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Lipidomic profiling reveals distinct
differences in plasma lipid composition in
overweight or obese adolescent students
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Abstract

Introduction: The relationship between dyslipidemia and obesity has been widely reported, but the global lipid
profiles associated with the development of obesity still need to be clarified. An investigation into the association
between the lipidomic plasma profile and adolescent obesity may provide new insights into the development of
obesity.

Methods: Mass spectrometry coupled with liquid chromatography was applied to detect the global lipidome in
the fasting plasma from 90 Chinese adolescents, including 34 obese adolescents, 26 overweight adolescents, and
30 adolescents with a normal body mass index (BMI). All participants underwent anthropometric measurements by
using InBody. Clinical biochemical indicators were measured by Cobas Elecsys.

Results: Both qualitative and quantitative analyses revealed a gradual change in plasma lipid features among obese
students, exhibiting characteristics close to overweight students, but differing significantly from normal students.
Compared with normal and overweight students, levels of triglyceride (TG), 18-hydroxycortisol, isohumulinone A,
and 11-dihydro-12-norneoquassin were up-regulated in the obese group, while phosphatidylcholine (PC),
phosphatidylethanolamine (PE), lysoPC (LPC), lysoPE (LPE), and phosphatidylinositol (PI) were significantly down-
regulated in the obese group. Then, we conducted Venn diagrams and selected 8 significant metabolites from the
3 paired comparisons. Most of the selected features were significantly correlated with the anthropometric
measurements.

Conclusions: This study demonstrated evidence for a relationship between the eight significant metabolites with
obese adolescents. These lipid features may provide a basis for evaluating risk and monitoring the development of
obesity.
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Background
A high prevalence of obesity and metabolic syndrome
can now be observed in both adults and young people.
These phenomena affect 380 million children and ado-
lescents worldwide [1]. Childhood obesity has a

significant impact on both physical and psychological
health [2]. It could lead to metabolic, pulmonary, ortho-
pedic, neurological, cardiovascular, hepatic, and men-
strual disorders [3]. WHO defines adolescence as a
period of growth and development between the ages of
10 and 19 years after childhood and before adulthood. It
is one of the important transition periods in the life
cycle and is characterized by a large amount of growth
and change, second only to infancy.
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It is believed that adolescent and childhood obesity
have reached epidemic levels [1], and about 17% of chil-
dren are facing obesity problems in the United States
[2]. The increased prevalence of overweight and obesity
in children and adolescents has been observed in several
countries, and weight gain is an independent predictor
for metabolic syndrome development, although it is not
seen in all obese individuals. Metabolic syndrome is de-
fined as the presence of a combination of risk factors for
cardiovascular disease and type 2 diabetes, including
obesity, dyslipidemia, hypertension and glucose intoler-
ance [4]. The above conditions, although seen more fre-
quently in adults, can manifest at earlier ages [5, 6].
Therefore, the diagnosis of the possible presence of
obesity at early ages, accompanied by control interven-
tions, should have a favorable impact on the health of
adult people and the prevention of cardiovascular
outcomes.
Previous studies have demonstrated that considerable

alterations in lipid metabolism and consequently marked
changes in lipid profile are associated with the onset and
progression of obesity-related complications. By compar-
ing the metabolomics characteristics of obesity, Newgard
et al. revealed resistance-related BCAA-related metabol-
ite characteristics, and the accompanying specific in-
crease in C3 and C5 carnitine levels, which indicated an
increase in BCAA catabolism [7]. Longitudinal lipido-
mics studies in children have shown that maternal obes-
ity increases the risk of offspring obesity, which is
marked by a long-term change in plasma ceramide levels
[8]. To study the changes of metabolites in blood lipids
by lipidomics, caloric restriction and the improvement
of metabolic syndrome following fish oil intake were
predicted, and potential lipid metabolites were identified
[9]. Pawelzik et al. performed lipidomic analysis of urine
samples from obese people and identified a relationship
between urinary prostaglandin levels and obesity-related
dyslipidemia, abdominal obesity, and insulin resistance
[10]. Péter Pikó et al. carried out a more sophisticated
lipidomic analysis by introducing a stepwise regression
analysis and LSR calculation. In this way, we identified
four and three key lipid species showing a strong signifi-
cant positive (PE P-16:0/20:3, TG 20:4_33:1, TG 22:6_36:
4, TG 18:3_33:0) and negative (Hex-Cer 18:1;O2/22:0,
LPC 18:2, PC 18:1_18:1) association with BMI, respect-
ively [11]. These regularly determined laboratory param-
eters provide information on lipid disturbances in
general, today it is widely accepted that characterization
of the full spectrum of obesity-induced changes in lipid
metabolism, however, a detailed analysis of the children
plasma lipidome, is required to create attractive hypoth-
eses on the patho-mechanisms of obesity and identify
sensitive predictive and prognostic biomarkers, as well
as targets to their prevention and therapy [12].

Conventional data-dependent acquisition (DDA) mass
spectrometry (MS) mode has been widely used in lipido-
mic studies, where parameters are detected to minimize
duplicate precursor ions and can be optimized to iden-
tify complex lipid molecules [13]. However, DDA per-
formance has some inherent limitations, such as a
limited dynamic range, a bias against highly abundant
ions, and long duty cycles with increasing sample com-
plexity. A data independent acquisition (DIA) strategy
was recently developed to alleviate the limitations of the
DDA model [14], which improves detection sensitivity
and analytical reproducibility. However, the independent
data acquisition method is not easy to apply to lipido-
mics because the annotation of MS features and the esti-
mation of the false discovery rate in large and complex
lipid data sets require more sophisticated software and
integrated reference databases [15].
Here, we conducted a non-targeted lipidomic analysis

of 90 Chinese adolescent students, including 30 obese
students, 26 overweight students, and 34 students with
normal BMI, using DIA-based liquid chromatography–
tandem mass spectrometry (LC-MS/MS). By using stat-
istical business and in-house software to analyze the
highly complex data sets, we demonstrated that com-
pared with overweight and normal students, obese stu-
dents in China have significant changes in lipids in their
plasma. In addition, we identified several lipid character-
istics, including TG, 18-hydroxycortisol, isohumulinone
A, and 11-dihydro-12-norneoquassin, PC, PE, LPC, LPE,
and PI, which are potential indicators for predicting
obesity risk.

Materials and methods
Study population
Nighty teenagers from junior middle school took part in
the study (Beijing 9th Middle School). In addition, the
principal’s approval was obtained before visiting the
school. During the first visit, a consent form with re-
search information was distributed to the students. We
encouraged the students to bring back the consent form
the next morning. On the next visit to the school, the
children who brought back signed consent forms were
screened for inclusion. The trial was approved by the
Ethics Committee at the Luhe Hospital affiliated with
Capital Medical University. A total of 100 students par-
ticipated in the study. Of these, 10 students refused to
continue their cooperation because of different reasons
(such as parents’ dissatisfaction with blood sampling,
interference with curricula, and fear of blood sampling).
Finally, 90 students were enrolled in the study. The in-
clusion criteria were age between 12 to 13, the consent
to participation of the students and their parents, lack of
illnesses affecting weight, non-use of drugs affecting
weight, and not having diet and exercise programs
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interfering with weight. The volunteers with serious dis-
eases, any musculoskeletal diseases and special diets or
recent weight changes were excluded.

Data collection and anthropometric measurement
The participants underwent anthropometric measure-
ments by using InBody 770 (InBody Co. Ltd., Seoul, Re-
public of Korea). We evaluated the collected data from
the anthropometric measurements statistically and
graphically in Microsoft Office Excel 2010 (Los Angeles,
CA, USA). In this study, blood was collected to coagu-
late at 4 °C and the serum was separated by centrifuga-
tion for 15 min at 3000 rpm. Serum TSH, FT4 and FT3
were tested with an electrochemiluminescence immuno-
assay (ECLIA) using an Abbott Architect I2000 (Abbott
Diagnostics, Abbott Park, IL, USA). Clinical biochemical
indicators were measured by a Cobas Elecsys 601 (Roche
Diagnostics, Switzerland). The children are grouped ac-
cording to the BMI Z-score of WHO child growth stan-
dards [16], and the age is the exact value. Those with a
Z > 1 are defined as overweight group, those with a Z > 2
are defined as the obese group, and those with a Z ≤ 1
are defined as normal and thin groups.
To delineate global lipidomic profiles in Chinese over-

weight and obese adolescents, BMI and body fat per-
centage together with the corresponding clinical and
phenotypic data were collected from the 3 groups in
Beijing, China (Additional file 1).

Liquid chromatography–tandem mass spectrometry (LC-
MS/MS)
Lipids were extracted from individual plasma samples
and then injected into the mass instrument in both posi-
tive and negative modes, with pooled extraction quality
control (QC) samples at certain intervals. In this project,
the advanced mass spectrometer Xevo G2-XS QTOF
(Waters, UK) was used for mass spectrometry data col-
lection, and the commercial software PROGENESIS QI
(Version 2.2) (Waters, UK) and the independently devel-
oped metabonomics R software package metaX were
used for statistical analysis of the mass spectrometry
data, wherein metabolite identification was based on the
databases HMDB and LipidMaps [17]. Univariate and
multivariate analyses were conducted using R statistics
software to identify and evaluate the significant metabo-
lites among the groups.

Metabolites extraction method
First, 40 μL of each sample was added to the corre-
sponding 96-well plate; 120 μL of pre-cooled isopropyl
alcohol was added, shaken and mixed for 1 min, and
then placed at − 20 °C for 2 h or overnight, followed by
centrifugation at 4000 g at 4 °C for 30 min. We placed
the supernatant in a new 96-well plate and diluted it

with 225 μL of lipid complex solution (isopropanol:
acetonitrile: water = 2: 1: 1). Then, 20 μL of each sample
was mixed with the QC sample and 60 μL of the super-
natant was transferred to a 96-well microtiter plate,
sealed, and tested on the machine.

LC-MS parameters
All samples were acquired by the LC-MS system
followed machine orders. Firstly, all chromatographic
separations were performed using an ultra-performance
liquid chromatography (UPLC) system (Waters, UK). An
ACQUITY UPLC CSH C18 column (100 mm × 2.1 mm,
1.7 μm, Waters, UK) was used for the separation. The
column was maintained at 55 °C. The flow rate was 0.4
mL/min and the mobile phase consisted of solvent A
(ACN: H2O = 60:40, 0.1% formate acid and 10 mM am-
monium formate) and solvent B (IPA: ACN = 90:10,
0.1% formate acid and 10mM ammonium formate).
Gradient elution conditions were set as follows: 0 ~ 2
min, 40–43% phase B; 2.1 ~ 7min, 50–54% phase B;
7.1–13min, 70–99% phase B; 13.1–15min, 40% phase B.
The injection volume for each sample was 10 μL.

Mass spectrometer description
A high-resolution tandem mass spectrometer Xevo G2
XS QTOF (Waters, UK) was used to detect metabolites
eluted from the column. The Q-TOF was operated in
both positive and negative ion modes. For positive ion
mode, the capillary and sampling cone voltages were set
at 3.0 kV and 40.0 V, respectively. For negative ion mode,
the capillary and sampling cone voltages were set at 2
kV and 40 V, respectively. The mass spectrometry data
were acquired in Centroid MSE mode. The TOF mass
range was from 100 to 2000 Da in positive mode and 50
to 2000 Da in negative mode. The survey scan time was
0.2 s. For the MS/MS detection, all precursors were frag-
mented using 19–45 eV, and the scan time was 0.2 s.
During the acquisition, the LE signal was acquired every
3 s to calibrate the mass accuracy. Furthermore, in order
to evaluate the stability of the LC-MS during the entire
acquisition, appropriate standards were run and a quality
control sample (a pool of all samples) was also acquired
after every 10 samples.

Nomenclature of metabolites
For example, 6.10_ 861.5490 m/z was the retention
time_ charge mass ratio. The identification results (PC
(15:0/0:0), PE (18:0/0:0), LPC (15:0), and LPE (0:0/18:0))
were obtained by comparing the retention time and
charge mass ratio information of the collected ions with
the information in the KEGG and HMDB databases.
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Statistics analysis
All data was tested with chi-square tests first, then
Tukey HSD analysis was applied if it met the normal
distribution and the Kruskal-Wallis test was applied if
not, and Dunn’s post hoc tests followed by pairwise
comparisons were performed. The mean differences in
metabolites were analyzed by one-way ANOVA, Bonfer-
roni’s multiple comparison test analysis. Associations be-
tween lipid and clinical or anthropometric parameters
were determined by Pearson correlation coefficients by
GraphPad Prism 7. A P-value < 0.05 was considered
significant.

Results
Assessment of clinical characteristics and plasma
lipidomic features
The clinical information, including the physiological and
anthropometric indicators of the individuals included in
this cohort, is summarized in Table 1. The participants
were divided into three groups according to their BMI
values. The level of SBP, waist-hip ratio, fat mass, body
fat percentage and visceral fat area were significantly
higher in both overweight and obese individuals than in
the control group, with obese participants exhibiting
higher values compared with overweight individuals
(Kruskal-Wallis test, P < 0.001).
We evaluated both coverage and reproducibility of the

non-targeted lipidomic data on our sample. Using

Progenesis QI 2.0 and metaX, the non-targeted metabo-
lomics analysis yielded 51,135 positive ion modes (Add-
itional file 2) and 8988 negative ion modes (Additional
file 3).

Overweight and obesity-related features
Because of the observed effects in obese adolescents on
the lipid profiles, we performed a blocked Kruskal-
Wallis test, using the obese group as the blocking factor,
followed by Dunn’s hoc test for paired comparisons. As
shown in Additional files 4 and 5, 876 positive and 544
negative features were gradually upregulated among the
3 groups. Also, there were 1081 positive and 353 nega-
tive features down-regulated in Additional files 6 and 7.
Of these, there are lipids or lipid-like compounds, also
including organ-oxygen compounds, amino acids, pep-
tides, and analogs, benzyl alcohols, glycerophospholipids
and triacylglycerol. As shown in Fig. 1, paired compari-
sons revealed that 460 features (290 features in Add-
itional file 8 positive and 170 features in Additional file
11 negative) exhibited significant differences between
the control and obese group, whereas 231 and 244 fea-
tures (Additional files 9 and 12, Additional files 10 and
13 in both positive and negative, respectively) showed
obvious differences between the overweight versus the
control group and the obese group, respectively (P <
0.05). Of these significantly changed metabolites, we
screened out eight (six positive and two negative)

Table 1 Basic characteristics of the three groups in the study

Variables Control (n =
30)

Overweight (n =
26)

Obese (n =
34)

P value
b

Obese vs
Overweight c

Obese vs
Control c

Overweight vs
Control c

Sex (female %), no.
(%) a

18 (60.00) 16 (53.33) 14 (46.67) 0.594 – – –

Age, year 12.50 ± 0.51 12.73 ± 0.45 12.77 ± 0.47 0.058 0.958 0.072 0.132

BMI, Kg/m2 17.49 ± 1.41 23.76 ± 1.00 29.89 ± 3.17 < 0.0001 < 0.0001 < 0.0001 < 0.0001

SBP, mmHg 111.93 ± 9.77 120.27 ± 7.18 123.13 ± 6.23 < 0.0001 < 0.0001 < 0.0001 0.339

DBP, mmHg 68.13 ± 6.77 68.73 ± 4.68 70.07 ± 7.10 0.477 0.69 0.46 0.927

TG, mmol/L 0.88 ± 0.36 1.08 ± 0.67 1.12 ± 0.61 0.207 0.964 0.225 0.342

CHO, mmol/L 4.16 ± 0.76 4.03 ± 0.80 4.34 ± 0.77 0.297 0.268 0.631 0.796

HDL, mmol/L 1.39 ± 0.29 1.24 ± 0.22 1.22 ± 0.20 0.015 0.885 0.018 0.061

LDL, mmol/L 2.32 ± 0.53 2.35 ± 0.61 2.71 ± 0.66 0.031 0.069 0.048 0.987

Waist-hip ratio 0.79 ± 0.03 0.85 ± 0.04 0.91 ± 0.05 < 0.0001 < 0.0001 < 0.0001 < 0.0001

FBG, mmol/L 5.52 ± 0.37 5.56 ± 0.42 5.60 ± 0.42 0.740 0.907 0.718 0.933

Fat mass, Kg 9.00 ± 3.33 19.70 ± 4.05 28.82 ± 6.96 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Body fat percent, % 19.86 ± 6.06 31.63 ± 5.44 38.00 ± 6.60 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Visceral fat area, cm2 38.78 ± 14.26 88.76 ± 24.86 138.81 ±
39.78

< 0.0001 < 0.0001 < 0.0001 < 0.0001

Values are given as mean ± SD or number of individuals (%). BMI Body mass index, SBP systolic pressure, DBP Diastolic pressure, TG Triglyceride, CHO Cholesterol,
HDL High density lipoprotein, LDL Low density lipoprotein, FBG Fast blood glucose
aP value of chi-square test.
bP value of Kruskal–Wallis test.
cP-value of Dunn’s post hoc test.
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metabolites with significant differences in expression
among the three groups. The number of variables distin-
guishing overweight and obesity suggested that changes
in a large fraction of the lipid profiles in overweight and
obesity were shared, implying that compared with the
control group, the overweight and obese group share
similar metabolites.
To quantify the differential features among the 3

groups, all detected features were assessed using criteria:
1) variable importance of the projection (VIP) > 1.0 esti-
mated by partial least squares discriminant analysis
(PLS-DA); 2) fold change in mass intensity ≥1.2 or ≤
0.83; 3) P < 0.05.

Comparison between control and overweight, overweight
and obese, and control and obese using random forest
classifier and ROC curves
As the qualitative and quantitative analyses revealed sig-
nificant differences in the metabolites levels among the
three groups and indicated a gradual change from con-
trol to obese via overweight, we investigated if the me-
tabolites could predict the risk of further obesity

development. To assess this possibility, we used a ran-
dom forest classifier.
As illustrated in Fig. 1, 8 metabolites were generated. Based

on all the metabolites, the relationships among the three
groups were analyzed by the random forest classifier and re-
ceiver operating characteristic (ROC) curves. Figure 2A-C
shows that the area under the ROC curve (AUC) is 61.90%
(95% confidence interval (CI) = 42.00–85.60%), 62.80% (95%
CI = 21.50–86.50%), and 74.30% (95% CI = 56.00–91.00%)
between control and overweight, overweight and obese, and
control and obese in down-regulated both positive and nega-
tive ion mode. For up-regulated, the AUC is 59.70% (95%
CI = 19.50–82.50%), 65.40% (95% CI = 34.10–75.50%), and
72.10% (95% CI = 49.00–93.50%) in Fig. 2D-F. Together,
these results indicate that the lipidomic profiles are regulated
in a complex manner during the development of overweight
and obesity.

The level of selected metabolites in the control,
overweight and obese groups
As illustrated in Fig. 1, eight metabolites were selected
from both positive and negative ion mode lipidomic

Fig. 1 Venn diagram of significant metabolites from the 3 paired comparisons. Venn diagram depicting the number of significant metabolic
features from 3 paired comparisons (the direction of change was ignored, P < 0.05, Dunn’s post hoc test)
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profiling. The expression of the selected metabolites is
shown in Fig. 3. Figure 3A and B indicate that 6.10_
861.5490m/z and 1.82_480.3095 m/z in negative ion
mode were gradually decreased in the control, over-
weight and obese groups. Figure 3D and H exhibit 1.11_
396.2412m/z and 10.13_949.7263 m/z in selected posi-
tive ion mode were gradually increased in the control,
overweight and obese groups. However, 4.86_902.5761
m/z was gradually decreased in Fig. 3E, 4.84_530.4012n,
4.96_623.4787n and 4.96_546.3962n peaked in the over-
weight group in Fig. 3C, F and G. In summary, the de-
velopment of obesity may go through the process of
overweight in most cases, but it may directly develop
into obesity through the alterations of some lipid
metabolites.

Correlations between the selected metabolites and
clinical parameters
In the body of overweight and obese people, metabolism
is inevitably changed. Hence, the metabolites are also
changed. To investigate the relationship between the se-
lected metabolites and clinical parameters, we performed
a correlation analysis. As shown in Fig. 4A, 6.10_
861.5490m/z was negatively correlated with BMI, vis-
ceral fat area, body fat percent, and waist/hip ratio. 1.82_
480.3095m/z was negatively correlated with BMI, vis-
ceral fat area, body fat percent, and waist/hip ratio, but

positively correlated with triglyceride in Fig. 4B. 4.84_
530.4012n was negatively correlated with total choles-
terol (CHO) in Fig. 4C. 1.11_396.2412 m/z was positively
correlated with BMI, visceral fat area, and waist/hip ratio
in Fig. 4D. 4.86_902.5761 m/z was negatively correlated
with BMI, but positively with triglyceride (Fig. 4E).
10.13_949.7263m/z was positively correlated with BMI,
visceral fat area, waist/hip ratio, triglyceride, and body
fat percent (Fig. 4F).
Phospholipids phosphatidylcholine (PC) and phosphatidyl-

ethanolamine (PE) are the two most abundant phospholipid
species in eukaryotic cells [18]. Lysophosphatidylcholine
(LPC), an important signaling molecule and fatty acid carrier,
constitutes 5–20% of total plasma phospholipids [19]. Phos-
phatidylinositol (PI) plays an important role in cell morph-
ology, metabolic regulation, signal transduction and various
physiological functions. 1.82_480.3095m/z was annotated as
PC (15:0/0:0), PE (18:0/0:0), LPC (15:0), and LPE (0:0/18:0).
6.10_861.5490m/z was annotated as PI (14:0/22:2(13Z,
16Z))- PI (22:2(13Z,16Z)/14:0) (Additional file 3). 1.11_
396.2412m/z was annotated as 18-hydroxycortisol, isohumu-
linone A, and 11-dihydro-12-norneoquassin; 4.86_902.5761
m/z was annotated as PI (18:0/20:5 (5Z,8Z,11Z,14Z,17Z));
and 10.13_949.7263m/z was annotated as TG (20:4
(5Z,8Z,11Z,14Z) /20:3(5Z,8Z,11Z) /18:3 (9Z,12Z,15Z)). The
levels of TG, 18-hydroxycortisol, isohumulinone A, and 11-
dihydro-12-norneoquassin were up-regulated in the obese

Fig. 2 Receiver operating characteristic curves and areas under the ROC curves in the training set. A-F ROC and AUC for the validation set with
Control and Overweight, Overweight and Obese, and Control and Overweight, respectively. The model was trained using decreased and
increased intensity of the detected features from positive and negative ion mode in the training set among control, overweight and
obese (n = 30)
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group, while PC, PE, LPC, LPE, and PI were significantly
down-regulated in the obese group than in control and over-
weight individuals (Additional file 2).

Discussion
Due to the increased prevalence of obesity in children
and adolescents, various studies have been conducted to
discover which associations and risk factors increase the
likelihood of obesity in children. Although it is still diffi-
cult to fully grasp all of the risk factors related to obes-
ity, it is of great significance to control and prevent

obesity by combining diet, exercise, physiological factors
and psychological factors [2]. The short-term and long-
term effects of obesity on children’s health are a major
issue due to adverse psychological and health conse-
quences [20]. Potential negative psychological outcomes
are depressive symptoms, poor body image, low self-
esteem, risk of eating disorders, and behavioral and
learning problems; negative health consequences include
insulin resistance, type 2 diabetes, asthma, hypertension,
and nonalcoholic steatohepatitis [20, 21]. Obese children
are more likely to become obese adults, and therefore

Fig. 3 Level of selected metabolites in control, overweight and obese groups. A and (B) show negative ion modes level in the control, overweight
and obese groups. C-G show positive ion modes level in the control, overweight and obese groups
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increase their risk of multiple diseases before they even
reach puberty [21].
The characteristics of human lipomics reflect the

early stage of lipid metabolism, including patho-
physiological changes related to diseases. Wang et al.
observed the levels of five LPC species in an obese
group were significantly reduced relative to a normal-
weight group [22]. In addition, total LPC, LPC18:0,
LPC18:2 and LPC20:4 levels in obese and obese sub-
jects with type 2 diabetes were lower than in nonob-
ese adults. There was no difference in the LPC profile
between obese individuals and obese subjects with
type 2 diabetes [23]. Moreover, Wallace et al. re-
ported several LPC species were associated with BMI
and inflammatory markers [24]. Compared with lean

subjects, LPC14:0 and LPC18:0 were higher while
LPC18:1 was lower in obese subjects [25].
As we all know, obesity can be estimated by several

methods: body mass index (BMI), the ratio of weight to
the square of height, is used as the most common indi-
cator of obesity [26]. It is convenient and simple, but it
can cause changes in cardiovascular and metabolic per-
formance between individuals. However, there are alter-
native ways to distribute body fat. A higher WHR
indicates more intraperitoneal cavity fat and is associated
with a higher risk of type 2 diabetes, cardiovascular dis-
ease and mortality [27]. At the same time, waist circum-
ference can also be used. Similar to WHR [28], it is
considered a more direct and reliable method. Generally,
body fat percentage (BFP) is a method used to measure

Fig. 4 Correlation between clinical parameters and selected features. A 6.10_861.5490 m/z was negatively correlated with BMI, visceral fat area,
body fat percent, waist/hip ratio, and HDL. B 1.82_480.3095 m/z was negatively correlated with BMI, visceral fat area, body fat percent, and waist/
hip ratio. C 4.84_530.4012n was negatively correlated with cholesterol. D 1.11_396.2412 m/z was positively correlated with BMI, visceral fat area,
body fat percent, and waist/hip ratio. E 4.86_902.5761 m/z was negatively correlated with BMI, but positively with triglyceride. F 10.13_949.7263
m/z was positively correlated with BMI, body fat percent, visceral fat area, FT3, waist/hip ratio, and triglyceride
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the ratio of adipose tissue to lean mass and water [29],
and is usually determined using bioelectrical impedance.
BFP is not related to BMI since it is associated with an
increase in all-cause mortality, but it is generally sug-
gested to estimate obesity better than BMI [30]. There-
fore, this study aimed at Chinese adolescents, a group
with a relatively stable diet and lifestyle, carried out a
lipidomic study to observe the development process of
obesity and to screen out some biochemical indicators
for predicting obesity.
In the present study, the levels of TG, 18-

hydroxycortisol, isohumulinone A, and 11-dihydro-12-
norneoquassin were up-regulated in the obese group,
while PC, PE, LPC, LPE, and PI were significantly down-
regulated in the obese group relative to the control and
overweight individuals. 1.82_480.3095m/z was anno-
tated as PC (15:0/0:0), PE (18:0/0:0), LPC (15:0), and
LPE (0:0/18:0). 6.10_861.5490 m/z was annotated as PI
(14:0/22:2(13Z, 16Z)) - PI (22:2(13Z, 16Z)/14:0) (Add-
itional file 3). According to Fig. 1, eight metabolites gen-
erated only in 1.11_396.2412 m/z were annotated as 18-
hydroxycortisol, isohumulinone A, and 11-dihydro-12-
norneoquassin; 4.86_902.5761m/z was annotated as PI
(18:0/20:5 (5Z,8Z,11Z,14Z,17Z)); and 10.13_949.7263 m/
z was annotated as TG (20:4 (5Z,8Z,11Z,14Z) /20:
3(5Z,8Z,11Z) /18:3 (9Z,12Z,15Z)) (Additional file 2).
These data suggest that the development of obesity does
not always have to go through an overweight stage, and
it may develop directly due to some changes in lipid
metabolism.
There are also some limitations to our study. Firstly, it

was a cross-sectional study that only addressed the alter-
ations of lipidomic profiling in normal, overweight and
obese students. Furthermore, the subjects were just
grouped according to BMI rather than randomly, and
therefore, this may produce selection bias. In addition,
this is a small sample study. So based on the above limi-
tations, more large-scale population studies are needed
for future investigations.

Conclusions
In conclusion, this investigation identified eight altered
metabolites in Chinese obese and overweight students.
These discriminatory metabolites may play important
roles in the pathogenesis of obesity and provide a basis
for evaluating the risk of and monitoring obesity
development.
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