonathan 
M. Scholey (University of California, Davis, Davis, CA). Fluorescence 
imaging in living C. elegans was performed by anesthetizing adult 
worms (maintained at 20°C) in M9 containing 5 mM levamisole 
(tetramisole hydrochloride, L9756; Sigma-Aldrich, St. Louis, MO) 
and immobilizing them between a 2% agarose pad and a coverslip. 
Samples were imaged at room temperature (21°C) at 152 ms/frame.

consequence, analysis is performed in many cases by human, visual 
inspection. Here we introduced a new, reliable set of software tools 
for the generation (KymographClear) and analysis (KymographDi-
rect) of kymographs.

To demonstrate the reliability of automated kymograph analysis 
by KymographDirect, we tested this tool extensively with simulated 
kymographs representing a wide range of dynamic processes and 
imaging conditions as found in the literature. Trajectories are typi-
cally extracted with subpixel accuracy even for SNR close to 1 
(Figures 2B, 3, B and D, 5B, 7B, and 8C). Even for low-SNR kymo-
graphs, the application is capable of extracting the majority of tra-
jectories. At SNR > 2, at least 80% and most often 90% of trajecto-
ries are reliably revealed (Figures 3, C and E, 5, C and E, 7, D and E, 
and 8, D and E). The algorithm’s ability to precisely determine ve-
locities depends on the stochasticity of the process studied; in most 
cases, the uncertainty encountered is at most a few percent (Figures 
2C and 7, C and E).

We demonstrated the applicability of KymographDirect to a 
variety of experimental kymographs. KymographDirect was used 
to extract trajectories of single proteins diffusing and translocating 
on DNA in vitro (Figure 4), trajectories of the edge of growing mi-
crotubules in vitro (Figure 6), and trajectories of groups of mole-
cular motors in cilia and axons in living cells (Figures 9 and 10). 
These examples represent a variety of experimental conditions 
highlighting the applicability of our tools to quantitatively assess a 
wide range of biological processes in vivo and in vitro. They also 
demonstrate that KymographDirect can reliably extract complex 
trajectories in an automated way, yielding motility parameters such 
as instantaneous velocity, position-dependent intensity and veloc-
ity, and diffusion constants. Compared to available single-particle 
tracking routines, KymographDirect performed similarly or better 
on the tested data sets. Comparison with kymograph automated 
analysis tools is more difficult because, despite the amount of al-
gorithm published, only one semiautomated tool is publicly avail-
able; compared with this tool, KymographDirect offers a higher 
degree of automation and precision on the data set tested. All of 
the applications analyzed here used fluorescence microscopy, but 
in principle, KymographDirect and KymographClear can also be 
applied to data obtained with bright-field microscopy, including 
phase-contrast and differential interference contrast microscopy.

Kymographs are widely used by the cell biology and biophysics 
communities to visualize motion. Automated quantitative analysis 
tools for kymographs have been lacking, restricting researchers to 
manually extract motility parameters. Here we introduced a novel 
toolset for the generation and automated analysis of kymographs 
that is reliable even under severely crowded and low-SNR condi-
tions. We foresee that the toolset will enable microscopists to ana-
lyze their images with high accuracy, reliability, and throughput, ac-
celerating discoveries in molecular and cellular dynamics.

MATERIALS AND METHODS
Generation and analysis of simulated data
Simulated kymographs were generated with custom programs writ-
ten in LabVIEW (National Instruments, Austin, TX). First, particle 
tracks were calculated, using random-number generation for step-
ping or acceleration (in case stochasticity needed to be introduced). 
Next the particle intensity was simulated, assuming a Poisson distri-
bution for photon emission. The resulting image was then convo-
luted with a 1D Gaussian function along the position axis to mimic 
the effect of the finite resolution of the microscope (the full-width at 
half-maximum corresponded to 2 pixels). Finally, Poisson noise was 
added to the image to mimic typical camera noise and vary SNR.
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