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Recent articles reported a massive increase in frustration among weak students due to the outbreak of COVID-19 andMassive Open
Online Courses (MOOCs). .ese students need to be evaluated to detect possible psychological counseling and extra attention. On
the one hand, the literature reports many optimization techniques focusing on existing students’ performance prediction systems. On
the other hand, psychological works provide insights into massive research findings focusing on various students’ emotions, in-
cluding frustration. However, the synchronization among these contributions is still a black box, which delays the mathematical
modeling of students’ frustration. Also, the literature is still limited in using insights of psychology and assumption-based datasets to
provide an in-house iterative procedure for modeling students’ frustration severity. .is paper proposes an optimization technique
called the iterative model of frustration severity (IMFS) to explore the black box. It analyzes students’ performance via two modules.
First, frustration is divided into four outer layers. Second, the students’ performance outcome is split into 34 inner layers. .e
prediction results are iteratively optimized under the umbrella of frustration severity layers through the outer and inner iterations.
During validation, the IMFS achieves promising results with various evaluation measures.

1. Introduction

.e outbreak of COVID-19 and E-learning with Massive
Open Online Courses (MOOCs) introduced new challenges
for weak students. .ey brought significant changes in
students’ lifestyles, academic teaching methodology, and
performance evaluation procedures. COVID-19 has sig-
nificantly increased students’ frustration as they struggle to

achieve excellent grades and good employment opportu-
nities [1–3]. A student with high frustration severity is likely
to perform poorly in academic activities, e.g., assignments,
quizzes, workshops, and examinations [4]. Also, they made
optimization of students’ performance prediction systems
more challenging. Such systems highlight at-risk students
for psychological counseling and extra attention. Also, the
prediction system needs optimized students’ frustration

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 3183492, 14 pages
https://doi.org/10.1155/2022/3183492

mailto:saahmad@psu.edu.sa
mailto:shahidanwar786@gmail.com
https://orcid.org/0000-0001-6907-2318
https://orcid.org/0000-0001-9444-8209
https://orcid.org/0000-0001-9349-1985
https://orcid.org/0000-0001-8093-6690
https://orcid.org/0000-0002-8204-4896
https://orcid.org/0000-0002-5068-2033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3183492


severity modeling. Earlier studies show that distractions and
frustration are the significant issues during an E-learning
environment that negatively impact student engagement in
the class [5]. Many research findings statistically correlated
the outbreak of COVID-19 with the students’ frustration
severity [6]. Besides, institutions have given more liberty to
the students and employees in their daily schedules. .ey
have changed teaching and working culture to recover from
the adverse influence of COVID-19 and frustration.

.e current study splits earlier research contributions
into two groups to provide a comprehensive picture of a few
challenges, i.e., (1) psychology and data analysis findings and
(2) students’ performance prediction approaches. First, data
analysis and psychological findings provide meaningful
information and correlation between factors such as frus-
tration, the COVID-19 pandemic, E-learning, and the
performance evaluation of at-risk students [7–9]. Second,
the prior students’ performance prediction approaches used
the psychological findings and data analysis contributions to
optimize performance computation models [10–14]. .ese
various groups of studies are still limited in obtaining an
optimized students’ performance prediction system based
on insightful frustration severity modeling [15–19]. .is
paper proposes an iterative model of frustration severity
(IMFS) to optimize the students’ performance prediction
system thoroughly.

It considers students’ frustration severity with two main
modules, i.e., (1) digitization and quantization and (2)
frustration severity module. During the in-depth quanti-
zation and digitization, the students’ scores are divided into
thirty-four periodic outcomes (with a period of 0.3). It
ensures the in-depth consideration of students’ performance
under the frustration severity layers. Second, the frustration
severity is split into four layers (levels) to estimate students’
scores iteratively. Furthermore, the proposed model has four
main iterations and thirty-four sub-iterations to predict a
single student’s score. It performs 136 (34× 4) iterations to
optimize the prediction result in a single round during the
prediction process. .e experimental study reveals that
IMFS performs significantly in terms of various accuracy
measures, i.e., F1 score, precision, and recall.

.e rest of the work depicts literature (Section 2), the
proposed model, analysis, discussion, and conclusions.

2. Literature

Since the outbreak of COVID-19, the educational institu-
tions were swapped to E-learning which brought significant
changes in students’ social and academic life, including weak
and excellent ones [20]. .e online classes, isolation, social
distancing, and lockdowns considerably affected the stu-
dents’ attitudes. Also, educational institutions were active in
overcoming the adverse impact of COVID-19 and frustra-
tion severity through significant changes in their policies
[21]. .ey have relaxed the policies by giving more liberty to
employees’ working schedules and moving students to
online classes. However, these precautions are insufficient in
such an alarming situation in the future. Indeed, a system

that can predict students’ performance for further treatment
and counseling of a particular at-risk student is needed [22].
.erefore, we need to work in two directions to optimize
existing performance prediction systems. .e first step in-
cludes data analysis findings that could correlate the factors
that negatively and positively affect students’ performance.
.e second step is to simulate (or provide a mathematical
model) the correlation between students’ characteristics,
e.g., frustration, COVID-19 effects, performance, and so on.

2.1. Prior Analysis. COVID-19 and natural components of
students’ learning adversely influence students’ performance
2. It is common in students during intense learning envi-
ronments. So far, the literature demonstrated that only
informal qualitative work had been done on students’
frustration and performance. A proper systematic process
needs to analyze the relationship between frustrations, se-
verity, and the adverse influence on students’ future per-
formance..e previous studies have various models that can
be replicated to optimize the existing prediction systems
[23–29]. Moreover, the instructor usually overcomes stu-
dents’ frustration via collaborative assignments and class
activities to provide the best opportunities for learning [30].
.rough these activities, students learn how to play in
frustration and an intense learning situation. .ey can easily
share their problems with classmates and learn better in
offline mode with face-to-face interaction [31]. COVID-19
boosted the negative correlation between students’
achievements and frustration severity. So, it is essential to
predict students’ performance and control the negative
emotional impact in such an alarming situation [32]. In-
stitutions that have transformed from offline to online are
experiencing new challenges, such as technological illiteracy
[33].

2.2. Prior Students’ Performance Prediction Approaches.
Many scholars analyzed students’ achievements and pub-
lished insightful data analysis [34–37]. However, very
meager work has been done in simulating the relationship
between students’ emotions (frustration, stress, etc.) and
performance. Also, the published studies have many black
boxes introducing new challenges while optimizing the
current prediction system. .us, the dire need is to evaluate
the insightful data analysis and other opportunities to extend
existing prediction approaches. Also, we need to analyze the
qualitative findings of psychological literature to predict and
simulate the influence of emotional factors. Excellent aca-
demic achievements are only possible with excellent cog-
nitive skills. Usually, cognitive skills are considered the
ability to perform any activity that needs reasoning and
problem solving, i.e., assignments, quizzes, and written
examinations [38–40]. .ese skills evolve as students learn
and forget. Effective educational policies need such systems
to adapt to the dynamic nature of students’ cognition. So,
these challenges are the main sources of inspiration for the
proposed iterative model of frustration severity (IMFS).
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3. Preliminaries

.e proposed model implements the Bayesian inference
method (BIM) over different nodes. BIM achieves posterior
probabilities (PPs) of the most probable score of a student.
BIM is based on four basic probabilities, given by the fol-
lowing definitions, i.e., prior, conditional, joint, and PP of
students’ scores. .e conditional probability in BIM is given
by equation (1). It shows that the probability of event A gives
event B. On the other hand, we need a joint probability for
BIM to finalize the PP. A joint probability is given by
equation (2).

P(A|B) �
P(A∩B)

P(B)
, (1)

P(A∩B) � P(A) × P(B). (2)

4. Proposed Iterative Model of
Frustration Severity

.e focus of the current attempt is to predict the expected
students’ scores while simulating the nonlinear influence of
frustration severity. .us, the IMSF methodology split frus-
tration into four severity layers (where s1 refers to the first
layer and s4 refers to the fourth layer of severity)..is division
of frustration severity has initiated IMFS. Also, the students’
performance outcomes (0.1≤ performanceoutcome≤ 10) are
divided into thirty-four outcomes. .e in-depth quantization
of students’ performance has finalized the second section of
the IMFS. .e primary goal of these layers is to accurately
predict students’ scores while ensuring the computation of
frustration severity influence. Moreover, the division of layers
ensures significant prediction accuracy.

4.1. Probability Calculation at IMFS Layers. To predict
students’ performance, the current approach selects themost
probable score (out of 34) while computing each outcome’s
PP and the severe effects of frustration. IMFS embedded a
machine learning model called BIM to calculate the most
probable outcome of IMFS. IMFS embedded a machine
learning model called BIM to compute the most probable
outcome of IMFS. .e result showed that IMFS achieved
significant accuracy with the embedded BIM. BIM is easy to
be embedded for the PP calculation. .us, the BIM calcu-
lation finalizes the third section of the IMFS (of frustration
severity).

4.2. Architecture of the Proposed Model. .e IMFS has four
main umbrella iterations to estimate the PP of students’
performance outcomes (with respect to frustration sever-
ities). Each iteration includes 34 sub-iterations, which
produces a set of 34 performance outcome PPs..e resulting
PP set is refined in the next iteration. So, the proposed IMFS
iteratively produces the PP of students’ scores while con-
sidering the adverse effects of frustration.

4.3. Posterior Probability Estimation. During the training
process, we randomly initiated the prior probabilities of
students’ performance outcomes, i.e., Figure 1 shows nodes
of IMFS, which calculate PP under the influence of frus-
tration. It depicts that the PP of students’ performance
outcomes is iteratively computed in each layer of the IMFS.
During prior probability distribution, a probability weight is
assigned from the interval of [0, 1].

SPprior � S PSi( , (3)

Spc
prior � P SPc

j  � i − SPprior. (4)

Equations (3) and (4) show mutually exclusive and
collectively exhaustive events. Moreover, SPprior reveals the
weight of prior probabilities (prior� 1 to 34), while
1− SPprior depicts the probabilities of various events, also
referred to as mutually exclusive events. So, the probability
of the first outcome of students’ performance is depicted by
SPprior. Also, the remaining thirty-three outcomes’ proba-
bilities are represented by 1− SPprior. If we summarize the
probability distribution in simple words, we can say that the
probability [0, 1] is split into two sets. .e probability of the
first set is represented by equation (3) and the second set of
probabilities is illustrated by equation (4). .ese both
probabilities are mutually exclusive and collectively ex-
haustive. Furthermore, SPc

prior shows the probability of
students’ scores (where prior� 1 to 34) and SPc

prior illustrates
the summation of thirty-three outcomes’ probabilities.
Additionally, the IMFS achieves the prior probabilities of
frustration layers, which are shown by sevprior (where pri-
or� 1 to 4). Such probabilities are achieved for the com-
putation of different students’ score probabilities (joint and
conditional).

PScp � P sevk|spi(  �
PSprior × sevprior

SPprior
, (5)

PSc
m � P sevk|PSc

i(  �
1 − PSprior × sevprior

1 − PSprior
. (6)

Equations (5) and (6) compute the conditional proba-
bilities of students’ performance, which are demonstrated by
PScp and PSc

m. Moreover, cp and m show various iterations
for the computation of conditional probabilities. On the one
hand, SPpriorand 1−SPprior illustrate the single frustration
severity layers (also referred to as prior probabilities), and on
the other hand sevk depicts the remaining 4 layers of severity
(where k= 1 to 4). Finally, SPpriorc depicts students’ per-
formance. In every computation round of m, the frustration
probability (conditional) is analyzed. Also, p and m illus-
trated 68 iterations (sub-iterations) in each round of p.

SPjointxy
� P sevk, spi(  � SPprior  × SPcp , (7)

SPjointcs � P sevk, sp
c
i(  � 1 − SPprior  × SPc

m( , (8)

Computational Intelligence and Neuroscience 3



SPpostmn
� P spi|sevk �

SPjointxy

SPjointxy
+ SPjointcs

.⎛⎝ (9)

In equations (7) and (8), the variables SPjointxy
and SPjointcs

represent the probability (joint) of students’ outcome and
the four layers of frustration, respectively. xy and s depict
two rounds of iterations. .e iterative model of frustration
severity needs various types of probabilities to compute the
final PP. In equation (9), the variable SPpostmn

shows the final
probabilities of students’ performance, also referred to as PP.
Also, the range of m� 1 to 4 and n� 1 to 34. IMFS has four
iterations for severity, while in each round of iteration, IMFS
has thirty-four sub-iterations. Also, it should be noted that
the obtained PP is considered before the next round of it-
eration. Every round of iteration produces a refined set of
probabilities. Finally, IMFS chooses the most probable
outcome of students’ performance.

Algorithm 1 illustrates the iterative procedure of the
proposed IMFS. As an input, it takes three sets of data; (1) sev
consists of the information about frustration severity layers
(F1 to F4), and (2) sp1 and sp2 consist of 34 prior proba-
bilities of students’ performance. .e first loop initiates the
principal iterations in which i chooses severity from sev (one
by one). Furthermore, the algorithm starts an inner loop for
the element of sp1. So, the variable j selects each element
from sp1 (34 elements one by one) and calculates its PP
under the influence of frustration severity. Each sub-itera-
tion of the nested loop produces a PP of J with respect to the
selected frustration severity (i). .ese PPs are achieved using
equations (3)–(7). At the end of each step of the inner loop,
the prior probability of a student’s score is replaced by the PP

of j of sp1. .us, this process continues until the PP of the
34th performance outcome is calculated..e probabilities of
34 outcomes are re-estimated under the influence of four
severity layers. Eventually, the first loop produces a set of
refined PP.

Furthermore, Algorithm 1 consists of another module
that compares the estimated values with actual values of
students’ performance outcomes, i.e., calculates prediction
loss by (PL� (Actual−Measured)). .is process evaluates
the final PP of a student’s performance outcome to enhance
the accuracy of the proposed model. It compares the actual
score with the most probable student’s score (out of 34 PPs).

4.4. Statistical Algebraic Model for IMFS. .e IMFS math-
ematically models the relationship among different frus-
tration levels during various cognitive tasks, such as
assignments, quizzes, final examinations, class activities, and
group assignments. .e following module shows the
mathematical modulation of the proposed IMFS.

Fsev1k+1
� SP.Fsev1k

, (10)

Fsev2k+1
� SP.Fsev1k+1

, (11)

Fsev3k+1
� SP.Fsev1k+1

+ SP.Fsev2k+1
, (12)

Fsev4k+1
� SP.Fsev1k+1

+ SP.Fsev2k+1
+ Fsev3k+1

. (13)

Equations (10)–(13) reveal the iterative correlation be-
tween frustration severity (Fsev1 to Fsev4) and students’
expected score SP. Equation (10) shows SP under the

Process 1

BIM Evaluation using SP
Prior and Severity 1

Process 2

BIM Evaluation using 34
Posterior 1 and Severity 2

Process 3

BIM Evaluation using 34
Posterior 2 and Severity 3

Process 4

BIM Evaluation using 34
Posterior 3 and Severity 4

Posterior 1
34 Posterior Probabilities of SP

Posterior 2
34 Posterior Probabilities of SP

Posterior 3
34 Posterior Probabilities of SP

Final Posterior
34 Posterior Probabilities of SP

Refined
Output

Refined
Output

Refined
Output

Refined
Output

Assign 34 Prior
Probabilities to SP

Frustration Severity Layers

SP Quantization (34)

Frustration
Severity and

Students'
Performance

Outcome (SP)

Quantization of Students' Performance (SP) and Frustration
Severity

Iterative Students' Performance Prediction Process of DFSN

Figure 1: Framework of iterative model of frustration severity. SP shows students’ performance outcomes and BIM stands for Bayesian
inference method.
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umbrella of Fsev1, and equation (11) reflects the accumu-
lative effects of Fsev1 and Fsev2 on SP. Similarly, equation
(12) shows the students’ performance under the influence of
accumulative influence of Fsev1, Fsev2, and Fsev3 while
equation (13) depicts the final value of students’ perfor-
mance (SP) under the umbrella of accumulative impact of
four levels of frustration severity (Fsev1, Fsev2, Fsev3, and
Fsev4).

4.5. Proof of Existence through Gauss–Seidel Method. .e
information in equations (10) to (13) is expressed in the
Gauss–Seidel method using the following matrix.

Fsev1k+1

Fsev2k+1

Fsev3k+1

Fsev4k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

SP 0 0 0

0 SP 0 0

0 SP SP 0

0 SP SP SP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X

Fsev1k

Fsev1k+1

Fsev2k+1

Fsev3k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where A is the coefficient matrix representing students’
scores while B is called augmented matrix.

Furthermore, the existence and uniqueness of such
system are derived as

X � AB. (15)

Let x ∈ R + 4 and x∈ R + 4; then, we have the following
equation.

‖x − x‖ � ‖AB − AB‖ � ‖A(B − B)‖≤ ‖A‖‖B − B‖. (16)

Lastly, we have achieved ‖A‖≤ 1. It shows that system (1)
has unique solution.

5. IMFS Prediction Result

.e proposed approach was evaluated during the experi-
ment using state-of-the-art measures such as precision,
recall, accuracy, and F1 score. It automated the association
between students’ performance and frustration. .us, the
empirical result section is split into the following sections to
evaluate the accuracy.

5.1. Data Collection Process. .e proposed IMFS was ana-
lyzed with a students’ score dataset during the experiment.
.is particular dataset is a new version of the dataset, which
was collected during an interview [41].

5.1.1. Population and Sampling. .e data were collected in
seven universities around different provinces of Pakistan.
.e particular universities are given below.

Bahria University Karachi Campus.
Bannu University of Science and Technology.
Bacha Khan University Peshawar.
Iqra University Karachi.
Lakki University of Science and Technology.
Information Technology University, Lahore.
Institute of Management Sciences Peshawar.

.e selections of universities and computer science (CS)
departments are based on a convenience-based sampling
technique. .e participants from these universities, espe-
cially the CS department, were easily available. We have
ensured a qualitative data collection process by selecting CS
students for the experiment. .e preparations for multiple

Data: sets, sev sp1, sp2
Result: sp1, sp2
initialization;
foreach i in sev do

foreach j in sp1 do
compute probability of j under the impact i
replace j in sp1
end

end
Calculate Prediction Loss
IF the accuracy is not satisfactory then

foreach m in sev do
foreach n in sp2 do
Updated n of sp2
compute probability of n under the impact of m
replace n in sp2
end

end
Return refined sp2
Else
Return refined sp1
End if

ALGORITHM 1: Students’ performance prediction process.

Computational Intelligence and Neuroscience 5



CS-related quizzes under various frustration severity im-
pacts were comparatively easy. So, the convenience-based
sampling technique has ensured accurate information about
the frustration severity. .e study follows Yamane's (1967)
standard to select enough samples from the targeted pop-
ulation. .e Yamane formula for sampling is given below.

n �
N

1 + N(e)
2. (17)

According to the Yamane sampling formula (using
population), the minimum sample size is 15700; however,
we have oversampled the data up to 20000 to ensure the
Yamane standard.

5.1.2. Data Collection Methodology. We conducted 21
prank-based interviews in the institutions mentioned above
to collect enough qualitative students’ score data. Students
were frustrated by negatively commenting on their per-
formance. Such comments were made by the concerned
teacher of the course in different universities. A student can
be frustrated by negative comments on his future grades,
performance, job opportunity, and family attributes [42].
Also, state-of-the-art findings were used to frustrate these
students during the interview. Students’ performances were
evaluated on course-related quizzes. Psychological litera-
ture-based tactics were used to discourage the participants
[43–49]. Also, we have developed various quizzes to assess
the students’ performance in different frustration severity.
.e performance outcome in the test depends on different
factors, such as the amount of time taken during the test,
their mistakes, and the logic of the solution. After the test,
the particular student was informed about the nature of the
ongoing experiment to sign the consent. .e frustration
severity was ensured via participants’ self-assessment basis.
We have assessed the performance of 451 students. So, 1804
samples were collected. To efficiently train IMFS, we
oversampled the dataset to 20000 records based on psy-
chological findings and theoretical data analysis contribu-
tions. Such assumption-based datasets pave the way for
efficient training and testing of a deep model. Moreover, the
correlation between different levels of frustration severity is
highlighted by the Pearson correlation in Table 1, which is
self-explanatory with Pearson correlation values and con-
fidence intervals.

5.2. Training of IMFS. .e training process was initiated
with 10-fold cross-validations. Also, the study has five
partitions of students’ score outcomes, such as very low
performance (at-risk students), low (still at-risk), average
performance, good, and excellent (with outstanding per-
formance). .e IMFS achieved significant performance in
terms of ten-fold cross-validation processes. Furthermore,
150 distinct tests were performed using ten samples of data.
So, training and testing were carried out on various pairs
(i.e., 90% training set and 10% test set)..is section achieved
a final set of prior probabilities [33] during IMFS training.

5.3. IMFS Prediction Assessment. .e performance out-
comes are distributed into five different partitions to show
the performance results. On the one hand, the first four
partitions consist of 28 students’ score outcomes. On the
other hand, the last partition consists of six score outcomes.
Moreover, the study divided the performance range into
various intervals, which are demonstrated as follows:

(0.1≤ SP≤ 1.9) as PI
(2.2≤ SP≤ 4) as P2
(4.3≤ SP≤ 6.1) as P3
(6.4≤ SP≤ 8.2) as P4
(8.5≤ SP≤ 10) as P5

Here, SP means students’ performance. During the ex-
periment, the PP of each partition is evaluated separately,
i.e., PPs of the five partitions are estimated using the severity
layer umbrella. During the method validation, we selected
five random data samples. Each sample consists of thirty
values. .e IMFS receives a set of thirty-four probabilities
along with the highest probability. In addition, the per-
formance of IMFS was assessed with various validation
models, such as recall, F1 score, and precision, while the
training and testing have true positive, true negative, false
negative, and false positive, represented by the following
variables.

Accuracy �


4
i�1 TPi( 


4
i�1 TPi + FPi + TNi + FNi( 

. (18)

.e prediction results of IMFS (with P1 partition) are
illustrated in Figure 2. .e PP is shown in a red line graph
depicting the actual PP of students’ performance outcomes.
.e prior probabilities of the proposed technique are de-
scribed in Table 2, working as coefficients to obtain the PP of
the given inputs (frustration severity). To achieve the ac-
curacy for P1, we have used equation (10) for performance
calculation (where i= 1 to 5). TP denotes true positive, FP
reveals false positive, TN represents true negative, and the
FN manifests a false negative of the model. .e list of state-
of-the-art performance measures is given in Table 3.
Eventually, the IMFS obtained significant performance in
terms of validation models.

Precision �
TPi

TPi + 
3
i�1 FPi( 

. (19)

Equation (11) measures the accuracy of students’ per-
formance outcome as a precision measurement. .e pa-
rameters of equation (11) are explained earlier..e IMFS has
received an excellent precision value for P1, i.e., see Table 3.
Moreover, the recall measure (equation (12)) is used to
calculate the accuracy of the proposed technique. Resul-
tantly, the IMFS achieved a significant accuracy in terms of
recall measure for P1, i.e., see Table 3.
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Recall �
TPi

TPi + 
3
i�1 FNi( 

,

F1 � 2 ×
precision × recall
precision × recall

.

(20)

.e proposed model achieved a significant result via the
F1 score illustrated by equation (13), i.e., F1 scores in Table 3
and Figure 3. .e red graph depicts predicted values, while
the blue graph represents the original values of students’
performance. .e empirical analyses demonstrated signifi-
cant results in every dataset partition. In addition, Figure 4
shows the accuracy of IMFS in P3 (partition three). .e
results have shown that the IMFS thoroughly simulated the
correlation between frustration severity and P3. Also, the
study examined the performance of IMFS (in terms of the
validation measures as mentioned earlier) to validate its
preciseness. So, it performed satisfactorily in different val-
idation measures (see results in Table 3). Figure 5 shows the
result of IMFS for P4 (partition four), which depicted sig-
nificant accuracy in terms of precision, recall, F1, and ac-
curacy measures. Also, in Table 3, the study demonstrated
the performance of IMFS for P4. Lastly, IMFS was thor-
oughly investigated in terms of P5 partition (prediction
results are shown in Figure 6). On the one hand, the red
graph illustrates the predicted values, while on the other
hand, the blue graph shows original values of the students’
scores. .e proposed IMFS has iteratively modulated the
nonlinear links among partition five and the severity of
frustration. .e result via validation models depicted sig-
nificant results in terms of different parameters (for more
information, see Table 3).

5.4. Assessment of the Most Probable Outcome of Students’
Performance. .e thirty-four outcomes of students’ scores
are split into five partitions to validate the proposed iterative
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Figure 2: .e prediction accuracy of IMFS in P1.

Table 2: Prior probabilities of students’ performance (SP) outcome
interval.

Periodic intervals of SP Prior probability
1 0.1≤ SP≤ 0.3 0
2 0.4≤ SP≤ 0.6 0.00016
3 0.7≤ SP≤ 0.9 0
4 1≤ SP≤ 1.2 0.0072
5 1.3≤ SP≤ 1.5 0
6 1.6≤ SP≤ 1.8 0
7 1.9≤ SP≤ 2.1 0.015
8 2.2≤ SP≤ 2.4 0
9 2.5≤ SP≤ 2.7 0
10 2.8≤ SP≤ 3 0.0229
11 3.1≤ SP≤ 3.3 0
12 3.4≤ SP≤ 3.6 0.0458
13 3.7≤ SP≤ 3.9 0.00286
14 4≤ SP≤ 4.2 0.0315
15 4.3≤ SP≤ 4.5 0.00573
16 4.6≤ SP≤ 4.8 0
17 4.9≤ SP≤ 5.1 0.0889
18 5.2≤ SP≤ 5.4 0.0427
19 5.5≤ SP≤ 5.7 0.00899
20 5.8≤ SP≤ 6 0.12
21 6.1≤ SP≤ 6.3 0.015
22 6.4 ≤SP≤ 6.6 0.006
23 6.7≤ SP≤ 6.9 0.009
24 7≤ SP≤ 7.2 0.07429
25 7.3 ≤SP≤ 7.5 0.0687
26 7.6≤ SP≤ 7.8 0.0686
27 7.9≤ SP≤ 8.1 0.1343
28 8.2 ≤SP≤ 8.4 0.03143
29 8.5 ≤SP≤ 8.7 0.06573
30 8.8≤ SP≤ 9 0.115
31 9.1≤ SP≤ 9.3 0.0315
32 9.4≤ SP≤ 9.6 0.013
33 9.7≤ SP≤ 9.9 0
34 9.9≤ SP≤ 10 0.0088

Table 1: Pearson correlations.

Severity 1 Severity 2 Severity 3 Severity 4
Severity 1: Pearson correlation 1
Severity 2: Pearson correlation 0.425∗∗ 1
Severity 3: Pearson correlation 0.373∗∗ 0.450∗∗ 1
Severity 4:Pearson correlation 0.265∗ 0.297∗ 0.508∗∗ 1
∗∗Correlation is significant at 0.01 level (2-tailed). ∗Correlation is significant at 0.05 level (2-tailed).
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Figure 3: IMFS performance in P2.
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Figure 4: .e performance of IMFS in P3.
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Figure 5: IMFS in P4.

Table 3: IMFS performance.

Partitions of students’
performance outcome IMFS precision Values as recall IMFS performance as F1 score Specific accuracy measure

P1 0.709 0.782 0.7051 0.759
P2 0.733 0.797 0.7146 0.747
P3 0.708 0.789 0.7983 0.793
P4 0.794 0.778 0.7090 0.707
P5 0.723 0.787 0.7947 0.747
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model, i.e., very low, low, average, good, and finally, ex-
cellent performance outcome, as illustrated earlier. .e
technique separately simulated the relationship between
frustration severity and students’ scores during the second
experiment. Also, each partition of students’ scores has a
probability interval [0, 1] distributed between seven out-
comes. .ese particular distributions depend on the prior
probabilities of students’ performance outcomes. Before the
prediction experiment, we hypothesized the relationship
between students’ performance and frustration severity.
According to the hypothesis, the PP of the first three par-
titions (P1, P2, and P3) must be increased with severity. In
comparison, the PP of the last two partitions (P4 and P5)
might be decreased with an inevitable increase in frustration
severity. .e technique has achieved excellent prediction
accuracy on students’ datasets. .ese results illustrated that
the PPs of the first three partitions (P1 to P3) are increasing
under the intense influence of frustration severity.
Figures 7–9 show P1 (very low), P2 (low), and P3 (average)
students’ scores, respectively. .e increased rate in PP of P1
(Figure 7) is comparatively higher than P2 (Figure 8).
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Figure 6: .e IMFS performance in P5.
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Figure 7: .e posterior probabilities of P1 (very low performance
outcomes).
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Figure 8: .e probabilities of P2 are evolving with a change in
frustration severity.

F2 F3 F4F1
Frustration Severity (F1 to F4)

0.1

0.2

0.3

0.4

0.5

0.6

Po
ste

rio
r P

ro
ba

bi
lit

ie
s o

f s
tu

de
nt

 P
er

fo
rm

an
ce

 (S
P)

SP_4.3
SP_4.6
SP_4.9

SP_5.2
SP_5.5

SP_5.8
SP_6.1

Figure 9: An increase in probabilities of P3 with respect to severity.
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On the one hand, Figure 9 demonstrates that an increase
in PP of P3 is comparatively higher than the increase in PP of
P2. .e first three partitions have revealed an increase in
students’ score probabilities under the influence of the four
layers (s1 to s4). On the other hand, we have investigated the
prediction results of the last two partitions (good� P4 and
excellent� P5), which are shown in Figures 10 and 11. .ese
two partitions’ PPs are decreasing because frustration se-
verity layers thoroughly influence P4 and P5 partitions. Also,
the decrease rate of PP in P5 (Figure 11) is higher than that in
P4 (Figure 10). .ese surprising results depicted that the
proposed approach efficiently predicted the expected per-
formance of students during cognitive tasks.

5.5. Comparative Analysis. As it can be seen from Table 4,
the proposed IMFS is compared with three prior studies
based on 11 significant features. .ey highlighted many
technical challenges and efforts toward optimizing students’
performance prediction systems; however, they could not
achieve the 11 essential features mentioned in Table 4.

5.5.1. Relevant Factor-Based Comparison. Earlier studies are
saturated with many contributions that correlate students’
performance with different levels of frustration severity (see
section literature review). Also, state-of-the-art methods are
insufficient to compute the adverse influence of frustration
severity. As far as we know, the literature lacks algorithms
that quantize frustration severity into multiple layers. It also
lacks in splitting students’ scores into thirty-four compo-
nents to compute performance under the umbrella of the
adverse impact of frustration severity. .e quantization of
performance outcomes and frustration severity is illustrated
in Table 3.

5.5.2. Iterative Prediction. .e related work focused on
student interaction with LMS, academic scores, and different
family attributes; however, an optimized educational model

is needed to mathematically model the frustration severity.
So, the proposed IMFS computes students’ performance
under the umbrella of frustration severity clusters. Also, it
addresses various challenges, such as optimization of pre-
diction results with four outer layers and thirty-four inner
layers. .e current study optimizes students’ performance
prediction with in-depth frustration severity layers. .e
proposed system was trained and validated on an as-
sumption-based and real-world dataset. .ese data were
collected from seven different institutions to consider the
additional demographic background data. Later, the dataset
was extended based on psychological findings and theo-
retical data analysis discoveries. Nevertheless, the dataset
used by state-of-the-art techniques is comparatively not
sufficient for frustration severity challenges.

6. Discussion

Students’ performance prediction has emerged as an exciting
domain for many cognitive computing researchers and
education-focused scientists. It has massive applications for
critical cognitive tasks, such as performance prediction
during students’ class activities, written examinations, and
quizzes. .e study illustrated earlier that frustration severity
continuously declines the performance of students. .ere-
fore, it proposed an optimization method called the iterative
model of frustration severity (IMFS) to predict students’
scores while mathematically modeling the adverse influence
of frustration severity. It has manipulated the nonlinear
statistical relationship between the students’ performance
and frustration severity. .is network consists of two main
modules. First, frustration severity is split into four layers (s1
to s4). Second, the study digitized and quantized students’
performance outcomes with a unique range
(0.1≤ StudentPerformance≤ 10) to ensure prediction accu-
racy. Also, the range of students’ scores was split into 34
periodic discrete outcomes (with a period of 0.3). It
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Figure 10: .e posterior probabilities of P4.
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manifests that the IMFS has two sets of layers, i.e., outer layers
(frustration severities s1 to s4) and inner layers (34 layers of
students’ performance outcomes). During the prediction
process, the first outer layer of the network produces a set of
34 unique posterior probabilities using equations (1)–(7).
.ese posterior probabilities are optimized in the remaining
three layers of frustration severity. Hence, themodel produces
an optimized set of posterior probabilities in each layer. Fi-
nally, the IMFS predicts students’ performance by picking the
score with the highest posterior probability. .e proposed
IMFS was tested on the students’ scores dataset, which
produced a significant accuracy in terms of various measures
(results are presented in Table 3). Also, all the important
abbreviations are shown in Table 5 and the parameter values
of prior probabilities are depicted in Table 5.

.e proposed model solves three challenges with the
iterative procedure but also reports a few limitations. First,
the proposed IMFS is instead a journey than a destination;
therefore, the main loophole is the lack of extensive com-
parison based on prediction accuracy. Such comparison is

planned in the future work (see Table 4 for novelty). Second,
we have yet to perform extensive empirical tests using ex-
tended assumption-based and real-world datasets to ensure
prediction accuracy. We also plan to add comprehensive
quantization modules to optimize students’ performance
prediction process. Such a module will pave the way to assess
the influence of other emotional attributes, such as various
levels of frustration severity (instead of only four), de-
pression, stress, and anxiety. .ird, the severe effects of
frustration are yet to be investigated by thoroughly exam-
ining the existing psychological work. Also, the study needs
to explore the factors such as frustration and frustration
severity by electroencephalography (EEG) because an

Table 4: Comparison with prior studies.

Features Proposed IMFS Prior study [50] Prior study [51] Prior study [52]
Quantization of
students’ performance 0 to 10 Not mentioned Game score LMS assignment

Frustration severity Yes No No No
Different levels of
severity 4 levels No No No

Quantization of
students’ performance
periodic intervals

34 No No At-risk, failing, and excellent
students

Prior probabilities as a
coefficient

34 prior probabilities (like
weights of a mathematical

model) using Bayesian inference
method

Markov property and
attention mechanism

Hidden Markov
model No

Estimating students’
performance with
respect to frustration
severity levels

Yes No No No

Iterative refinement of
students’ performance
probability

Prior probabilities are replaced
by posterior probability. Further
posterior is used as a prior and

so on.

Bidirectional LSTM No No

Major characteristics

Quantization of students’
performance, level of severity,
periodic intervals [33], iterative

estimation of performance
outcome probability, and
refinement of probability

(memorize previous
probability)

Exercise-enhanced
recurrent neural network,
bidirectional LSTM, and
exercise-aware knowledge

tracing

Comparative
analysis
findings

Analysis of decision tree, Naive
Bayes, logistic regression,
multilayer perceptron, and

SVM on the bases of student
performance prediction

Scalability

Number of performance
outcome and periodic intervals
are directly proportional with

DSFN accuracy

Not explained Not explained Not explained

Proposed algorithm Yes No No No
Evaluation with
number of accuracy
measures

4 2 1 1

Table 5: List of abbreviations.

S.No Abbreviations Definitions
1 MOOCs Massive Open Online Courses
2 IMFS Iterative model of frustration severity
3 SP Students’ performance
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individual’s emotional status is always sensitive to the
aforementioned emotional attributes. In addition, the fol-
lowing statement should be noted for future consideration.

A series of experiments were conducted to validate the
network’s performance, and finally, we have chosen the
average prediction results (i.e., see Table 3).
.e proposed model can produce different results in
achieving different sets of prior probabilities for the
intervals of students’ scores and frustration severities.
.e performance outcomes are partitioned into five
groups (P1 to P5) due to the nonlinear statistical
correlation between students’ performance and frus-
tration severity; however, in future work, the study will
simulate the relationship between frustration severity
and each outcome of students’ scores.

7. Conclusions

In this paper, we presented an iterative model of frustration
severity (IMFS) to optimize the prediction of students’
performance while modeling the influence of frustration
severity. .e IMFS has three main contributions. First, the
student frustration severity was divided into four outer
layers (s1, s2, s3, and s4) to model the severity influence.
Second, the study divided the range of students’ scores into
thirty-four discrete periodic outcomes (periodic dis-
tance� 0.3), forming the IMFS inner layers. .ird, it pre-
dicted students’ performance with the two sets of layers.
Finally, the IMFS was evaluated on students’ score datasets.
It achieved significant performance in terms of various
accuracy measures, i.e., F1 score, precision, and recall.
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