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Spatiotemporal expression of regulatory kinases
directs the transition from mitosis to cellular
morphogenesis in Drosophila

Shuo Yang® !, Jennifer McAdow', Yingqgiu Du', Jennifer Trigg?, Paul H. Taghert? & Aaron N. Johnson® '™

Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and
morphogenesis. Understanding how the embryo uses a relatively small number of proteins to
transition between growth and morphogenesis is a central question of developmental biology,
but the mechanisms controlling mitosis and differentiation are considered to be fundamen-
tally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in
Drosophila, also directs cellular morphogenesis after cell cycle exit. In mitotic cells, the Aurora
kinases activate Polo to control a cytoskeletal regulatory module that directs cytokinesis. We
show that in the post-mitotic mesoderm, the control of Polo activity transitions from the
Aurora kinases to the uncharacterized kinase Back Seat Driver (Bsd), where Bsd and Polo
cooperate to regulate muscle morphogenesis. Polo and its effectors therefore direct mitosis
and cellular morphogenesis, but the transition from growth to morphogenesis is determined
by the spatiotemporal expression of upstream activating kinases.
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apid cell divisions are the hallmark of early embryonic

development, but as development proceeds cells will exit

the cell cycle to acquire specialized, functional morpholo-
gies. Tissue patterning through the differential expression of
morphogens is a well-understood developmental process. On the
other hand, kinases are generally considered to be stably
expressed mediators of upstream activating proteins'~>, and most
kinases are ubiquitously expressed while the embryo is under-
going rapid cell divisions (Supplementary Fig. 1A and Supple-
mentary Data 1). However, during tissue diversification and
organogenesis, the expression of many kinases becomes enriched
or depleted in specific tissues (Supplementary Fig. 1A and Sup-
plementary Data 1). The spatiotemporal regulation of kinase
expression could be a previously unrecognized and essential
mechanism that drives the transition from mitosis to cellular
morphogenesis.

Mitosis is controlled by two sets of kinases. Cyclin-dependent
kinases regulate progress through the cell cycle, and mitotic
kinases, including Aurora kinases and Polo-like kinases (Plks),
direct mitotic entry, chromosome  segregation, and
cytokinesis®~14. Plk activity is dependent on two conserved pro-
tein domains. The C-terminal Polo-Box Domain (PBD) recog-
nizes target substrates, and PBD docking enhances substrate
phosphorylation by the kinase domain (KD)!!. Intramolecular
interactions between the PBD and the KD dictate the affinity of
Polo for specific substrates. The PBD of Drosophila Polo kinase
(Polo) binds the microtubule protein Map205 during interphase,
which effectively sequesters Polo on microtubules!®. During
mitotic entry, activating phosphorylation of the KD by Aurora B
(AurB) relieves PBD binding to Map205 and promotes PBD
binding to pro-mitotic substrates and structures'®-18, A similar
regulatory mechanism has recently been proposed to modulate
Polo activity during meiosis!®. In addition, when Polo is inactive,
intramolecular binding between the Polo KD and the PBD masks
a nuclear localization signal (NLS). Activating phosphorylation
exposes the NLS, allowing Polo to enter the nucleus prior to
nuclear envelope breakdown??. Although Aurora-mediated Polo
activation is an essential regulatory step during cell division, the
role of Polo in post-mitotic tissues, if any, is unknown.

Cellular morphogenesis provides functionality for highly spe-
cialized cells, and morphogenesis generally initiates after cells
have exited the cell cycle. Cellular guidance is a cytoskeleton-
dependent morphogenetic process in which a post-mitotic cell
generates long projections that interact with or connect to other
cells. Axon guidance is perhaps the most studied form of cellular
guidance and provides the foundation for connecting neurons
throughout the nervous system?!. Nascent myotubes, which are
immature post-mitotic muscle precursors, also undergo cellular
guidance and extend bipolar projections to connect with the
tendon precursors that attach to the skeleton?? (Supplementary
Movie 1). The body wall muscles in Drosophila are easily visua-
lized in live, unperturbed embryos?324, and have served as an
essential model to understand the cellular and molecular
mechanisms that direct muscle development23-30, The trans-
membrane receptors Heartless, Kon-tiki, and Robo regulate
myotube guidance in Drosophila by transducing the navigational
signals that direct myotube leading edges toward tendon
precursors>32830. However, the intracellular pathways that link
guidance receptors with the cytoskeletal changes underlying
muscle morphogenesis are poorly understood.

Here we report that Polo regulates cellular morphogenesis in
the post-mitotic mesoderm. The embryonic mesoderm undergoes
multiple rounds of cell division after gastrulation, and mitosis in
the mesoderm is largely complete by Stage 12. Nascent myotubes
exit the cell cycle and begin myotube guidance during Stage 12,
but surprisingly we found Polo is activated in the post-mitotic

mesoderm during myotube guidance. Aurora kinases are the
known activators of Polo, but the Aurora kinases were expressed
in the embryonic mesoderm only until Stage 10. In contrast, the
expression of the kinase Back seat driver (Bsd) was enriched in
the Stage-12 mesoderm, where Bsd promoted Polo activation and
directed microtubule reorganization necessary for myotube gui-
dance. Thus the transition from mitosis to cellular morphogenesis
is achieved through the spatially and temporally restricted
expression of the Aurora kinases and Bsd. The Polo orthologue
Plkl was activated by the Bsd orthologue Vrk3 in mammalian
cells, arguing Bsd regulates a conserved intracellular signaling
pathway that directs muscle morphogenesis.

Results

We carried out a forward genetic screen to identify regulators of
myotube guidance, and uncovered a mutation in CG8878 that
disrupted muscle development. The body wall muscles in CG8878
embryos showed pronounced navigational defects, so we named
the gene back seat driver (bsd) (Fig. la—e and Supplementary
Fig. 1B). The allele recovered from our screen (hereafter bsd!) is
an embryonic lethal nonsense mutation (Q545*) that is predicted
to produce a C-terminal truncation (Fig. 1c). bsd encodes a
conserved serine/threonine kinase orthologous to the vaccinia-
related kinases (VRKSs), and proteins in the VRK family contain a
single conserved kinase domain (KD) near the N-terminus, and a
highly variable C-terminus (Fig. 1c and Supplementary Fig. 1C,
D). The Bsd paralog Ballchen (Ball) regulates sarcomere assembly
in adult flight muscles, but the null allele bal® is embryonic
viable3!, suggesting Ball is not a major regulator of embryonic
muscle development. Vertebrate VRK proteins have not been
shown to regulate myogenesis, but pathogenic VRK1 variants
have been identified in patients with motor neuropathies that
may arise from defects in cellular morphogenesis32.

Bsd directs myotube guidance. Thirty distinct muscles develop
per embryonic hemisegment in Drosophila, and each muscle
acquires a specific morphology (Fig. 1a, b). Myogenesis initiates
with the specification of founder cells, which are muscle pre-
cursors with unique identities that form individual embryonic
muscles. After specification, post-mitotic muscle founder cells
break symmetry to begin elongation, and concurrently fuse with
neighboring fusion competent myoblasts to form syncytial
myotubes?®. The nascent myotubes will elongate and identify
muscle attachment sites on tendon cells in the ectoderm. The
correct elongation and attachment of an individual muscle
establishes a stereotypical morphology, and forms the largely
invariant musculoskeletal pattern in abdominal segments A2-A8
(Fig. 1a, b). To broadly quantify morphology defects, we used an
antibody against Tropomyosin to visualize muscle shape, and
found a majority of the thirty muscles in each hemisegment
showed significant morphology defects in bsd! embryos (Fig. 1a, b
and Supplementary Fig. 1E).

To understand the myogenic role of Bsd in more detail, we
used cell identity reporters to assay founder cell specification,
myoblast fusion, and myotube guidance as previously
described?3. 5053.Gal4 is active in one founder cell that gives
rise to the ventral lateral 1 (VL1) muscle, and slou.gal4 is active in
five founder cells that give rise to the dorsal transverse 1 (DT1),
the longitudinal oblique 1 (LO1), the ventral acute 1 (VA1), the
ventral acute 3 (VA3), and the ventral transverse 1 (VT1)
muscles. 5053.Gal4 and slou.gal4 expressing founder cells were
correctly specified in bsd embryos (Supplementary Fig. 1F), but
myotube elongation and muscle attachment site selection, which
are the two hallmarks of myotube guidance, were significantly
disrupted (Fig. 1d-g and Supplementary Movie 1). In contrast,
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Fig. 1 The ser/thr kinase Bsd regulates muscle morphogenesis. a Myogenic phenotype in bsd’ mutants. Stage-16 embryos labeled with Tropomyosin.
Doral transverse 1 (DT1) and longitudinal oblique (LO1) muscles are pseudocolored. Control (w/"8) embryos showed a stereotypic pattern of body wall
muscles. bsd” embryos showed severe defects in muscle morphology. bsd’ myogenic defects were completely rescued in embryos harboring the genomic
construct CH321-61F090; outcrossing CH321-61F090 restored the bsd’ myogenic phenotype. b Quantification of muscle phenotypes. Muscles were scored
in hemisegments A2-A7 of St16 embryos. Abnormal phenotypes (missing muscles, muscles with attachment site defects, and muscles that failed to
elongate) were scored “defective”. The frequencies of muscle defects are shown as a heatmap on the stereotypic muscle pattern in one embryonic
hemisegment. (n) number of hemisegments scored. See Supplementary Fig. 1E for statistical analysis. € Mapping details and Bsd protein domains. Two
overlapping deficiencies failed to complement bsd’ (dashed lines indicate breakpoints outside the genomic region shown; see Supplementary Fig. 1 for
transheterozygous phenotypes). The Bsd protein has one kinase domain (KD; orange) that is conserved among the VRK protein family; the Bsd KD is
divided by a unique linker (green). The position of a conserved ATP-binding pocket is also shown (purple). d, e Stage-16 embryos labeled for 5053 > GFP
(d, green) or slou > GFP (e), and Tropomyosin (violet). Ventral lateral 1 (VL1) muscles made incorrect or incomplete tendon attachments in bsd’ embryos
(d, white arrowheads) and were often rounded (not shown). DT1, LO1, and ventral transverse 1 (VT1) muscles also made incorrect tendon attachments in
bsd" embryos (e, white arrowheads; see Supplementary Movie 1) or were rounded (blue arrowhead). f Histogram of muscle phenotypes in 5053 > GFP and
slou> GFP embryos (n =60 hemisegments per muscle per genotype). g Histologic scores for muscles analyzed in (f). Open circles (wild-type), closed
circles (bsd"). h Fusion index in St12 embryos. Myoblast fusion was modestly reduced in bsd’ embryos. Each data point represents one hemisegment
(n= 60 per genotype). See “Methods” for statistical parameters. Significance determined by two-sided Fisher's exact test (b, f), and two-sided unpaired
Student's t test (h). Error bars represent SEM.

tendon cells developed normally in bsd embryos (Supplementary
Movie 2), suggesting the myotube guidance defects we observed
are not secondary to tendon cell fate specification or tendon cell
positioning. We also found that the initial round of myoblast
fusion was modestly reduced in bsd embryos (bsd fusion
index = 85.7%; Fig. 1h), although not to the degree reported for
other well-characterized fusion mutants such as loner?®. Bsd is

thus an essential regulator of muscle morphogenesis that directs
myotube guidance and, to a lesser extent, myoblast fusion.

Bsd acts cell-autonomously in the mesoderm. We generated and
validated an antibody against Bsd (Supplementary Fig. 2A-C and
Supplementary Data 3), and found Bsd was ubiquitously expressed in
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blastoderm embryos (Supplementary Fig. 2D). However, after gas-
trulation, Bsd expression was more dynamic. Founder cells are spe-
cified during Stages 10-11, and Bsd expression in the mesoderm
during Stage 11 was reduced compared to subsequent stages of
myogenesis (Fig. 2a and Supplementary Fig. 2D-F). Myotube gui-
dance begins at Stage 12, and Bsd expression levels in the mesoderm

£1 29

peaked during Stages 12-14 (Fig. 2a and Supplementary Fig. 2D-F).
Myotube guidance is complete by Stage 16, and the relative levels of
Bsd expression in the mesoderm were reduced in Stage-16 embryos
(Fig. 2a and Supplementary Fig. 2D-F). The Bsd expression pattern is
consistent with our hypothesis that kinase expression is spatially and
temporally regulated during embryogenesis.
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Fig. 2 Bsd expression in the mesoderm is progressively enriched during muscle development. a w’"’8 embryos immunolabeled for Bsd (green) and Mef2
(violet). Bsd was detected in Mef2+ muscle cells throughout myogenesis. Bsd protein levels in the mesoderm peaked during Stage 12. Bsd also appeared to
be enriched in myonuclei (see Supplementary Fig. 2E, F). b Bsd kinase activity in the mesoderm directs muscle morphogenesis. Control (w''8), bsd'/Df(2 R)
BSC199 UAS.Bsd, bsd'/Df(2 R)BSC199 24B.Gal4 > Bsd, and bsd'/Df(2 R)BSC'99 24B.Gal4 > Bsd.IT29A embryos labeled for Tropomyosin. DT1, LO1, and VL1

muscles are pseudocolored orange, green, and violet. bsd’ embryos that expressed wild-type Bsd in the mesoderm showed improved muscle morphology;
bsd" embryos that expressed catalytically inactive Bsd.[129A showed extensive muscle defects. ¢ Quantitative real-time PCR analysis of bsd mRNA showed
equivalent expression between transgenic lines (for each group, n = 4). d Quantification of muscle phenotypes as described in Fig. 1b. e Space-filling model
of Bsd. The predicted ATP-binding pocket is colored with Iso129 shaded violet. Significance was determined by one-way ANOVA (¢) and two-sided Fisher's

exact test (d). Error bars represent SEM.

The temporally dynamic expression of Bsd in the mesoderm
suggested Bsd functions cell-autonomously to regulate muscle
morphogenesis. bsd! embryos that expressed wild-type Bsd in the
mesoderm under the control of 24B.Gal4 showed a largely normal
muscle pattern (Fig. 2b-d). Proteins in the VRK family contain a
highly conserved ATP-binding pocket that is essential for
catalytic activity ((Supplementary Fig. 1D) and ref. 33), and our
computational structural models predicted that Bsd isoleucine
129 binds ATP (Fig. 2e). bsd! embryos that expressed Bsd.I129A
in the mesoderm showed a myogenic phenotype that was
indistinguishable from bsd! embryos (Fig. 2b-d), arguing Bsd
kinase activity is required for proper muscle morphogenesis.

Bsd activates Polo to direct muscle morphogenesis. To uncover
Bsd effectors during myotube guidance, we used recombinant Bsd
to precipitate Bsd-interacting proteins from whole embryo
lysates, which were then sequenced by Mass Spectrometry (MS;
Fig. 3a and Supplementary Fig. 3A). The MS results identified
over 150 candidates that interacted with Bsd, none of which were
known to regulate muscle morphogenesis (Supplementary
Data 2). Since the absolute quantity of each candidate in the input
embryo lysate was not known, the relative abundance of a can-
didate in the pool of precipitated proteins could not be used to
prioritize the potential Bsd-interacting proteins. To rank the
candidates for further analysis, we first validated protein-protein
interactions in S2 cells, and then characterized muscle morpho-
genesis in embryos with reduced candidate gene function. The
mitotic kinase Polo showed the strongest interaction with Bsd in
S2 cells (Supplementary Fig. 3B), and we confirmed the interac-
tion with reciprocal immunoprecipitation experiments (Fig. 3b,
c). Strikingly, the Bsd.Q545* protein encoded by our EMS-
induced bsd! allele did not interact with Bsd (Fig. 3b, c). Embryos
homozygous for the hypomorphic alleles polo! and poloKG03033
showed myogenic phenotypes similar to bsd embryos (Supple-
mentary Fig. 3C, D). We tested four candidates in addition to
Polo, and although these proteins showed a weak interaction with
Bsd in S2 cells (Supplementary Fig. 3B), we could not confirm
muscle phenotypes with alleles that affected the remaining can-
didates. Polo was thus the highest-priority candidate for further
analysis.

Germline clones of the hypomorphic allele polo! reduce the
maternal contribution of Polo, and polo! maternal mutant
embryos showed defects in mitotic chromosome alignment34.
However, polo! zygotic mutants with a normal maternal
contribution of Polo were largely viable, and did not show
embryonic mitotic defects?®. After gastrulation, the mesoderm
undergoes four rounds of cell division that conclude by Stage
1136, During Stages 10-11, each founder cell is specified from a
pool of cells known as an equivalence group. The remaining cells
in the equivalence group then differentiate into fusion competent
myoblasts?®>. To understand if polo! zygotic mutant embryos
undergo normal cell divisions prior to founder cell specification,
we quantified the number of Mef2-positive somatic mesoderm

cells in Stage 10 embryos. Although polo! embryos showed a
14.2% decrease in the number of Mef2-positive cells compared to
wild-type embryos (Supplementary Fig. 3E, F), the number of
5053.Gal4 and slou.gal4 expressing founder cells were not
significantly different between wild-type and polo! Stage-12
embryos (Supplementary Fig. 3G, H). These observations suggest
that the mitotic defects in polo! zygotic mutant embryos do not
appreciably affect equivalence group size or founder cell
specification. Using 5053.Gal4 and slou.gal4 to characterize
muscle morphogenesis, we identified myotube elongation and
muscle attachment site selection defects in the VL1, DT1, LO1,
and VT1 muscles of polo! embryos (Fig. 3d, ), suggesting Polo
directs myotube guidance after founder cell specification.
Importantly, the severity of muscle morphogenetic defects was
equivalent among bsd!, polo!, and bsd! polo! embryos, arguing
Bsd and Polo act in a common pathway to direct myotube
guidance (Fig. 3f-h and Supplementary Fig. 3I).

Since Bsd and Polo are both protein kinases, we used
phosphorylation assays to understand if one protein might act
upstream of the other. A common strategy for measuring protein
phosphorylation is to immunoprecipitate target proteins, and assay
total phosphorylation by western blot. Bsd is a predicted serine/
threonine kinase, and Polo isolated from S2 cells transfected with
wild-type Bsd had significantly more phosphorylated threonine
than controls (Fig. 4a and Supplementary Fig. 4A). However, Polo
isolated from cells transfected with kinase-dead Bsd.I129A did not
show a significant change in the threonine phosphorylation
(Supplementary Fig. 4B). Polo is activated by phosphorylation of
Thr182!7, so we repeated our phosphorylation assay with an
antibody that specifically recognizes PoloP™hr182 and found Bsd
significantly increased PoloP™hr182 Jevels (Supplementary Fig. 4C,
D). Activated PoloPT™hr182 translocates to the nucleus?Y, and Bsd
promoted the nuclear translocation of wild-type Polo but not
phospho-dead Polo.T182A in S2 cells (Fig. 4b, c). These S2 cell
studies suggested Bsd phosphorylates Polo, so we performed cell-
free kinase assays and found Bsd phosphorylated Polo on Thr182
(Supplementary Fig. 4E). Together our data argue that Polo is a
direct substrate of Bsd kinase activity.

To understand how Polo activity is regulated in vivo, we
assayed Polo phosphorylation in whole embryo lysates and found
Bsd broadly promoted Polo phosphorylation on threonine
residues (Fig. 4d). Similar to Bsd expression (Fig. 2a), activated
PoloPThr182 Jevels were dynamic in the mesoderm, and sig-
nificantly increased during Stage 12 (Fig. 4e and Supplementary
Fig. S4F). However, in bsd! embryos, PoloPThr182 Jevels did not
change during Stage 12 (Fig. 4e and Supplementary Fig. 4F),
despite the fact that Polo protein levels were comparable between
wild-type and bsd! embryos (Supplementary Fig. 4F). Function-
ally, bsd! embryos that expressed activated Polo.T182D in the
mesoderm under the control Mef2.Gal4 showed improved muscle
morphogenesis compared to bsd! embryos (Fig. 4g). Bsd therefore
directs Polo activation in the mesoderm of Stage-12 embryos, and
Bsd-mediated Polo activation is required for myotube guidance.
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Aurora kinases are not active in the post-mitotic mesoderm.
Nascent myotubes exit the cell cycle and begin myotube guidance
during Stage 12 (Supplementary Fig. 5A), so it was surprising that
a mitotic kinase-like Polo was activated in the post-mitotic
mesoderm (Supplementary Fig. 4F). The pro-mitotic Aurora
kinases are the only known activators of Polo or its vertebrate
orthologue PIk12%37. qurora A (aurA) and aurora B (aurB) were
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broadly expressed in the mitotic mesoderm until Stage 10, but by
Stage 12 aurA and aurB expression was undetectable in the
somatic mesoderm (Fig. 5a—-c and Supplementary Fig. 5A, B).
Alternatively, Bsd expression was enriched in the mesoderm
during Stage 12 (Fig. 2a), suggesting the control of Polo activation
transitions from the Aurora kinases to Bsd during myotube
guidance. To test this model, we assayed PoloPThr182 Jevels in the
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Fig. 3 Bsd and Polo kinase act in a common myogenic pathway. a Relative abundance of Bsd-interacting proteins recovered from 12 to 24 h embryo
lysates, determined by MS. See Supplementary Table S2 for detailed quantification. b, ¢ Immunoprecipitation of S2 cell lysates transfected with Bsd,
Bsd.Q545*, and Polo. Full-length Bsd interacted with Polo in reciprocal experiments, but Bsd.Q545* and Polo did not interact. d polo’ VL1 muscle phenotype.
Stage-16 embryos labeled for 5053 > GFP (green) and Tropomyosin (violet). polo’ VL1 muscles were rounded (blue arrowhead) and made incorrect or
incomplete tendon attachments (white arrowheads). e polo’ DT1, LO1, and VT1 muscle phenotypes. Stage-16 embryos labeled for slou > GFP (green) and
Tropomyosin (violet). polo’ LOT muscles had attachment site defects (white arrowheads). f Muscle phenotypes in bsd! polo’ double mutants. Stage-16
embryos labeled with Tropomyosin. DT1, LO1, and VL1 muscles are pseudocolored orange, green, and violet. The frequency and severity of muscle
morphology defects was comparable between bsd! and bsd' polo’ embryos. Quantification of muscle phenotypes is as described in Fig. 1b (see
Supplementary Fig. 3G for statistical analysis). g DT1, LO1, and VT1 phenotypes in bsd’ polo’ double-mutant embryos (labeled as in e). The frequency and
severity of DT1, LO1, and VT1 phenotypes were comparable between bsd! and bsd' polo’ embryos. h Histogram of VL1, DT1, LO1, and VT1 phenotypes from
5053 > GFP and slou > GFP embryos (bsd!, n = 60; polo!, n = 60; bsd';polo’, n = 60). Significance was determined by two-sided unpaired Student's t test

(a, d), one-way ANOVA (¢, f), and two-sided Fisher's exact test (g).

mesoderm of Stage-12 aurA and aurB embryos, and found
PoloPThr182 Jevels were not significantly different between mutant
and control embryos (Fig. 5d). In addition, aurA and aurB
embryos showed normal muscle morphology at the end of
embryogenesis (Supplementary Fig. 5C, D). These data further
suggest the control of Polo activation transitions from the Aurora
kinases to Bsd during myotube guidance.

We next asked why it might be necessary for Bsd to regulate
Polo activity in place of AurA and AurB. The Aurora kinases
regulate multiple mitotic proteins in addition to Polo/PLK138,
and we hypothesized that Aurora kinase expression is reduced
after Stage 10 to promote cell cycle exit in the mesoderm. We
used Mef2.Gal4 to temporally misexpress aurB in the mesoderm,
and found Mef2 > aurB embryos had significantly more mitotic
cells than controls (Supplementary Fig. 5E-G). AurB specifically
promotes the transition from S phase to the G2/M phase of the
cell cycle’®, and Mef2 > aurB embryos had significantly more
mesoderm cells in the G2/M phase than control embryos (Fig. 5e,
f). Functionally, Mef2 > aurB muscles had more myonuclei at the
end of myogenesis than controls (Supplementary Fig. 5H, I),
arguing extended mitosis in the mesoderm produced more
myogenic precursors. Thus the control of Polo activity during
myotube guidance transitions away from the Aurora Kinases to
promote cell cycle exit.

Polo effectors Tum and Pav direct myotube guidance. How
then does Bsd-activated Polo regulate myogenesis? Two Droso-
phila Polo effector proteins, the GTPase activating protein
Tumbleweed (Tum) and the kinesin microtubule motor protein
Pavarotti (Pav), coordinate cytoskeletal dynamics to position
furrow formation at the onset of cytokinesis!®40:41, Polo directly
interacts with Tum, Tum directly interacts with Pav, and Polo is
required for the correct localization of Tum and Pav during
cytokinesis!®42. In addition, a role for Tum in myotube guidance
was suggested in studies showing Tum regulates the microtubule
cytoskeleton to direct myotube elongation?”. The Polo/Tum/Pav
cytoskeletal regulatory module that directs cytokinesis may
therefore be reactivated in the post-mitotic mesoderm to direct
microtubule reorganization during myotube guidance. To extend
previous work, we reanalyzed muscle morphogenesis in tum
embryos using the cell identity reporters 5053.Gal4 and slou.gal4,
and found Tum directs both myotube elongation and muscle
attachment site selection during myotube guidance (Fig. 6a, b and
Supplementary Movie 3). In addition, the severity of muscle
morphogenetic defects was equivalent among polo!, tumPHI>,
and polo! tumPHI5 embryos (Supplementary Fig. 6A, B). pavB200
embryos also showed muscle phenotypes, and the severity of
muscle morphogenetic defects was equivalent among tumPHI>,
pavB200, and tumPHI5 payB200 embryos (Supplementary Fig. 6C).

These genetic studies suggest Polo, Tum, and Pav act in a com-
mon myogenic pathway, and argue Bsd reactivates the Polo/Tum/
Pav cytoskeletal regulatory module to direct myotube guidance.

Bsd regulates the microtubule cytoskeleton. The microtubule
cytoskeleton transitions from a cortical organization in founder
cells to a linear organization in nascent myotubes that parallels
the axis of elongation (Supplementary Movie 4)¥. Live imaging
of microtubule reorganization revealed that the microtubule
transition was delayed by over 60 min in bsd myotubes, and that
bsd myotubes failed to maintain linear microtubule arrays
(Fig. 6¢, d and Supplementary Movie 4). However, the actin
cytoskeleton was largely unaffected in bsd myotubes (Supple-
mentary Fig. 6D). The microtubule minus-end nucleator y-
tubulin initiates the assembly of new microtubules#3, and at the
onset of myotube elongation y-tubulin foci are predominantly
localized to the myotube cortex?’. As the microtubule cytoske-
leton transitions to linear arrays, y-tubulin foci appear in the
internal myotube cytoplasm through a Tum-dependent
mechanism (Fig. 6e, f)27. In bsd! embryos, y-tubulin foci failed
to accumulate in the myotube cytoplasm, suggesting Tum-
dependent y-tubulin mediated microtubule nucleation is defective
in bsd myotubes (Fig. 6e, f and Supplementary Fig. 6E, F). Bsd is
thus an essential regulator of the microtubule cytoskeleton.

Bsd and Polo orthologues regulate muscle morphogenesis. To
understand if the regulatory functions of Bsd are conserved, we used
small interfering RNAs (siRNAs) to knock down Vrkl, Vrk2, and
Vrk3 during mammalian muscle morphogenesis. Under culture
conditions that promote differentiation, C2C12 cells (immortalized
mouse myoblasts) will form nascent myotubes that extensively
elongate**. C2C12 cells treated with Vrkl and Vrk2 siRNAs were
morphologically similar to control-treated cells after 7 days of dif-
ferentiation (Supplementary Fig. 7A, B), but C2CI12 cells treated with
Vrk3 siRNAs showed significantly reduced elongation and a reduced
fusion index (Fig. 7a-d and Supplementary Fig. 7A-D). These
myogenic assays functionally confirmed our phylogenetic analysis,
arguing Bsd is most similar to Vrk3 (Supplementary Fig. 1C). Post-
mitotic C2C12 cells treated with the PIk1 inhibitor Volasterib phe-
nocopied C2Cl12 cells treated with Vrk3 siRNAs (Fig. 7a-d). In
addition, Vrk3 physically interacted with Plkl (Fig. 7e) and pro-
moted activating phosphorylation of Pkl in HEK293 cells (Fig. 7f).
Thus the Bsd orthologue Vrk3 activates the Polo orthologue Plk1 in
mammalian cells. In addition, bsd! embryos that expressed Vrk3 in
the mesoderm showed largely normal muscle morphology (Fig. 7g).
Our results argue that the functions of Bsd and Vrk3 are highly
conserved.
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Discussion

This study identified Bsd as a conserved regulator of Polo acti-
vation. Bsd promoted Polo phosphorylation in cultured cells and
in cell-free kinase assays (Fig. 4a), and Bsd was required to
activate Polo in the post-mitotic mesoderm (Fig. 4e and Sup-
plementary Fig. 4E). In addition, activated Polo (Polo.T182D)
rescued the bsd myogenic phenotype (Fig. 3f), which argues an
essential function of Bsd during myotube guidance is to activate
Polo. The microtubule cytoskeleton reorganizes to drive
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morphological changes in nascent myotubes, and Bsd directed
microtubule reorganization during myotube guidance (Fig. 6¢c-f
and Supplementary Movie 4). These observations are consistent
with a model in which Bsd activates a Polo/Tum/Pav cytoskeletal
regulatory module to direct cellular morphogenesis (Fig. 7h and
Supplementary Fig. 7E).

We have also identified an example in which the dynamic
expression of regulatory kinases directs the transition from
mitosis to cellular morphogenesis. The Aurora kinases are
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Fig. 4 Bsd activates Polo to direct myotube guidance. a Polo immunoprecipitated from S2 cell lysates and blotted with anti-phosphothreonine (pThr).
Cells transfected with Bsd showed significantly more phosphorylated Polo than controls. (for each group, n = 3). b Bsd.Myc, Polo.Flag, and Polo.T182A Flag
were transfected into S2 cells; transgenic proteins were detected with anti-Myc (red, Bsd) and anti-Flag (green, Polo). Polo localized to the nucleus in a
subset of control cells (left column). The frequency of cells showing nuclear Polo localization was increased in cells co-transfected with Bsd (second
column from left). Inactivatable Polo (T182A) did not localize to the nucleus in control cells (third column from left) or in cells co-transfected with Bsd
(right column). ¢ Dot plot showing the percent of cells with nuclear Polo per microscope field from (b). d Endogenous GFP-tagged Polo was
immunoprecipitated from embryo lysates and blotted with pThr. bsd’ embryo lysates showed significantly less phosphorylated Polo than controls (for each
group, n = 4). e Stage-12 embryos immunolabeled for Polo phosphorylated at Thr182 (PoloPT'82, green) and Mef2 (violet). PoloPT'82 |evels were reduced in
the myonuclei of bsd’ embryos compared to controls. f PoloPT82 fluorescent intensity from embryos shown in (d). PoloPT'82 fluorescence intensity is
dynamic during Stage 12, and significantly increased in control (bsd'/Cyo) embryos. PoloPT'82 fluorescence intensity did not increase in Stage 12 bsd’
embryos. Control and experimental embryos were derived from the same preparation. g Activated Polo rescues the bsd phenotype. bsd’ UAS.Polo™82D and
bsd" Mef2.Gal4 > PoloT'82D embryos labeled for Tropomyosin. DT1, LO1, and VL1 muscles are pseudocolored orange, green, and violet. bsd’ embryos that
expressed active (phosphomimetic) Polo.T182D in the mesoderm showed improved muscle morphology compared to bsd’ embryos. Note that expressing
Polo.T182D in otherwise wild-type embryos caused a modest muscle phenotype, which may explain the incomplete rescue of the bsd! phenotype.
Quantification of myogenic phenotypes is as described in Fig. 1b. 12E Stage 12 early, 12L Stage 12 late. Significance was determined by two-sided unpaired

Student's t test (a, d), one-way AONVA (¢, f), and two-sided Fisher's Exact test (g). Error bars represent SEM.

broadly expressed in the mitotic mesoderm, where they pre-
sumably activate Polo and other target proteins to initiate mitotic
entry and complete the critical steps of mitosis (Fig. 5a). The
Aurora kinases are not expressed in the post-mitotic mesoderm,
and the temporal misexpression of AurB prolonged cell division
in the mesoderm (Fig. 5e, f). Bsd expression was complementary
to the Aurora kinases (Figs. 2a and 5a-c), and Bsd-activated Polo
in the post-mitotic mesoderm to direct muscle morphogenesis
(Fig. 4e-g). Over 50% of the Drosophila kinases with known
embryonic expression patterns transition from ubiquitous
expression before gastrulation to tissue-specific expression after
gastrulation, and an additional 20% of kinases show spatially
restricted expression throughout development (Supplementary
Data 1 and Supplementary Fig. 1A). Zebrafish kinases show
similar embryonic expression patterns (Supplementary Data 1
and Supplementary Fig. 1A). The dynamic expression of protein
kinases in both invertebrates and vertebrates suggest that
expression-based regulation of kinase signaling pathways could
be broadly employed to direct the key events of embryogenesis.

Polo was reactivated in the post-mitotic mesoderm (Supple-
mentary Fig. 4F), which suggests Polo activity alone is not suf-
ficient for mesodermal cells to enter mitosis. On the other hand,
ectopic AurB expression in the mesoderm increased the pro-
portion of cells in the G2/M phase of the cell cycle (Fig. 5e, f).
Since AurB and Bsd activate Polo by phosphorylating Thr182
(Fig. 4¢)1920, AurB likely induces cell cycle progression through a
Polo Thr182-independent mechanism. Cyclins are key regulators
of the cell cycle, and the regulation of cyclin activity is best
understood at the level of protein expression. However, the G2/M
checkpoint regulator Cyclin B (CycB) can be detected throughout
the cell cycle®>. At the G2/M checkpoint CycB activity is phos-
phorylation-dependent, where active CycB is phosphorylated on
residues near the nuclear export sequence and also depho-
sphorylated by Cdc25 on residues near the N-terminus“. In the
Drosophila germline AurB promotes the phosphorylation of
CycB*, and in human lymphoma cells AurB increases the pro-
portion of cells in G2/M3°. AurA also activates CDC25%8, which
further implicates Aurora kinases as Polo/PLKI-independent
regulators of cell cycle progression. Our studies argue that the
control of the Polo transitions from the Aurora kinases to Bsd so
that the Polo/Tum/Pav cytoskeletal regulatory module can be
reactivated in differentiating, post-mitotic myotubes without
promoting mitotic entry.

Bsd regulates myotube elongation and muscle attachment site
selection (Supplementary Movie 1), which are the hallmarks of

myotube guidance. Our myotube guidance hypothesis argues that
extracellular guidance cues, such as FGFs, corroborate with
contact-dependent interactions between myotubes and tendons to
pattern the musculoskeletal system?347. The Bsd paralog Ball is
phosphorylated during female meiosis where it functions to
maintain spindle integrity*s. Similar to Ball, Bsd might be
phosphorylated and activated by an upstream kinase. Our MS
experiment identified Par-1, Target of Rapamycin, and SR Protein
Kinase (SRPK) as potential upstream kinases that could activate
Bsd (Supplementary Data 2). Mammalian SRPK1 was identified
in a screen for tumor cell migration®, and has been implicated in
breast, lung, and renal cancer metastasis suggesting SRPKs pro-
mote the cytoskeletal changes necessary for cellular migration and
cellular guidance*®->1, Although Drosophila SRPK has not been
linked to the extracellular receptors known to regulate myotube
guidance, murine Srpk3 is a Mef2 target gene in striated muscle®?,
and SRPK proteins regulate developmental signaling pathways>3.
We favor a model in which an intracellular effector, such as
SRPK, transduces guidance cues from the cell surface to activate
Bsd and direct myotube elongation toward muscle
attachment sites.

We found that activated Polo partially rescued the bsd!
embryonic phenotype (Fig. 4g). While the levels of activated Polo
in the rescue experiment may not have recapitulated endogenous
levels of activated Polo, it is also possible that Bsd regulates Polo-
independent pathways. For example, we validated a physical
interaction between Bsd and the Myosin VI protein Jaguar (Jar;
Supplementary Fig. 3B). Jar stabilizes interactions between the
actin and microtubule cytoskeletons®*, and is required for cell
migration®® and cellular guidance®®. Although one essential role
for Bsd is to activate the Polo/Tum/Pav cytoskeletal regulatory
module, it seems likely that Bsd regulates additional cytoskeletal
proteins, such as Jar, to direct myotube guidance.

Polo directs spindle formation, cytokinesis, and myotube gui-
dance by regulating the microtubule cytoskeleton. The polo! allele
was originally identified as a maternal effect mutation that dis-
rupted mitotic chromosome alignment?, and Polo was later
found to recruit y-tubulin and Abnormal spindle protein (Asp) to
the centrosome for microtubule nucleation®”. The role of Polo
during spindle assembly appears to be Tum and Pav independent,
but during cytokinesis the Polo/Tum/Pav regulatory module uses
the central spindle microtubules to position the contractile ring
and initiate furrow formation!8°8>%, We found that Bsd directs
microtubule reorganization during myotube guidance, which may
involve the recruitment of y-tubulin to sites of microtubule
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nucleation (Fig. 6c-f). Tum also regulates myotube guidance direct myotube guidance remains unclear, but Tum and Pav
(Fig. 6a, b), and is required for y-tubulin localization in post- appear to function outside of the nucleus to direct changes to the
mitotic myotubes?’. The precise mechanism by which Bsd and  microtubule cytoskeleton in post-mitotic cells?’. One possibility is
the Polo/Tum/Pav cytoskeletal regulatory module interact to that Bsd-activated Polo translocates to the myonucleus to direct
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Fig. 5 Aurora kinases are inactive in the post-mitotic mesoderm. a Stage 10 and Stage-12 embryos labeled for aurA (left, green), aurB (middle, green) or
pH3 (right, green) and Mef2 (violet). aurA, aurB and pH3 are expressed in the mesoderm of Stage 10 embryos, but are excluded from the somatic
mesoderm in Stage-12 embryos. b Nascent myotubes that expressed rp298 > eGFP were sorted to enrich for myogenic RNA, and RNA-seq results were
reported in ref. 23. ¢ Analysis of aurA, aurB and bsd mMRNA expression in nascent myotubes from the experiment shown in (b) (for each group, n=4).
d Stage-12 embryos immunolabeled for activated Polo (PoloPT182, green) and Mef2 (violet). PoloPT182 |evels were comparable between aurA, aurB, and
control embryos. Control and experimental embryos were derived from the same preparations. e The Fly-FUCCI system. A tissue-specific Gal4 activates
fluorescent fusion proteins that are post-transcriptionally controlled to identify cell cycle phases in vivo. f Stage 11 embryos that expressed Fly-FUCCI
transgenes under the control of Mef2.Gal4, immunolabeled for GFP-E2F1;_530 (green) and RFP-CycBy_,¢¢ (violet). Embryos that expressed aurB in the
mesoderm showed more cells in G2/M (white arrowheads) than G1 (blue arrowheads) or S (orange arrowheads). Percent of dividing cells in G2/M phase
(GFP/RFP double-positive cells) are plotted, the median and interquartile ranges are shown (dotted horizontal lines); each data point represents a single
hemisegment.(wt, n =14; aurBOE, n =14). Significance was determined by one-way ANOVA (C) and two-sided unpaired Student's t test (d, f). Error bars

represent SEM.

the nuclear export of Tum and Pav after founder cells and fusion
competent myoblasts have exited the cell cycle. Cytoplasmic
Tum/Pav complexes would in turn reorganize the microtubule
cytoskeleton to direct myotube elongation. Tum and Pav also
regulate axon guidance in post-mitotic neurons®®, so under-
standing if Polo directly phosphorylates Tum and Pav to regulate
the subcellular localization of the Tum-Pav complex may inform
our overall understanding of cellular guidance. We predict that
the Polo/Tum/Pav cytoskeletal regulatory module functions in
many cell types to regulate tissue morphogenesis.

Mammalian Vrk3 regulated myotube elongation, physically
associated with Plk1, and promoted activating phosphorylation of
Plk1 (Fig. 7a—f). The active site in human VRK3 is divergent at
three residues, which led to the hypothesis that VRK3 is a
pseudokinase®!. However, subsequent studies show that VRK3
has kinase activity under certain contexts®?, and our studies
support an active role for Vrk3 in promoting phosphorylation
(Fig. 7e). Although myotube guidance has not been studied in
vertebrate systems, Plkl was recently shown to regulate myo-
genesis in mice. Muscle-specific deletion of PlkI blocked limb
muscle development during embryogenesis, and prevented mus-
cle stem cells from activating after injury®3. It remains unclear if
Vrk3 activates Plkl during mammalian muscle development, if
the targets of PIk1 in the muscle lineage have been conserved, or
if PIkl regulates myofiber morphogenesis. Our study highlights
the exciting possibility that the role of Plkl during vertebrate
muscle development and regeneration extends beyond the mitotic
events of myoblast proliferation and muscle stem cell activation.

Methods

Drosophila genetics. The bsd! allele was recovered in an EMS screen as
described?*. The following stocks were obtained from the Bloomington Stock
Center: aurAl, jar322, lostl, polol, poloKG03033, 1ymPHI5 | payB200, DfIR)BSC199,
Df(2R)BSC699, Df(3L)BSC447, Df(2L)Exel7049, P{UAS-nod.GFP}, P{Gald-tey50534},
P{GMR40D04-GAL4}attP2 (slou.Gal4), P{GMR57C12-GAL4}attP2 (nau.Gal4),
P{Gal4-how?*B}, P{UASp-aurB.PrA}, P{UAS-eGEP}, P{UAS-Lifeact-RFP}, P{UAS-
polo. T182D}, P{PTT-GC}poloCC01326 (Polo-GFP), and the FUCCI lines P{UAS-
GFP.nE2f1.1-230} and P{UAS-RFP.CycB.1-266}. The remaining stocks used in this
study were aurB108? (see ref. 45), P{Gald-kirre"*2%8} and P{kirre'P?%.nlacZ}%4,
P{Gal4-Mef2}%°, and P{MHC.tGFP}?°. Cyo, P{Gal4-Twi}, P{2X-UAS.eGFP}; Cyo,
P{wg.lacZ}; TM3, P{Gal4-Twi}, P{2X-UAS.eGFP}; and TM3, P{ftz.lacZ} balancers
were used to genotype embryos.

Bsd transgenic flies were generated by subcloning the bsd coding sequence
(LD23371, Drosophila Genomics Resource Center, supported by NIH grant
2P400D010949) into pUASt-Attb (Kpnl/Xbal). Site-directed mutagenesis by PCR
sewing was used to make UAS.Bsd.I129A. Plasmids and P(acman) BACs (CH321-
61F090 and CH322-02P20) were injected and targeted to a ¢C31 integration site at
22A2 (Rainbow Transgenic Flies; Bloomington Stock 24481); stable insertions were
identified by standard methods.

RNA sequencing and variant identification. Total RNA was collected from 12 to
24 h embryos per manufacturer’s specification (RNeasy kit, Qiagen). cDNA
libraries were generated with the TruSeq stranded mRNA sample library kit
(Illumina) and sequenced using 50 bp paired-end reads on the Illumina HiSeq
2000 system. Two technical replicates of w!!!8 and bsd! were prepared and

sequenced. Sequence reads were mapped to the Drosophila genome with Genomic
Short-Read Nucleotide Alignment Program (GSNAP) using the Cufflinks method.
Variants (single-nucleotide variants and insertions/deletions) were identified with
the Broad Institute’s Genome Analysis Toolkit (GATK), and the resulting variants
were functionally tested by complementation test. The bsd! allele (Q545*) was
confirmed by Sanger sequencing.

Bsd antibody. We created a fusion Bsd::6xHis fusion protein by PCR, using the
C-terminus amino acids 705-1004 of Bsd. We subcloned the 598 bp fragment into
the pHO4d 6xHIS expression vector® via conventional restriction enzyme sites.
The Bsd 6xHIS fusion construct was transformed into competent BL21 (DE3)
pLysS E. coli cells (Invitrogen) and grown, overnight shaking at 37 °C in DYT
supplemented with 100 ug/ml ampicillin. The cells were diluted 25 times in fresh
DYT media and grown at 37 °C to an ODggo = 0.6-0.7. We added isopropyl p-p-
thiogalactoside (IPTG) to 1 mM to induce expression of the fusion protein and
incubated overnight shaking at 18 °C. We purified the 6xHIS fusion protein on
nickel-nitrilotriacetic acid agarose (Qiagen, Valencia, CA) according to the man-
ufacturer’s protocols, under native conditions with modified buffers and dialyzed
against PBS. We sent the purified protein to Pocono Rabbit Farm & Laboratory
(Canadensis, PA) for guinea pig custom polyclonal antibody production.

Plasmids and mutagenesis. Expression plasmids for the immunoprecipitation
screen were the BDGP Flag-HA C-terminal fusions FMO03130 (Lost), FMO06869
(Polo), FM007294 (Imp), FMO11010 (Yp3), FMO12286 (Jar). Plasmids for
expressing tagged proteins in S2 cells were generated by cloning coding sequences
into pEntr/SD (Thermofisher, K242020), and recombining the coding sequences
into pAc5 promoter destination vectors () AWM and pAWEF). Site-directed
mutagenesis was performed as described above to generate Bsd.Q545* and
Polo.T182A. To generate GST-Bsd for E. coli expression, the bsd coding sequence
was subcloned into pGex4T-1 (Sall/Notl). The Vrk3 mammalian expression
construct was generated by recombining pDONR223-VRK3 (Addgene 23687°7)
into pDEST-CMV-3xFLAG-EGFP (Addgene 122845%); pRcCMV-Myc-Plk1 was
used without modification (Addgene 41160%).

Immunohistochemistry and in situ hybridization. Antibodies used were a-Mef2
(1:1000, gift from R. Cripps), a-Tropomyosin (1:600, Abcam, MAC141), a-PLK1-
phospho-T210 (1:100, Abcam, ab39068), a-GFP (1:600, Torrey Pines Biolabs, TP-
401), a-GFP (1:300, Aves Labs, GFP-1020), a-dsRed (1:300, Takara, 632392), a-y-
tubulin (1:300, Sigma, T5326), and a-Pgal (1:100, Promega, Z3781). Embryo
antibody staining was performed as described*4; HRP-conjugated secondary
antibodies in conjunction with the TSA system (Molecular Probes) were used to
detect primary antibodies. For S2 cell labeling, cells (5 x 10°) were transfected per
manufacturer’s specifications (Lipofectamine 3000, Invitrogen; applies to all
transfections in this study), cultured at 25 °C in Schneider’s Drosophila medium
(Sigma, S9895) supplemented with 10% heat-inactivated fetal bovine serum (FBS,
Invitrogen, 10082147) for 72 h, collected and washed once with S2 medium. Cells
were then seeded into a 6-well-plate with a glass coverslip and incubated for 1h.
The cells were washed twice with PBS and fixed with 4% PFA for 15 min, and then
washed three times with PBS. After 1h blocking in 25%NGS/PBST, cells were
incubated with a-FLAG antibody (1:1000, Sigma, F3165) and a-Myc antibody
(1:1000, Sigma, PLA0O1) in PBST containing 0.5% BSA at 4 °C for 12 h. After five
PBS washes, cells were mounted in Vectashield with DAPI (H-1000).

We performed in situ hybridization as previously described (Williams et al.,
2015), except Dig-labeled probes were detected with HRP-conjugated a-Dig
(Roche, 11207733910, 1:500) in conjunction with the TSA system (Molecular
Probes). Probe templates were generated by cloning PCR products from DNA
LD16949 and LD39409 into PCR2.1 vector. Templates were validated by Sanger
sequencing.

Imaging and image quantification. Embryos were imaged with a Zeiss LSM800
confocal microscope; cells were imaged by confocal or with an inverted Zeiss
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AxioObserver. For time-lapse imaging, dechorionated St12 embryos were mounted
in halocarbon oil and scanned at 6 min intervals. For single-frame live imaging,
embryos were dechorionated, mounted in PBT, and directly scanned. Control and
mutant embryos were prepared and imaged in parallel where possible, and imaging
parameters were maintained between genotypes. The fluorescent intensity and cell
morphology measurements were made with Image]J software.

W #1
Wit #2
Wi 43
bsd’ #1
bsd’ #2
bsd" #3

200

Angle (Nod
1000'0>d

p=0.2022

Y -tubulin foci
(multinucleate myotubes)

internal

cortex

Phenotypic scoring, analysis, and visualization. Each embryonic hemisegment
has 30 distinct muscles with a fixed pattern as shown in Fig. 1b. Muscle phenotypes
were analyzed in hemisegments A2-A7, in a minimum of nine embryos per genotype.
For global muscle analyses, a Tropomyosin antibody was used to visualize all 30
muscles. For individual muscle analyses, GFP was expressed under the control of a
muscle-restricted Gal4 driver to visualize a subset of muscles. For both assays, muscles
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Fig. 6 Bsd directs microtubule reorganization. a tumPH’> VL1, DT1, LOT, and VT1 muscle phenotypes. Stage-16 embryos labeled for 5053 > GFP (green) or
slou > GFP (green) and Tropomyosin (violet). Tum regulates microtubule reorganization during myogenesis?’, and tumPH’> muscles showed attachment
site defects similar to bsd’ muscles. b Histogram of muscle phenotypes in 5053 > GFP and slou > GFP embryos (wt, n = 60; tumPH!>, n = 54). ¢ Live imaging
stills showing LOT myotubes in Stage-12-15 embryos that expressed Nod.GFP (microtubule minus ends, green) and LifeAct.RFP (F-actin, violet). Transgene
expression was controlled by slou.Gal4. Live imaging initiated when Nod.GFP fluorescence was detectable (O min). Control LO1 myotubes showed a linear
array of microtubule minus ends at the onset of imaging (white arrowheads) that did not co-localize with F-actin. Nod.GFP remained cortical through the
early stages of elongation in bsd” myotubes (blue arrowheads), and often overlapped with the F-actin domain (red arrowhead). See Supplementary Fig. 6D
for F-actin heatmap. d Quantification of Nod.GFP distribution. GFP fluorescence was traced in each frame of three independent live-imaging experiments
per genotype. Nod.GFP localization was stable in control myotubes, with a low roundness score (more linear). Myotube orientation (angle) was consistent
throughout development. bsd” myotubes showed fluctuating Nod.GFP localization, with a high roundness score (more cortical), and incorrect orientation.
n =162 for each genotype. e Single confocal scans of multinucleate LO1 myotubes from Stage-12 slou > GFP embryos labeled for y-tubulin (green), GFP
(violet), and DAPI (blue). Control (bsdl/Cyo) myotubes showed both cortical and internal cytoplasmic y-tubulin foci, with internal foci concentrated toward
the myotube leading edges (red arrowheads). bsd’ myotubes had significantly fewer internal y-tubulin foci compared to controls, but an equivalent number
of cortical y-tubulin foci. f Quantification of y-tubulin foci in multinucleate Stage-12 myotubes. See Supplementary Fig. 6E, F for y-tubulin foci in

mononucleate founder cells. Embryos in (e, f) were derived from the same preparation. Significance was determined by two-sided Fisher's exact test (b),

two-sided Wilcoxon signed-rank test (d) and one-way ANOVA (f). Error bars represent SEM.

were assigned a phenotype: normal, missing, elongation defect, attachment site defect.
A “% Defective” was calculated for each of the 30 muscles in a minimum of 54
hemisegments. “% Defective = #” of abnormal muscles/hemisegments scored. %
Defective was then converted to a schematic heatmap on the embryonic muscle
pattern. “Histologic Score” was calculated using the following scale: missing = 3,
elongation defect = 2, attachment site defect = 1, normal = 0. Histologic Score = sum
of phenotypic score/number of embryos analyzed as described. Myoblast fusion was
quantified by counting the number of lacZ+ myonuclei per hemisegment in
rP298.nlacZ embryos. Fusion Index = #lacZ nuclei experimental/#lacZ nuclei control.

GST pulldown and mass spectrometry. GST-Bsd and GST were purified from
E.coli by standard methods and stored at —80 °C in 1 ml aliquots. Twelve to
twenty-four hours embryo lysates were collected by homogenizing dechorionated
embryos in a Dounce homogenizer with 100 ul of lysis buffer (60 mM Tris pH 7.5,
80 mM NaCl, 6 mM EDTA pH 8.0, 2% Triton X-100, 5mM 1-Naphthyl potassium
phosphate, 2 mM PMSF, 1x Sigma Phosphatase Inhibitor II, 1x protease inhibitor)
per 10 pl of embryos. The lysate was then centrifuged at 15,000 RCF for 10 min to
pellet large debris. The supernatant was diluted to a final protein concentration of
1 mg/ul, aliquoted in 100 pl volumes, and flash frozen. For affinity purification,
500 pl of dialyzed GST-Bsd or GST was bound to 50 ul of PBS washed glutathione
sepharose beads (GE Healthcare, 17-0756-01) and incubated at 4 °C for 30 min.
The beads were washed with PBS-1% Triton X-100. Embryo lysates (100 mg
protein/ml) were incubated with the protein-bound beads at 4 °C for 4 h; the beads
were then washed three times and submitted to the Washington University Pro-
teomics Core Lab for liquid chromatography-mass spectrometry (1260 Infinity I
Bio-Inert LC System, Agilent Technologies).

In vitro Bsd kinase assay. For cell-free in vitro kinase assay, GST-Bsd and GST-
Polo were purified from E. coli as described above. GST-Bsd were incubated with
GST-Polo for 30 min at 30 °C in 20 mM HEPES (pH 7.5), 2mM MgCl,, 1 mM
DTT, and 0.5 mM ATP. Reactions were stopped by the addition of 5x SDS loading
buffer. Samples were separated by SDS-PAGE and blotted with a-PLK1-phospho-
T210 (1:500, Abcam, ab39068) and a-GST (1:1000, Cell Signaling Technology,
#2625).

Immunoprecipitation and western blotting. For Drosophila proteins, S2 cells
(8 x 10%) were transfected with 2 ug of each plasmid in six-well plates. Cells were
cultured for 48 h, incubated with 2 mM CuSO, for 24 h (for FMO plasmids only),
collected, washed twice with PBS, lysed with 600 pl IP buffer (20 mM Hepes,
pH =7.4, 150 nM NaCl, 1% NP40, 1.5 mM MgCl,, 2mM EGTA, 10 mM NaF,
1 mM Na;VO,, 1x proteinase inhibitor), incubated on ice for 30 min, centrifuged
at 12,000xg for 15 min. The supernatant was collected, incubated with 2 pl a-FLAG
(Sigma, F3165) or a-Myc (PLA001, Sigma) overnight at 4 °C, and then incubated
with 30 ul Dynabeads (Invitrogen, 10007D) for 4 h at 4 °C. The beads were washed
5x with IP buffer, and immunoblotted with a-Myc (1:3000) or a-FLAG (1:2000)7°.
For in vitro phosphorylation assays, immunoprecipitation was carried out as
described, except that anti-Phosphothreonine antibody (1:125, Abcam, ab9337) was
used for immunoblotting. For in vivo phosphorylation assays, 200 Polo-GFP and
200 bsd’; Polo-GFP embryos were homogenized in 600 pl IP buffer, large debris was
removed by 15 min centrifugation (12,000xg), and immunoprecipitation was
carried out as described above using 2 ul a-GFP (Torrey Pines Biolabs, TP-401).
For mammalian proteins, HEK293T cells were seeded in 6-well plates, grown to
60% confluency at 37 °C and 5% CO, in Dulbecco’s modified Eagle’s medium
(DMEM; Invitrogen) supplemented with 10% heat-inactivated FBS. Cells were
transfected with 2 ug of each plasmid and cultured for 48 h. Immunoprecipitations

were carried out as described above. PIk1 phosphorylation was directly assayed
without immunoprecipitation using a-PLK1-phospho-T210 (1:500, Abcam,
ab39068).

Western blots were performed by a standard method using precast gels (#456-
1096, BioRad), and imaged with the ChemiDoc XRS + system (BioRad).

siRNA knockdown and inhibitor treatments. For siRNAs, C2C12 cells were
seeded in six-well-plate and grown in standard conditions to 60% confluency in
growth medium (10% FBS in DMEM), and transfected 10 nM duplexed 27nt
siRNAs (Integrated DNA Technologies). Transfection efficiency was monitored
with Cy3 transfection controls (Trifecta Kit, Integrated DNA Technologies). After
24 h, the growth media was changed to differentiation media (2% horse serum in
DMEM). After 7 days of differentiation, cells were fixed for 15 min in 4% PFA and
stained with a-alpha-actinin antibody (A7811, Sigma, 1:1000).

For Volasertib, C2C12 cells were seeded in a six-well plate and grown in
standard conditions to nearly 100% confluency in growth medium, and treated
with 100 nM Volasertib or DMSO for 24 h in growth medium (No.52235, Selleck
chem). Then the growth medium was changed to differentiation medium (2%
horse serum in DMEM), with 100 nM Volasertib or DMSO, and incubated for
48 h. Cells were incubated in differentiation medium without Volasertib or DMSO
for additional 5 days, fixed and stained as described above.

Quantitative real-time PCR. Total RNA was extracted with RNeasy mini kit
(74104, Qiagen), and quantified (Nanodrop 2000). The cDNA was prepared by
reverse transcription with M-MLV Reverse Transcriptase (28025013, Thermo)
with 2000 ng RNA. PowerUp Sybr Green Master Mix (A25742, Thermo) and ABI
StepOne system (Applied Biosystems) were used for quantitative RT-PCR.
Quantification was normalized to GAPDH or RpL32. Primers used were:
Vrk1-F-5-ACAGGTTTATGATAATGGACCGC-3’
Vrk1-R-5-CTGGTCAGGGTTCTTGTGACT-3/
V1k2-F-5-CCGCACATGGACACTCTGTA-3'
V1ik2-R-5-CTTGCTGGATGAACTCCCAG-3'
Vrk3-F-5-ATCAAGGACCCAGAAGTGGAGA-3/
Vrk3-R-5-TTCTTCCATTTGTTCACTTGCAGA-3’
Gapdh-F-5'-TGTAGACCATGTAGTTGAGGTCA-3’
Gapdh-R-5'-AGGTCGGTGTGAACGGATTTG-3’
Bsd- F-5'-TCAACGCTAAGCACTCCGTT-3'
Bsd-R-5-CGCCTCTGCTCCATGTCTAG-3'
Rp32- F-5'-ATGCTAAGCTGTCGCACAAATG-3’
Rp32- R-5'-GTTCGATCCGATACCGATGT-3’

Bioinformatic and statistical analysis. Protein alignments were generated in
ClustalX, and phylogenetic analyses were performed with DNAMAN (Lynnon
Corporation) using the observed divergency distance method. ATPbind was used
to predict Bsd ATP-binding residues; informatics predictions were compared to the
VRK1 ATP-binding pocket described in ref. 33.

Statistical analyses were performed with GraphPad Prism 8 software, and
significance was determined with the unpaired, two-sided Student’s ¢ test, one-way
ANOVA, two-way ANOVA, two-sided Fisher’s exact test, two-sided Wilcoxon
signed-rank test or Mann-Whitney test (for non-Gaussian distributions). Gaussian
distribution fit curve and skew distribution fit curve were generated with Origin
2019 software. Sample sizes are indicated in the figure legends. Data collection and
data analysis were routinely performed by different authors to prevent potential
bias. All individuals were included in the data analysis.
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Fig. 7 The Bsd orthologue Vrk3 is required for myotube elongation. a C2C12 cells treated with siRNAs against murine Vrk3 or with an inhibitor of Plk1
(Volasterib, 100 nM). Cells were fixed after 7 days in differentiation media, and labeled for a-actinin (green) to detect differentiated myotubes. Vrk3
knockdown and Volasterib treated myotubes were shorter than controls and were often rounded. b Myotube length distribution. Solid lines show the
Gaussian distribution fit curve (blue) and skew distribution fit curve (red). Vrk3 RNAi and Volasterib treated myotubes were shorter than controls. For each
group, n = 230. ¢ Quantification of cumulative myotube length. d Myotube roundness scores. Vrk3 RNAi and Volasterib treated myotubes showed a higher
roundness score, indicating increased circularity. @ Immunoprecipitation of HEK293 cell lysates showed a physical interaction between Vrk3 and PIk1.

f Western blot of HEK293 cell lysates transfected with Vrk3 and PIk1. Vrk3 promoted Plk1 phosphorylation at Thr210. For each group, n = 3. g Control
(w18), bsd" UAS.VRK3, and bsd! 24B.Gal4 > VRK3 embryos labeled for Tropomyosin. DT1, LO1, and VL1 muscles are pseudocolored orange, green, and
violet. bsd' embryos that expressed human VRK3 in the mesoderm showed improved muscle morphology (h) Model showing Polo activation transitions
from AurB in mitotic tissues to Bsd in post-mitotic tissues. Polo controls cytoskeletal regulatory module to direct cytokinesis and myotube guidance.
Significance was determined by unpaired Student's t test (b, d), Mann-Whitney U test (¢) and Fisher's exact test (g). Error bars represent SEM.
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Source information for reagents. Information for all reagents used in this study is
reported in Supplementary Data 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support all experimental findings of this study are available in multiple
formats. Data necessary to reproduce all statistical analyses and results in the paper are
provided in the Source Data File provided with this paper, and raw data are available at
https://doi.org/10.17605/OSF.IO/YX7CR. RNA-seq data analyzed in this manuscript has
been previously published and is available at https://doi.org/10.5061/dryad.j0zpc869m.
Mass spectrometry data are available on the PRIDE database under accession number
PXD030953. Source data are provided with this paper.
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