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Brain-wide visual habituation networks in wild type
and fmr1 zebrafish
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Habituation is a form of learning during which animals stop responding to repetitive stimuli,

and deficits in habituation are characteristic of several psychiatric disorders. Due to technical

challenges, the brain-wide networks mediating habituation are poorly understood. Here we

report brain-wide calcium imaging during larval zebrafish habituation to repeated visual

looming stimuli. We show that different functional categories of loom-sensitive neurons are

located in characteristic locations throughout the brain, and that both the functional prop-

erties of their networks and the resulting behavior can be modulated by stimulus saliency and

timing. Using graph theory, we identify a visual circuit that habituates minimally, a moder-

ately habituating midbrain population proposed to mediate the sensorimotor transformation,

and downstream circuit elements responsible for higher order representations and the

delivery of behavior. Zebrafish larvae carrying a mutation in the fmr1 gene have a systematic

shift toward sustained premotor activity in this network, and show slower behavioral

habituation.
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Habituation is a simple form of non-associative learning,
characterized by a decrease in response after multiple
presentations of a stimulus, that is conserved across much

of the animal kingdom1. It allows animals to remain attentive to
novel and ecologically relevant stimuli while minimizing their
expenditure of energy on inputs that occur frequently without
consequence. The strength and speed of habituation, and of
recovery after periods without the stimulus, depend on the
parameters of the stimulus and its repetitions (the intensity,
frequency, and number of stimuli)2,3. Careful modulations of
these stimulus properties have proven useful in exploring the
relationships between repetitive stimuli and behavior, thereby
providing clues about the underlying habituation circuitry4–7.

Other work has addressed some of the molecular and cellular
dynamics mediating habituation, including reductions in motor
neurons’ presynaptic vesicle release during short-term habitua-
tion and processes involving protein syntheses for longer-term
forms of habituation8–13. Recently, studies exploiting high
throughput methods have revealed a more complex molecular
scenario, suggesting that multiple mechanisms contribute to the
habituation process14,15. At the whole-brain level, fMRI studies in
humans have revealed changes in activity for various brain
regions during habituation16–18. The intervening scales, of
regional circuits and inter-regional networks, cannot be addressed
using targeted cellular techniques or traditional brain-wide
approaches. These networks, and the ways in which they
change during habituation, can only be addressed by observing
activity in whole populations of neurons (up to and including the
whole brain) at single-cell resolution.

In recent years, exactly this approach has become possible in
zebrafish larvae through the use of genetically encoded calcium
indicators and light sheet or 2-photon microscopy19–24. Since
zebrafish larvae undergo behavioral habituation25,26 they have
been used for experiments with tactile, visual, and acoustic sti-
muli, exploring the genetic and molecular mechanisms of specific
circuits27–32. Furthermore, they share important molecular
underpinnings of habituation with other species33–35. All toge-
ther, these features make them an appealing platform for
exploring brain-wide habituation circuitry.

This approach requires a robust innate behavior that is subject
to habituation. Looming visual stimuli, which simulate
approaching predators, reliably elicit startle responses that are
conserved from insects to humans36,37, and repeated looms have
been shown to produce habituation in various species38–40.
When looming stimuli are presented to larval zebrafish, visual
information converges in the tectum, where local circuits are
proposed to calculate the imminence of a threat40–42. However,
additional structures respond to looms40–45, and others,
including the hypothalamus, modulate the visual escape behavior
in contexts other than habituation43,46,47. The result is an
intriguing but rough outline of the habituation network, and in
the absence of a whole-brain cellular-resolution analysis,
numerous questions about this behaviorally important process
remain unanswered. These include the functional categories of
loom-responsive neurons located across the brain, their dis-
tributions across and within brain regions, and ways in which
information passes through their networks before, during, and
after habituation.

Addressing these questions is especially important because of the
role that sensorimotor transformations and habituation play in
psychiatric disorders including schizophrenia, autism spectrum
disorder (ASD), and Fragile X syndrome (FXS)48. While these
disorders are traditionally diagnosed around their social or cogni-
tive symptoms, each has characteristic alterations in sensory pro-
cessing, habituation, and sensorimotor gating that compound, or in
some cases may drive, social and intellectual impairments49,50. FXS

patients, for example, show slow habituation51–54, a phenotype also
found in fmr1-mutant mice that model FXS55,56. While fMRI and
EEG studies have revealed some of the regional changes in neural
activity that correlate with habituation deficits in various psychiatric
disorders57–60, the network-wide causes of these symptoms remain
largely unexplored.

Here, we report brain-wide calcium imaging during visual
learning in larval zebrafish as they habituate to repeated threa-
tening loom stimuli. We show distinct populations of habituating
neurons and their characteristic distributions across the brain.
We then use graph theory to identify the network dynamics of
these habituating populations of neurons and explore how a
mutation in the fmr1 gene affects these dynamics.

Results
Habituation of visual escape behavior in larval zebrafish. To
characterize the escape behavior of larval zebrafish exposed to
looming stimuli, we designed a 12-well apparatus in which each
well contained a larva receiving its own loom stimulus from
below (Fig. 1a). We presented looms in blocks of 10, with five
minutes between blocks and an auditory tone at the end of the
second rest period (for dishabituation before the 21st loom sti-
mulus). In order to explore the relationships between stimulus
properties and behavioral habituation, we used looming stimuli of
two expansion speeds (a fast stimulus that filled the bottom of the
well in 2 s and a slow stimulus that took 4 s) and two inter-
stimulus intervals (ISIs) of 20 or 60 s between looms. These
parameter choices resulted in four stimulus trains: f20, f60, s20,
and s60 (Fig. 1b).

Each led to habituation of loom-elicited startle responses
(Fig. 1c and Supplementary Fig. 1), and two patterns arose across
the four stimulus trains. First, the slow-growing stimuli led to
stronger habituation than the fast stimuli did, especially in the
first block of 10 looms. Second, the stimulus trains with 20 s ISIs
produced faster habituation within blocks, but the stimulus trains
with 60 s ISIs produced habituation that recovered less after
the 5-min rest periods. A generalized linear mixed model
(GLMM) of the first block indicated a significant effect of the
loom presentation number (β = −0.25365, p= 2.00 × 10−16) on
response probability, confirming habituation. The loom speed
also affected response probability strongly (β = −1.23839,
p= 2.22 × 10−8) with a weaker impact from the ISI
(β= 0.45089, p= 0.038). Together, the speed, ISI, and presenta-
tion number explain almost 20% of the variance (R2= 0.1864),
and together with the random variable (fish identity) the model
explained more than 35% of the variance (R2= 0.3647). These
effects are consistent with past studies in zebrafish and other
diverse model systems5,7,34,35, suggesting a relationship between
stimuli and habituation behavior that is broadly conserved.
Explaining this relationship requires an exploration of the
underlying circuitry and the ways in which it changes during
habituation.

Brain-wide characterization of neural activity during habi-
tuation. To address brain-wide patterns of activity during habi-
tuation and the types of individual neurons that drive them, we
moved to a head-embedded preparation in which loom stimuli
were presented on an LCD screen. We performed whole-brain
imaging of the elavl3:H2B‐GCaMP6s line using selective plane
illumination microscopy (SPIM, see “Methods” section). For each
larva, this produced 50 horizontal planes spanning the rostro-
caudal and medio-lateral extents of the brain, at 5 μm intervals
along the dorso-ventral axis, with a volumetric acquisition rate of
2 Hz. We performed segmentation of these images to identify
regions of interest (ROIs) generally corresponding to individual
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neurons, and extracted fluorescent traces from these ROIs (see
“Methods” section and Supplementary Fig. 2).

Snapshots of responses across the brain during this repetitive
stimulation (shown for f20 in Fig. 2a–c) show a sharp decrease in
responsive ROIs between the first and second stimuli, and a
further drop in responses by the 10th stimulus. Figure 2d, e shows
the response of each ROI in the second and 10th trial as a
proportion of its response in the first. Habituation is conspicuous
across all loom-responsive brain regions, including the tectum,
thalamus, medial hindbrain, tegmentum, and telencephalon,
suggesting that these regions are affected by or involved in the
habituation process.

To address the possible underlying mechanisms, we used
k-means clustering to identify various categories of responsive
neurons. We initially generated 50 categories (clusters) per data
set, and then selected six clusters of loom-responsive neurons
that were (1) not the products of imaging artifacts, (2)
responsive to the first presentation of the loom stimulus, and
(3) represented in a majority of the fish in the data set (see
“Methods” section for numbers in each category). We also
identified one auditory-responsive cluster, in which ROIs
responded to a sound presented before the 3rd block of looms,
but did not pursue these responses further as they failed to
produce significant dishabituation. Based on our data, it is not
possible to judge whether this particular acoustic stimulus is
not appropriate for driving dishabituation, or whether zebrafish
do not undergo such dishabituation. The simplest explanation
is that our acoustic stimulus, which was delivered through an
air interface, was not salient enough to cause dishabituation in
this context, and that a stronger stimulus delivered directly to
the water in the imaging chamber could have produced such an
effect61,62.

Based on their highly similar response properties, we merged
three clusters of ROIs showing strong and rapid habituation
(Supplementary Fig. 3) into a single strongly habituating cluster
(Fig. 2f, g). We characterized the remaining three clusters as
moderately habituating, weakly habituating, and inhibited, and
we also located a motor-associated group of ROIs using regressors
customized to each animal’s movements (Fig. 2f, g). A t-SNE
analysis (Supplementary Fig. 4) shows segregation among these
clusters, supporting the idea that our clustering found distinct
categories of loom-responsive neurons.

Strongly habituating ROIs are spread across several brain
regions (Fig. 2h and Supplementary Movie 1, Supplementary
Fig. 5), most prominently in the tectum, thalamus, medial
hindbrain, pallium, and tegmentum. In the hindbrain, these ROIs
are concentrated in a longitudinal rostro-caudal strip along the
pathway of the tectobulbar projections, meaning that they likely
include reticulospinal premotor neurons63,64.

Moderately habituating ROIs are tightly concentrated in the
central region of the tectal periventricular layer (PVL) of the left
tectum (Fig. 2h and Supplementary Movie 1, Supplementary
Fig. 5). This laterality is unsurprising, since the stimulus was
presented to the right eye, and since all retinal projections are
contralateral in zebrafish larvae. This position is consistent with a
role for the associated neurons in the spatially registered
processing of visual information, and their decreased responses
may represent an important element of the overall circuit’s
reduced responsiveness during habituation.

Weakly habituating ROIs are prominent in the tectum,
habenulae, pretectum, and pallium (Fig. 2h and Supplementary
Movie 1, Supplementary Fig. 5). There is moderate laterality
toward the contralateral side to the stimulus in most of these
regions. In the pallium, responses are concentrated around the
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Fig. 1 Modulation of habituation by stimulus features. a Schematic representation of our setup for measuring visual habituation behavior. A 12-well
chamber with one larva in each well (top right) was filmed on a horizontal screen (left) on which the looms were presented. Automated tracking recorded
periods of swim bouts (green) and burst swim (red) for each larva (bottom right). b Stimulus train properties across the 4 experimental groups. In all
cases, the stimulus appeared for 1 s before expanding over a 2-s (fast) or 4-s (slow) period. The resulting black screen was maintained for 2 s before fading
to white over a 9 s period, followed by a variable period of white screen prior to the next stimulus period. The average ISI for each type of stimulus is shown
in the right column: 20 s for f20 and s20, and 60 s for f60 and s60. ISIs were varied slightly to prevent the timed prediction of consecutive stimuli. c
Probability of response across the 4 groups during three blocks of ten loom presentations. Probability was calculated at each loom presentation as: number
of responding fish divided by total number of fish (n = 36). d Fitted exponential one-phase decay curves of the response probability for each group. The
consistency of these results across different clutches of larvae is presented in Supplementary Fig. 1.
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dorsal edge of the pallium in what will likely become the lateral
division of the dorsal pallium (Dl)65,66, although they also extend
into the medial division (Dm, Supplementary Movie 1 and
Supplementary Fig. 5).

Inhibited ROIs are rare and mostly localized to the
contralateral tectum and rostral thalamus (Fig. 2h and Supple-
mentary Movie 1, Supplementary Fig. 5). Motor-associated ROIs
are concentrated in the cerebellum. However, some can be found
in the anterior and lateral hindbrain and small numbers occur in
the thalamus and pallium (Fig. 2h and Supplementary Movie 1,
Supplementary Fig. 5). These ROIs are presumably involved in
the coordination and delivery of the escape responses. It is

important to note that we did not observe consistent escape
responses during our brain imaging experiments, this is likely due
to the immobilized fishes’ switching to a passive state when their
behavior does not trigger any perceived change of position or
relief from the looming stimulus19.

Temporal stimulus properties influence ROIs’ responses, but
not their distributions. The fundamental brain-wide habituation
network was conserved across our four habituation paradigms
(Fig. 3), with a few specific differences. One was a greater number
of strongly habituating ROIs in the hindbrain for the s20 and s60
experiments. Another came in experiments with 60 s ISIs, where
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we observed a greater number of weakly habituating ROIs in the
dorsal hindbrain on the side contralateral to the stimulus
(Fig. 3a). This hindbrain neuronal population’s differences most
likely reflect changes in neuronal activity linked to the stimulus
features which ultimately influence to which functional cluster
each ROIs is included. However, the proportion of ROIs of each
cluster distributed across brain regions is very similar and is
consistent with the results described above for f20, which suggests
a distinct distribution of the habituating population subtypes
(Fig. 3b). Similarly, within each brain region, there is a char-
acteristic abundance of each cluster that is essentially preserved
across all four paradigms (Fig. 3c).

The facts that the habituating clusters have distinct distribu-
tions, and that these distributions are preserved in different
paradigms, suggests that each cluster and region plays a distinct
role in the habituation circuit (although these roles can be

modulated somewhat by the details of the stimuli, and some
localized populations may represent a continuum of response
properties). If our methods were detecting various points on a
continuum of responses, we would expect to see more diffuse
localizations of the habituating clusters across data sets. The
constant responses of the weakly habituating ROIs suggest that
these neurons are part of a core visual pathway sensitive to the
features of the loom (luminance change and/or moving edges).
The tight localization of moderately habituating neurons in the
tectum, and the facts that they habituate gradually and are more
sensitive to the recovery (Fig. 2g), suggest that these neurons are
integrating the current and past visual information, possibly
reflecting a significant element in the overall circuit. Finally, the
strongly habituating ROIs present a wider distribution across the
brain and seem to include not only sensory processing regions but
also premotor and upstream processing areas of the brain. This
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suggests that the corresponding neurons are part of a threat
detection response pathway and cease to respond quickly as the
stimulus is no longer perceived as a threat. This idea is reinforced
by the fact that the strongly habituating ROIs overlap with
regions that are also sensitive to auditory stimuli (Supplementary
Fig. 6a, b).

By considering the changes in the activity across our four
habituation paradigms (Fig. 1), we next aimed to identify the
patterns of brain-wide activity which best represented the
different rates and persistence of habituation in free-swimming
larvae. A correlation between the activity of each brain region
with the free-swimming responses of its matching stimulus group
shows that moderately habituating neurons are most likely to
resemble the responses presented in the behavioral experiments
and that the tectum presents the highest correlations for each
functional cluster (Supplementary Fig. 6c). We next considered
the relationship between the stimulus train’s properties and the
responses of each functional cluster in this structure (Supple-
mentary Fig. 6d). This analysis revealed only subtle differences
across the stimulus trains for the response profiles of fast
habituating neurons. For moderately habituating neurons,
differences arose with intriguing parallels to the free-swimming
behavioral outputs. In experiments with 60 s ISIs, habitation was
slower, and recovery was less dramatic than for 20 s ISI
experiments. In experiments that used slow stimuli, habituation
occurred faster than in the corresponding experiments with fast
loom stimuli. We tested these observations using a nonlinear
regression to fit curves to the normalized responses during the first
block of habituation (Supplementary Fig. 6e). The results show
that moderately habituating neurons within the tectum are
significantly different for the rate constant and plateau values
across data sets (F(6388)= 9.778; p < 0.0001). In experiments with
60 s ISIs, habituation is slower (represented by a higher Plateau
and lower rate constant [Plateau: f20= 0.1889; f60= 0.2305;
s20= 0.1728; s60= 0.2240. rate constant K: f20= 0.9916;
f60= 0.8387; s20= 1.019; s60= 0.99]), and recovery is less
dramatic than for 20 s ISI experiments (Supplementary Fig. 6f,
10th vs 11th looms predicted mean diff. and adjusted p values of
Sidak’s multiple comparisons test: f20=−0.2339, p= <0.0001;
f60=−0.04707, p= 0.5405; s20=−0.2063, p ≤ 0.0001;
s60=−0.1118, p= 0.0019). For weakly habituating neurons,
experiments with 60 s ISIs led to less habituation throughout the
experiment, while other correlates of free-swimming behavior
were less clear. Overall, moderately habituating ROIs repeatedly
had the strongest correlation to free-swimming escape probability
(Supplementary Fig. 6g, mean Pearson correlation values:
f20= 0.672, 95% CI [0.6421, 0.702]; f60= 0.6744, 95% CI
[0.6269, 0.722]; s20= 0.644, 95% CI [0.5898, 0.6983];
s60= 0.6443, 95% CI [0.613, 0.6757]), suggesting that among
our functional clusters, it is the moderately habituating ROIs in
the tectum whose dynamics most closely reflect behavior.

Network modeling of visual loom habituation. As an approach
for modeling visual loom processing and the network changes
that produce habituation, we used methods from graph theory,
which are well suited to analyzing brain-wide activity data67–72.
To allow comparisons across fish and groups, we created com-
mon reference points that preserved the anatomical location and
functional identity of the loom responses. We spatially clustered
the 144,709 responsive ROIs into 99 nodes that represent the
ROIs’ functional clusters and their associated anatomical loca-
tions, and then we produced matrices representing the correla-
tions in activity between all pairs of these nodes at different times
during the experiments (Fig. 4a, see “Methods” section). Each
correlation matrix encodes a graph composed of functional

relations (edges) between pairs of grouped ROIs (nodes). The
validity of this method was confirmed by demonstrating robust-
ness to the number of nodes (Supplementary Fig. 7), by com-
parison to null models (Supplementary Fig. 8), and by leave-one-
out cross-validation (Supplementary Fig. 8). We then compared
these matrices in larvae exposed to the f20 and f60 habituation
paradigms to identify the graph-level correlates of behavioral
habituation (Fig. 4). As expected, both paradigms produced high
correlation values in response to the first loom, and the matrices
for the two paradigms were highly similar. As habituation pro-
ceeded, graph correlations remained somewhat higher in the f60
paradigm, reflecting differences in the behavioral responses dur-
ing the f20 and f60 experiments (Fig. 1c, d). By the 10th loom,
most of these correlations had dropped dramatically for both
paradigms, with high values mostly restricted to correlations
between weakly habituating (red) nodes. The f20 paradigm shows
a stronger recovery across the graph in the 11th trial, reflecting
the stronger behavioral recovery that takes place in this paradigm.

As an approach to judge both the rate at which these
correlations were lost during the first block of stimuli and the
degree to which they recovered in the 11th trial, we used a
Pearson correlation to match the matrix of the 11th trial to the
most closely related matrix from the first block of stimuli
(Fig. 4a). The highest Pearson correlation coefficients were for the
4th trial for f20 and the 6th trial for f60, indicating both that the
correlations are lost more quickly in f20 (the paradigm in which
habituation occurs more quickly), and that the recovery is weaker
in f60 (the paradigm that produces more indelible behavioral
habituation). Notably, the patterns of correlations across the
matrices during mid-habituation trials (4th for f20, Fig. 4a)
strikingly resemble those in the 11th trials, suggesting that the
network is returning to a partially habituated state, rather than
assuming a distinct post-habituation state.

These results show that the loss of correlations across nodes in
the graph reflects free-swimming behavioral habituation
dynamics. To describe the graphs, we represented them spatially
and mapped the relative correlation strengths between nodes in
the f20 and f60 paradigms (Fig. 4b). Each edge (node-to-node
relationship) in the graph is represented by its correlation value in
the f20 paradigm minus its value in the f60 paradigm. As
expected, because the first trial is identical, both paradigms show
robust correlations across numerous edges in the first trial, with
most edges near a zero value and no net weighting of the graph
toward positive or negative. By the 10th trial, the graph has lost
most edges, and the remaining activity is biased toward stronger
correlations in f60 (shown in red), reflecting the slower
habituation. The f20 paradigm shows the stronger recovery,
however, and this effect is captured in a shift toward positive
values (blue) in the 11th trial.

Changes in the correlations between different functional
categories of neuron are of particular interest, as they could
indicate which specific correlations contribute to loom responses,
and by association, to habituation. Therefore, our next goal was to
quantify the level of functional connectivity between different
clusters, and how this connectivity changes after repeated loom
presentations. We quantified the participation coefficient of each
node in the graph, which is defined as the proportion of a node’s
edges that are shared with nodes from a different functional
cluster (as defined in Fig. 2). The participation coefficient
dropped over the course of 10 stimuli (Fig. 4c), but this drop
was slower in f60 than f20, suggesting that habituation is driven
not only by a drop in correlated activity across nodes, but
specifically by a loss of communication between different
functional clusters. This conclusion is reinforced by the higher
participation coefficient in the 11th trial of the f20 paradigm,
where strong behavioral recovery is echoed by a recovery in
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participation coefficient. Raster plots of the participation
coefficient by each node across the first 11 trials (Fig. 4d) show
this trend, further suggesting that it is weakly habituating (red
nodes) that maintain much of their participation across
functional clusters as habituation proceeds, and that recovery is
accompanied by a resumption of such participation by various
strongly (green) and moderately (blue) habituating nodes.

To address which brain regions are involved in this process, we
mapped the edge strength (degree of correlated activity between
nodes) across five regions containing a majority of the nodes (the
pallium, thalamus, tectum, tegmentum, and hindbrain; Fig. 4e).
The values for each edge, represented by a dot, show the
correlation in the 10th trial minus the correlation in the 11th trial,
thus giving negative values to edges that became stronger during
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recovery. Violin plots show the total distributions of edges
between different functional clusters. The results confirm that
certain types of edges, especially those between two weakly
habituating (red) nodes, play a relatively small role in recovery,
owing to their strong unhabituated responses in the 10th trial.
Other types of edges, especially those not including a weakly
habituating node, tend to have highly negative values, indicating
that they contribute to the part of the graph that is lost during
habituation and regained during recovery.

Collectively, these results converge toward a model of the
brain-wide network that produces visual escape and the
mechanisms by which these responses are suppressed during
learning. The initial process of habituation appears to rest on the
loss of correlation (and presumed communication) among
neurons of different functional clusters. This segregation is
manifested as a dramatic drop in correlation values for edges
between different clusters (Fig. 4a), a restriction of the active
graph principally to edges between nodes of the same type
(especially weakly habituating nodes, Fig. 4b, e), and a loss in
functional participation across clusters during the course of
habituation (Fig. 4c). The striking similarity between mid-
habituation matrices and those of partially recovered graphs
(Fig. 4a) indicates that the matrix changes that underlie
habituation are the same as those that are reversed during
recovery, suggesting that the onset of habituation works through
the same circuit-level changes that recovery does, and that there
are not separable network-level mechanisms for the acquisition
and retention of behavioral habituation.

fmr1−/− mutant larvae show behavioral and network-level
habituation deficits. To test the validity and explore the utility of
this proposed network, we next considered a zebrafish model of
FXS, an inherited disorder characterized by altered habituation,
intellectual disability, social deficits, and altered sensory proces-
sing. We used a nonsense mutation in the highly conserved fmr1
gene, the silencing of which causes FXS in humans. Given the
learning deficits, including slow habituation, in humans with
FXS52–54, we explored whether and how behavior and brain-wide
habituation networks are altered in fmr1-mutant zebrafish which
presents developmental and behavioral phenotypes in line with
mammalian models73–77.

Using the s20 habituation paradigm in our free-swimming
preparation, we found that fmr1−/−, fmr1−/+ heterozygotes
(hets), and wild-type (WT) siblings share a similarly high
probability of startling to the first loom stimulus (Fig. 5a).
Habituation is slower, however, with a significantly higher
response probability in the 2nd trial, and a trend towards greater
response in the 3rd and 4th trials. There is also a stronger recovery
after a break in fmr1−/− animals, although not significantly so.

Heterozygotes show an intermediate phenotype. The slowed
habituation in fmr1−/− larvae is likely maladaptive in a natural
environment, as escape responses to non-threatening stimuli
waste energy and make the larvae conspicuous to other potential
predators in the area. Furthermore, these behavioral results match
the habituation deficits found in other animal models and human
subjects with FXS. Such hyperresponsiveness could also be related
to elevated levels of anxiety seen in subjects with FXS78,79.

We next assessed correlates of this behavior using brain-wide
calcium imaging, initially by considering the distributions of ROIs
belonging to functional clusters (Fig. 5b). While all genotypes had
fundamentally similar distributions, there was a trend toward
more numerous weakly habituating ROIs in the cerebellum in
fmr1−/− larvae, and toward a reduction in strongly habituating
ROIs in the hindbrain, although neither of these trends was
significant.

Turning to the graph representation of these results (Fig. 5c),
we first examined correlations among 90 nodes (having
eliminated nine of the original 99 nodes with a requirement
that all nodes be represented in at least three larvae). Generally,
correlations across the graph were stronger in WT than in
fmr1−/− in the first trial (resulting in positive values shown in
blue). This trend is reversed in the 2nd and 3rd trials, where the
WT graph habituates more quickly, leaving negative (red)
values that indicate persistent fmr1−/− network activity
(Figs. 5c, 6a). Consistent with behavioral data, the overall
correlations across the WT and fmr1−/− graphs are similar by
the 10th trial, but WT graphs are stronger across the core
perceptual pathway (tectum, thalamus, and pallium) described
above, while fmr1−/− correlations are stronger across edges that
habituate quickly in WT. Again echoing a trend in the free-
swimming behavior, the fmr1−/− animals show dramatically
broader and stronger pairwise correlations between nodes in
the 11th trial, following a break in the stimulus. All of these
observed differences carry through to measurements of
participation across the different loom graphs (Fig. 5d, e).

By assessing correlation strengths across the graph in a way
that represents nodes’ functional and anatomical properties, we
then outlined the overall functional architecture of the habituat-
ing fmr1−/− brain versus WT. First, we organized our brain-wide
node-to-node relationships by functional cluster (Fig. 6b, c),
allowing the level of correlation within and across clusters to be
assessed. This structuring of the data shows that by the 2nd
stimulus, there are still strong functional connections among red-
red edges and along blue-blue edges in WT, and that these
connections are largely restricted to red-red edges by the 3rd trial.
By the 10th trial, strong correlations only exist in red-red edges
(and a few to inhibited nodes, shown in purple). A subset of red-
blue, blue-blue, and blue-green nodes reconnect in the 11th trial,

Fig. 4 Graph model of the visual loom network during habituation. a Correlation matrices for activity of 99 nodes representing ROIs across the whole
brain. The functional clusters to which each node belongs are indicated on the axes, using the color code from Fig. 2. Darker blue shades represent stronger
positive correlations for any given node pair, and red indicates negative correlations (see color scale, a). b A graphic representation of correlations across
the 99 nodes, whose functional clusters are indicated by their colors and anatomical positions represented spatially. The colors and width of the lines
indicate the relative correlation across the f20 and f60 experiments (f20 correlation minus f60 correlation), where red indicates stronger correlations in
f60 and blue indicates stronger correlations in f20 (see color scale). Only edges with correlations above 0.75 in either the f20 or the f60 matrices are
displayed. c A heat map of the participation coefficient for each of the 99 nodes during the 1st, 2nd, 3rd, 10th, and 11th loom stimuli of the f20 and f60
experiments. d Raster plots showing the participation coefficient of each node across the first 11 stimuli for f20 and f60, and the relative participation (f20
value minus f60 value) where blue indicates stronger f20 participation and red indicates stronger f60 participation. The functional clusters for each node
are indicated, using the color code from Fig. 2. e Changes in correlation strength for edges from the 10th to the 11th looms of f20, indicating the impact of
the recovery from habituation. Values shown are calculated for each edge as its strength in the 10th loom minus its strength in the 11th loom, with more
negative values indicating edges that showed more pronounced recovery between the 10th and 11th looms (top). The functional clusters for each edge’s
two nodes are color-coded and the brain regions that the edges span are indicated on the left. Violin plots (bottom) show the cumulative distributions of
edges connecting different types of functional clusters (left). Dashed lines indicate the median and dotted lines indicate the first and third quartiles.
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reflecting recovery. In all regards, these effects resemble the
habituating graph dynamics shown for the f20 paradigm in Fig. 4,
where habituation tracks with a loss of communication between
weakly habituating (red) nodes and strongly habituating (green)
nodes, connected through moderately habituating (blue) nodes.
By comparison, fmr1−/− animals show more strong correlations,
and therefore more edges, between numerous nodes in the 2nd

and 3rd trials, as well as following recovery in the 11th trial
(Fig. 6b, c). The distribution of the correlated edges is similar
between the genotypes in the first and 10th trials (Fig. 6b),
showing that the graphs are similar in the naive state and
following habituation. Consistent with the analyses in Figs. 5c
and 6a, this finding suggests that uncoupling across functional
clusters occurs more slowly and recovers more completely in
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fmr1−/− animals, providing a mechanism by which the
sensorimotor transformation is slanted toward downstream
network activity and behavioral responsiveness in these animals.

To explore the spatial properties of this phenotype, we next
represented these data organized by brain region (Supplementary
Fig. 9). In WT animals, this structuring of the data makes clear
that extensive correlation between nodes across all brain regions

exists in the first trial (Supplementary Fig. 9), and as habituation
proceeds, the correlation progressively winnows to the core
perceptual circuit described above: mainly connections among the
tectum, thalamus, and pallium on the side contralateral to the
stimulus. In the 2nd, 3rd, and 11th trials (and to a lesser
degree, the 10th trial), this network contains more connections in
fmr1−/− animals (Fig. 6a and Supplementary Fig. 9), showing
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stronger functional relationships between the tectum and other
regions, and with a greater number of highly correlated edges
from the hindbrain to other regions (Supplementary Fig. 9). This
pattern of findings, in turn, echoes observations from Fig. 4,
which suggests that an uncoupling of spatially distinct perceptual
and downstream networks drives habituation.

The fmr1−/− habituating graph is less stable and maintains
more complex connectivity. While we have shown that pairwise
connections and functional identity are important during habi-
tuation, we next asked whether the higher-order structure of the
evolving graphs also plays a role. We took a two-pronged
approach for analyzing higher-order structure quantitatively in
the correlation graphs: first, we characterized the dense con-
nectivity patterns using dynamic community detection, and sec-
ond, we detected sparse areas using persistent homology.

To understand the structure of densely connected areas of the
graphs, we performed dynamic community detection, which
probes how functional clusters in graphs change over time80–84.
Briefly, this method first establishes communities of nodes based
on their connectivity at each time point, and then tracks the
community changes of each node through time. In this method, a
structural resolution parameter γ and a temporal resolution
parameter ω are used to define the number of communities and
their tendency to change at different time points (Fig. 7a, see
“Methods” section for details). Finding optimal γ and ω values is
important as they can affect the results of the dynamic
community metrics. Therefore, an assessment of a range of these
parameters was first performed to find appropriate values
(Supplementary Fig. 10 and see “Methods” section). Then, using
the dynamic community detection approach, we found that the
fmr1 mutant communities are generally less stable (presented
more changes than WT communities), but specifically that the
strongly habituating nodes (green functional cluster) show
significantly higher flexibility (more community changes through
time) (Fig. 7b, c). These strongly habituating nodes have higher
cohesion (tending to change together with other nodes from the
same community) and present higher promiscuity (tending to
participate in a greater number of different communities through
time) than in the WT graph (Fig. 7b, c). This pattern of findings
indicates an increased involvement of this part of the graph
during loom habituation in fmr1 mutants compared to WT.
Interestingly, the weakly habituating nodes, and some of the
moderately habituating nodes, show less cohesion in fmr1
mutants than WT, suggesting that the core visual pathway of
fmr1 mutants may lose coordination and structure. Furthermore,
the areas of the brain more affected by these alterations in
flexibility, cohesion, and promiscuity are the subpallium, mid-
brain visual structures, and hindbrain (Fig. 7c–f). Altogether,
these data suggest that the generally increased connectivity results
in a less structured network, particularly in the core visual
pathway, which then fails to uncouple elements of the secondary

processing (green nodes) as habituation occurs. This less stable
and less structured network may lead to slower habituation
because the elements producing the behaviors and further
processing (green nodes) remain partially engaged.

To complement this assessment of the densely connected areas
of the graph, we performed a second analysis, this time focusing
on the sparsest areas. Specifically, we compared the sparsity
patterns of the fmr1 mutant and WT graphs by analyzing the
correlation matrices from each loom using persistent homology, a
tool from applied topology that detects topological cavities or
voids within weighted graphs (Fig. 7g, h)85–88. Briefly, in this
analysis, the edges of a graph are added one by one, from
strongest to weakest, until all of the connections are included,
which creates a sequence of binary graphs. As we add edges, we
can track the birth, evolution, and death of topological cavities (in
dimensions 0, 1, or 2) within the sequence of binary graphs,
which tells us about the lifespan of each persistent void in the
original weighted graphs (Fig. 7h). The number of dimension 0
cavities counts the number of connected components, the
number of dimension 1 cavities counts the number of voids
surrounded by loops of four edges or more, and the number of
dimension 2 cavities counts the number of void-enclosing shells
formed from triangles in the graph. Persistent homology reveals
that the fmr1 mutants’ networks often contain more topological
voids than WT networks, which suggests that the fmr1 mutant
networks are noisier and less structured than the WT networks
(Fig. 7i, j and Supplementary Fig. 11a–e). This idea derives from
previous studies which shown that in weighted graph models,
random graphs have been observed to have higher lifetime sums
than do graph models that contain constrained organization89–91.
Given this intuition, the consistent positive difference in lifetime
sums between the fmr1 mutant persistent homology and WT
persistent homology supports the community detection findings
that the fmr1 mutant networks are more disordered than those of
their WT counterparts.

Together, the analyses from our two complementary
approaches indicate that fmr1 mutant animals have overly
connected networks, which are less stable (present more
community changes through time) and are noisier (suggested
by a higher lifetime of voids), leading to altered function in the
core visual pathway, more persistent coupling of secondary
structures as loom habituation occurs, and a resulting slowing of
habituation. Our results align with previous findings that showed
functional connectivity alterations leading to more disordered
network activity in Fmr1-null mice92,93 which, like our zebrafish
larvae, show impeded behavioral visual habituation94. Interest-
ingly, previous calcium imaging and electrophysiological studies
of somatosensory and visual cortex in Fmr1-mutant mice have
also found more strongly correlated activity95,96. This suggests
that stronger correlations across the nervous systems of FXS
models is a generalized phenotype that could explain hypersensi-
tivity to various stimuli.

Fig. 6 Graph structure of WT and fmr1−/− habituation networks. a Comparison of the average number of edges >0.75 at different loom presentations
using the leave-one-out approach to generate group-averaged matrices for WT (n = 10) and fmr1−/− (n = 11). WT presents more edges at the 1st loom
and fmr1−/− fish at the following loom presentations, including the first loom after recovery (the 11th). Repeated measures two-way ANOVA (one-sided)
with the Geisser–Greenhouse correction followed by a Šidák’s multiple comparisons test. WT vs fmr1 > 0.75 edges Predicted mean diff., p values of multiple
comparisons test (and Šidák’s correction adjusted p values): 1st Loom = 546.9, p ≤ 0.0001 (p ≤ 0.0001); 2nd Loom = −192.3, p ≤ 0.0001 (p ≤ 0.0001);
3rd Loom= −121.7, p ≤ 0.0001 (p ≤ 0.0001); 4th Loom = −94.98, p ≤ 0.0001 (p = 0.0001); 5th Loom = −165.6, p ≤ 0.0001 (p ≤ 0.0001); 10th Loom =
−81.07, p = 0.0006 (p = 0.0039); 11th Loom = −311.1, p ≤ <0.0001 (p ≤ 0.0002). Black horizontal bars indicate the median. b, c Functionally sorted
brain-wide graphs for WT and fmr1−/− larvae. Edges with correlations above 0.75 are shown between all combinations of nodes, and nodes are arranged
by their functional clusters (Green: Strongly habituating; Blue: Moderately habituating; Red: Weakly habituating; Magenta: Inhibited). Graphs are shown for
trials 1, 2, 3, and 10 (b), and trial 11 (c). The brain region to which each node belongs is indicated in (c), and is consistent across (b) and (c). Pallium, Pal;
subpallium, Sp; thalamus, Th; habenula, Hb; pretectum, Pt; tectum, Tec; tegmentum, Tg; cerebellum, Cb; and hindbrain, HB.
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Discussion
A brain-wide model of visual habituation. From an anatomical
perspective, the core loom perception circuit can be inferred from
the edges that remain active through habituation. These include
edges within and among the tectum, thalamus, and pallium
(Fig. 4b). The absence of habituation in these edges suggests that
they are involved in perceiving a looming stimulus, and that they

are upstream of the sensorimotor transformation that controls
behavioral outputs. The regions most affected during habituation
(especially the hindbrain, but also including a subset of ROIs in
the thalamus and the pallium) are likely downstream of this
transformation.

The tectum is an important recipient of loom
information40–43,46,64,97, and communicates in different ways
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with a variety of brain regions, making it an intriguing pivot point
in the overall network. Those connections include non-
habituating correlations with the pallium and likely outputs to
the hindbrain that habituate strongly (Supplementary Fig. 9). The
tectum also contains a high density of moderately habituating
ROIs (Fig. 2h), whose activity most closely mirrors free-
swimming behavioral habituation (Supplementary Fig. 6). These
two observations raise the possibility that circuits within the
tectum are responsible for the key changes in the sensorimotor
transformation that produce habituation. This idea is reinforced
by the drops in the correlation between moderately habituating
ROIs and weakly habituating ROIs (blue-red edges) and between
moderately habituating and strongly habituating ROIs (blue-
green edges) during habituation. We propose a mechanism by
which moderately habituating neurons in the tectum could
uncouple the core visual circuit of weakly habituating (red)
neurons from downstream circuits as habituation proceeds. These
uncoupled circuits, principally comprising strongly habituating
(green) ROIs, show interesting diversity reflective of distinct
impacts that novelty and saliency play in different brain regions.
The hindbrain’s strongly habituating ROIs are more likely to
correlate with the animal’s actual escape responses (Supplemen-
tary Fig. 11f–h), as are those in other motor-associated regions
including the cerebellum, pretectum, thalamus, and tegmentum.
This suggests an interaction with these regions’ premotor and
motor circuits63,64 and an acute role in escape. Other strongly
habituating ROIs that uncouple from the tectum occupy the
pallium, including the Dm, a fear processing area65,98, and these
are less likely to correlate to behavior on a trial-by-trial basis
(Supplementary Fig. 11f–h), suggesting reduced higher-order
representations of threat during habituation that are independent
of trial-by-trial escape. The overall interpretation is that
habituation involves the uncoupling of various downstream
elements from visual perception circuitry, and implicates the
tectum as the likely switch for this sensorimotor transformation.

Overall, we have shown that neurons with distinct habituating
profiles to repetitive visual stimuli are present throughout the
brain, and that the detailed responses of these categories of
neurons can be modulated by the saliency and temporal details of
the stimuli. These response profiles, viewed brain-wide at cellular
resolution, reflect the rates of behavioral habituation to repeated
looms, providing a framework for understanding the brain-wide
network changes that mediate habituation. Using graph theory,
we have shown that behavioral habituation tracks with a
functional disconnection of a principally visual circuit in the
fore- and midbrain, and of a response circuit that includes known
premotor regions located in the hindbrain and higher-order
forebrain regions that represent threats. The central location of
the tectum (homologous to the mammalian superior colliculus)
in this functional network, and the prominence of moderately
habituating tectal neurons whose activity reflects behavioral
habituation rates, suggest that this region is involved in visual
learning. Given these properties, the tectum could serve as a pivot
point for the sensorimotor transformation, a role that may be

conserved in birds and primates99. We have shown that this
overall network is present in fmr1−/− animals, but that its
dynamics are shifted toward higher network correlations, greater
transmission from sensory to premotor regions, and ultimately
slower behavioral habituation (Fig. 5a). The fmr1−/− networks
also appear more unstable and less structured than the WT
networks; these observations may be explained by an increase in
persistent communication between the brain regions and
functional clusters that would normally disconnect during
habituation. These observations provide a brain-wide mechanism
for slower sensorimotor learning that reflects previously reported
behavioral phenomena in animal models and humans with
FXS56,78,79,94. Importantly, it provides a departure point for
targeted explorations of the circuit-level causes of learning and
sensorimotor deficits in FXS and related psychiatric conditions.

Methods
Animals. All zebrafish (Danio rerio) work complied with all relevant ethical reg-
ulations for animal testing and research in accordance with The University of
Queensland Animal Welfare Unit and ethics approval SBMS/378/16. Adults were
reared and maintained in a Tecniplast zebrafish housing system under standard
conditions using the rotifer polyculture method for early feeding 5–9 days post
fertilization. For the visual habituation experiments with different stimulus trains,
we used nacre zebrafish embryos of the TL strain expressing the transgene,
elavl3:H2B‐GCaMP6s100. For the fmr1 experiments, zebrafish embryos were bred
by incrossing zebrafish heterozygous for fmr1hu2787 77and elavl3:H2B‐GCaMP6s, to
produce clutches with a 1:2:1 Mendelian ratio (wild type: heterozygous: homo-
zygous) for fmr1hu2787. The fmr1hu2787 mutants have a change (C to T) in the fmr1
coding region leading to a nonsense-mediated decay and the loss of the protein77.
Following the experiments, larvae were genotyped as previously described74. All
fish were produced by natural spawning and reared in Petri dishes with embryo
medium (1.37 mM NaCl, 53.65 µM KCl, 2.54 µM Na2HPO4, 4.41 µM KH2PO4,
0.13 mM CaCl2, 0.16 mM MgSO4, and 0.43 mM NaHCO3 at pH 7.2) at 28.5 °C on
a 14-h light: 10-h dark cycle.

Stimulus train for behavioral experiments. The stimulus train consisted of three
blocks of 10 looms with 5 min of rest (with a white screen) between each block. The
loom was initiated with a dot that started expanding after 1 s. The minimum angle
of the loom was ~11° and the maximum angle of the loom was ~90°. The fast
looms reached their maximum angle in 2 s and the slow looms in 4 s. This was
followed by 2 s of black screen and a 9 s slow fade back to white, designed to avoid
any neural OFF responses. The screen remained white until the next loom
initiation for a variable duration depending on the desired inter-stimulus intervals
(ISI) of 18, 20, or 22 s for the f20 and s20 paradigms and 54,60, or 66 s for f60 and
s60. A sound stimulus of 300 Hz at ~85 dB was played 3 times for 1 s with 1 s ISI.
The first presentation was 25 s before the 21st loom. The video and sound were
displayed by a monitor (10.1 1366 × 768 Display IPS+ Speakers - HDMI/VGA/
NTSC/PAL, Little Bird, Australia). Since the sound stimulus did not produce any
marked dishabituation, in spite of eliciting calcium responses, we did not analyze
this aspect of the experiment.

Behavioral experiments. Individual 6 dpf larvae were placed in each well of the
12-well arena (circular plugs of agar were removed to produce the wells). The wells
were filled with embryo medium and were placed at 1 cm above a screen inside a
dark chamber, and all larvae received the same stimulus train. The chamber was
kept in the dark but was illuminated with infrared LEDs. A Basler acA1920 camera
recorded the movements from above, a lens (40 mm Thorlabs) and a 665 nm
longpass filter (FGL665 - Ø25 mm RG665 Colored Glass Filter, Thorlabs) delivered
infrared light to the camera with a weak signal from the screen that confirmed the
timing of the looming stimuli. Movies were recorded using the Basler Video
Recording Software (v1.3, Basler AG). Movements were tracked in bins of 1 s using

Fig. 7 Dynamic community detection and persistent homology across WT and fmr1−/− graphs. a Example community detection results obtained with
γ = 1.6 and ω = 0.9. b Relative (WT minus fmr1−/−) values of flexibility, cohesion, and promiscuity for each of the nodes. c Relative values of flexibility,
cohesion, and promiscuity for 9 brain regions and by functional cluster. The color represents the difference of the median (WT minus fmr1−/−) and *
indicates statistical significance (p < 0.00384) for a Friedman’s test (one-sided) and Bonferroni correction. Details can be found in Supplementary Table 3.
d–f Heat map of the relative (WT minus fmr1−/−) values of flexibility (d), cohesion (e), and promiscuity (f) for individual nodes across the brain. g
Conceptual examples of structures that can be analyzed with the persistent homology method. h Schematic example of a persistent homology analysis.
Persistent homology tracks cavities (pink and orange regions) across a sequence of networks in which edges are added according to their decreasing
correlation strength (top), and the lifespans of these cavities can be represented as edges are added (bottom). i Example dimension 1 barcode graphs for
fmr1 mutants and WT at the 11th loom. j Lifetime sums in dimension 1 of fmr1 mutants (red) and WT (blue) at pre-loom and 20 loom time points. Results
for dimensions 0 and 2 are shown in Supplementary Fig. 11a–e. Centre represents the mean and error bars indicate 95% CIs.
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the zebrafish tracking Viewpoint software (v1.4, ZebraLab, ViewPoint Life Sciences,
France), tracking three-speed categories: <0.5 mm/s, 0.5–30 mm/s, and >30 mm/s.
The output of the tracking was then analyzed using a Matlab script. Escape
responses were defined as one or more movements above 30 mm/s during a loom
presentation. Further statistical analysis and graphs were made in GraphPad Prism
v8.3.1 and R 3.5.1101. The sound failed to produce a clear dishabituation so this
effect was not further analyzed. The fitted curves were done in GraphPad Prism
v8.3.1 with the exponential one-phase decay curve from the 1st to the 10th loom of
each block, using a Least Squares regression and plateau to 0. We used the lme4
and MuMIn R packages to generate the GLMM and to calculate the R2. The model
was fitted for a binomial distribution with the formula: response = loom+ speed
+ ISI+ (1/fishID).

For the fmr1 experiments, the procedures were the same, however, the stimulus
train was a shorter version of the s20 with 20 looms instead of 30, as we did not
observe an effect of the auditory tone between the 20th and the 21st loom. When
the experiment ended, larvae were processed for genotyping. The quantification of
the data was performed blind to the genotype for the fmr1 experiments. The
binomial test was performed one-sided with the escape responses of the fmr1 or
Het larvae in each loom versus the probability of response of the WT for that same
loom. All the statistical tests for the behavioral analysis assumed repeated
measurements (for the multiple loom presentations) and non-normal distributions.

Sample preparation for calcium imaging. Imaging was performed on 6 dpf larvae
that were embedded upright in 2% low melting point agarose (Sigma, A9045) and
transferred to a 3D-printed imaging chamber102. Imaging chambers were filled
with embryo medium once the agarose had set and the tail was freed103 so that
escape responses could be monitored. The imaging chamber was composed of a
3D-printed base (24 × 24 mm) with four posts (3 × 3 × 20 mm) raised along the
four corners of the platform. The four outward faces of the chamber were fixed
with a glass coverslip (20 × 20 mm, 0.13–0.16 mm thick). A glass window on the
bottom of the chamber allowed filming of tail movements102. For the fmr1
experiments, larvae were processed for genotyping when the experiment ended.

Loom stimulus train for calcium imaging. Looms were presented on a 75 ×
55mm LCD generic PnP monitor (1024 × 768 pixels, 85 Hz, 32-bit true color) with
a NVIDIA GeForce GTX 970 graphics card. The monitor was positioned 30 mm to
the right of the larvae, and was covered by a colored-glass alternative filter
(Newport, 65CGA-550) with a cut-on wavelength of 550 nm. The minimum angle
of the loom was ~10° and the maximum angle the loom covered was ~82°. The
auditory stimulation (a 100 Hz sound at 100 dB before the 21st loom) was pre-
sented with two audio speakers (Logitech Z213) placed at ~20 cm from the fish.
The background noise level was 40 dB. As for the behavioral experiment, in the
fmr1 experiments, the procedures were the same but with a shorter version of the
s20 stimulus train.

Microscopy. Zebrafish larvae, individually mounted in the imaging chamber, were
imaged for elavl3:H2B‐GCaMP6s on a custom-built SPIM microscope102,104. To
avoid stimulating the eyes with the light sheet, the side laser path of the SPIM was
blocked, and the front SPIM plane was restricted to a space between the eyes using
a vertical aperture. Micro-Manager (v1.4.22) was used to capture images, which
were binned 4 times to a final resolution of 640 × 540 pixels at 16-bit in tagged
image file (TIFF) format. Fifty horizontal sections at 5 µm increments were cap-
tured and imaged at 2 Hz. Recording of the brain activity started 30 s before the
first stimulus onset and stopped after the return to white from the last loom of each
block, resulting in three separated acquisitions. To image the larva and record its
tail movements, a 4 × 0.1NA Olympus microscope objective (PLN 4X) was placed
below the sample chamber105, coupled with a tube lens projecting the image onto a
Basler acA1920 camera, recording at 30 fps with the Pylon Viewer (v5.2.0, Basler
AG) software.

At the end of each experiment, a single high-definition scan of non-binned
images was recorded with 100 ms exposure time and 2 µm increments to be used
for the registration of the brain of each fish (see below).

Analysis of calcium imaging data. Calcium imaging data from the three acqui-
sitions were concatenated in ImageJ v1.52c as a combined time series and then
separated into individual slices (50 planes per fish). Motion correction was per-
formed using Non-Rigid Motion Correction (NoRMCorre) algorithm106, and
fluorescence traces were extracted and demixed from the time series using the
CaImAn package (version 0.9)107,108 (http://github.com/flatironinstitute/CaImAn).
We used 4000 components per slice to ensure that we would not miss any ROIs
during the initialization step of CaImAn. The risk of over-segmentation was
mitigated by a merge step using a threshold of 0.8 to merge overlapping ROIs. The
order of the autoregressive model was set at 1 to account for the decay of the
fluorescence, our acquisition speed being too slow to account for the rise time. The
gSig (half-size of neurons) was set at 2, based on estimates of the sizes of the nuclei
in our images. We did not use any temporal or spatial downsampling and the
initialization method was ‘greedy_roi’. The components were updated before and
after the merge steps, empty components were discarded, and the components
were ranked for fitness as described previously107.

Analysis of whole-brain activity data. For the experiment with four stimulus
trains, the resulting ROIs and fluorescent traces from the CaImAn package were
pooled from larvae of each stimulus train (n for the 4 data sets: f20= 11, f60= 8,
s20= 10, s60= 10), and then z-scored per data set. For the analysis of the change
in response based on the first loom (Fig. 2a–e), a linear regression was performed,
using a stereotypical GCamp6s trace as regressor, to detect the responses to the first
loom. The ROIs with r2 > 0.5 were then selected to see the intensity of response at
the 2nd and 10th loom presentations. A K-means clustering by cityblock distance
with 50 components and 5 replicates was done for each data set with the denoised
output from CaImAn and was also run a second time with noise added back to
allow for the detection of negative responses109. Another K-means clustering was
performed with 200 components to test whether additional subtypes of responses
could be discovered and to confirm representation of common clusters across the
data sets, but this resulted in numerous clusters drawn from individual fish, which
we took as a sign of overclustering. From the 50 clusters for each data set, a subset
was manually selected based on their responses to the looms or sound and their
general presence across all data sets and individual fish. To select representative
visual habituating clusters, we set as a criterion that they had to be present in all 4
data sets and in a majority of fish (>80% in each data set). This resulted in the
weakly habituating, moderately habituating and strongly habituating clusters.
Other potentially interesting clusters were found in multiple, but not all four data
sets. To include some of these for further analysis, our selection criteria were that
these clusters had to be confirmed in both f20 and s20 in the K-means with 200
clusters, their distributions in the brain were similar across both data sets, and that
they were present in >90% of their fish. These criteria led to the inclusion of
strongly habituating subtypes, the sound-responsive cluster, and inhibited
responses. These clusters (three strongly habituating, a moderately habituating, a
weakly habituating, an inhibited, and a sound-responsive cluster) were used as
regressors for subsequent analyses of the four data sets. All ROIs from each of the 4
data sets were modeled by linear regression to each of these regressors. As the 60 s
ISI time series were longer, the time series were trimmed around the 30 looms to
perform the linear regression. ROIs with an r2 value higher than 0.3 were then
selected for further analysis. The selected ROIs were categorized by correlation to
each of the 7 selected regressors. The auditory cluster was not analyzed after this
point. After filtering the ROIs with the linear regression, all of the clusters were
found in all the fish of each data set except for the inhibited cluster, which varied in
representation across data sets (f20= 81%, f60= 87%, s20= 100%, and
s60= 63%). We confirmed that the clusters could be found in most or all larvae,
but 3 fish (1 from f20 and 2 from f60) were discarded because their contribution to
one of the habituating clusters was above 50% of the total number of ROIs for that
cluster, so they were deemed as outliers in terms of responsiveness. To find the
motor evoked calcium responses, we first used ImageJ to detect the tail movements
from the behavioral imaging. We used a polygon ROI covering half of the tail to
extract the mean gray values of the time series. Substantial tail movements pro-
duced large peaks and were flagged as movement events. We then build regressors
for individual larvae inserting a stereotypical GCamp6s trace to the movement
timing for each larva. Finally, we used a linear regression with the motor regressor
of each larva as for the habituating clusters, and selected ROIs with an r2 value
higher than 0.2.

For the t-SNE110 (Supplementary Fig. 4a) we used the Matlab function with a
correlation-based distance and the following parameters: Perplexity = 184,
Exaggeration = 40, Iterations = 3000. For further analysis, we pooled together the
three strongly habituating clusters and we excluded the sound response cluster,
resulting in four main clusters.

To calculate the proportions of ROIs for a given cluster that appear in each
brain region (Fig. 3b), the number of ROIs of each cluster in each brain region was
divided by the total number of ROIs of that cluster in the whole brain. We did this
for each individual larva, created a mean for each data set, and then averaged these
values across all four data sets. The same procedure was used to calculate the
proportion of each cluster within all loom-responsive ROIs per brain region
(Fig. 3c).

For the correlation analysis of habituation dynamics between the free-
swimming behavior and brain responses, we performed a Pearson correlation
between the normalized responses of each fish and the free-swimming probability
responses of the matching group. Then the correlations were averaged by brain
region and cluster subtype with the requirement that at least three fish were
contributing to each combination. Finally, these values were averaged when the
four groups fulfilled the previous requirement (Supplementary Fig. 6c). For the
analysis of the normalized responses in the tectum (Supplementary Fig. 6d), a
mean of the tectal ROIs’ responses for each cluster was calculated for each
individual fish, then the maximum response per loom was calculated based on the
maximum z-score value in the window of the loom presentation adjusted by the
baseline before each loom. These values were normalized to the first loom response,
and a mean of the normalized maximum response was calculated for each data set.
To analyze the differences between stimulus trains in moderately habituating
responses in the tectum, we performed a nonlinear regression fitting a one-phase
decay curve with a least-squares regression as a fitting method. We tested for
differences in Plateau and rate constant values (K) with the constraint that K must
be greater than 0. The curve was fitted only from loom 1. To test the amplitude of
recovery, we used a mixed-effects model and a Sidak’s multiple comparisons test
between the 10th and the 11th looms. To compare the tectal responses of the
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strongly habituating, moderately habituating, and weakly habituating normalized
responses with the matching free-swimming behavioral results, we calculated the
Pearson correlations coefficients between the responses of each fish and the free-
swimming responses of its matching stimulus train. We then averaged these results
to compare across habituating profiles.

To locate the subset of strongly habituating neurons that are involved in motor
behaviors (Supplementary Fig. 11f–h), we calculated the Spearman correlation
coefficient between each strongly habituating ROI from the f20 data set and the
motor regressor of its respective fish. We then selected the ROIs above a correlation
coefficient of 0.3066 (the mean, 0.1522, plus one SD, 0.1544). Finally, we calculated
their proportion compared to the strongly habituating ROIs of each of the brain
regions previously analyzed.

For fmr1 experiments, we performed a k-means with 50 components with the
traces of all the fish. We then selected 8 clusters based on their possible loom
responses. Then we performed a linear regression and selected the ROIs with an r2

value above 0.3. As their location and average calcium traces were similar to the
functional clusters previously found, we classified the ROIs into the functional
clusters from our original s20 data set using correlation as described above. All data
were quantified blind to genotype. For Fig. 5b, we chose a random sample (n= 11)
of Hets to match WT (n= 10) and fmr1−/− (n= 11).

The analysis was done using Matlab R2018b and GraphPad Prism v8.3.1.

Construction and validation of correlation matrices and graphs. To allow
formal statistical comparisons between individual fish and across groups in the
context of our graph theoretical analysis, we had to cluster our 144,709 responsive
ROIs spatially while preserving their functional identity. This approach permitted
us to have comparable anatomical and functional nodes across all individual fish
and groups. To do so, we performed k-means clustering on the 3-dimensional
spatial coordinates of the ROIs111 of each functional cluster, in each brain region,
with k number of clusters. The value of k was chosen based on the number of ROIs.
For regions with fewer than 200 ROIs, no node was placed; between 200 and 500, 1
node; between 500 and 1000, 2 nodes; between 1000 and 3000, 3 nodes; and >3000,
4 nodes. This node attribution was intended to strike a balance between (i)
including relatively sparse populations that may, nonetheless, make functional
contributions, and (ii) weighting our analysis to some degree toward more abun-
dant response types. This method produced 102 nodes, but we discarded three
nodes that had three or fewer fish contributing to them. For the remaining 99
nodes, we computed the cross-correlation between the mean loom response of their
ROIs and generated individual matrices for each larva, and each loom presentation.
We then averaged the matrices of each data set across larvae to produce a single set
of nodes across the brain, each with averaged correlations during the relevant
stimulus train. This approach permitted apples-to-apples comparisons of brain-
wide responses across groups (receiving different stimulus trains or with different
genotypes).

To assure that downsampling our responses to 99 nodes did not eliminate key
properties of the network, we performed a sensitivity analysis with a range of node
numbers. Specifically, we assessed the density and participation coefficient metrics
in graphs where we had doubled or quadrupled the number of nodes. We also
performed a graph analysis of all the ROIs of each fish. All the individual ROIs’
signals were cross-correlated and we generated correlation matrices for each loom
presentation as we did in our node-based approach, we then quantified density and
the participation coefficients (Supplementary Fig. 7). The results of this sensitivity
analysis show that our 99 node approach provides similar dynamics to those found
with a higher number or nodes or all ROIs in individual fish.

To further validate the results from our graph model, we compared them to
results generated from null models, using the f20 data set. We used the amplitude-
adjusted Fourier transform (AAFT) to generate surrogates of the time series.
Unlike a random surrogate model, this method allowed us to preserve features of
the original time series, like the mean, variance, and amplitude distribution,
thereby increasing the null model’s stringency112. To generate such null models,
instead of averaging the individual correlation matrices as above, we first averaged
the time series of each node across all f20 fish (Supplementary Fig. 8a, left). Then,
using an AAFT algorithm113, we generated a first model with surrogates of each
node’s time series (Supplementary Fig. 8a, middle), and a second model with
surrogates of each node’s time series within the loom time windows used for the
correlation analysis (Supplementary Fig. 8a, right). We then generated the
correlation matrices as above.

As a final validation of our results, we used the f20 dataset to perform a leave-
one-out cross-validation, to ensure that no single fish drove our overall results. We
generated group-averaged matrices as before, but we systematically excluded one
fish from the average each time. Five examples of these matrices are shown in
Supplementary Fig. 8e, closely resembling the data from our entire group of
fish(Supplementary Fig. 8f). The same approach was also used to compare the
number of edges >0.75 between WT and fmr1−/− larvae (Fig. 6a).

Quantitative analyses of graphs. Having validated our matrices, we proceeded
with an array of quantitative analyses. First, we aimed to measure the overall
similarity between pairs of graphs as a means of gauging the completeness of
recovery after a break in the stimulus (Fig. 4). To identify the graph most similar to
the 11th trial of the f20 and f60 data sets, we calculated the correlation between the

matrices for the first 10 and the matrix for the 11th loom for each stimulus train.
To perform this correlation, we used a vector composed of all elements in the
upper right half of the matrix (above the diagonal), since each matrix is a mirror
image across this diagonal. We then identified the trial number with the highest
Pearson correlation coefficient to the 11th loom, when recovery takes place.

For further quantitative analyses of the graphs’ metrics, we used the Brain
Connectivity Toolbox114. We first generated weighted connectivity matrices and
filtered out edges with an absolute correlation value below 0.75. We then calculated
the graph density (ratio of the present edges to the total possible edges of the
graph) and the node-specific participation coefficient115, defined as:

Pi ¼ 1� ∑
K

k¼1

SiCk

Si

� �2

ð1Þ

where SiCk
is the total edge weight of node i to nodes in community Ck and Si is the

total number of edges of i. The participation coefficient was calculated by letting
the four functional clusters identified previously (strongly habituating, moderately
habituating, weakly habituating, and inhibited) represent the partition (K).

The fmr1 data set was treated similarly using the spatial nodes from the
previous data set. ROIs were assigned to each node based on the smallest Euclidian
distance. After discarding nodes represented in fewer than 3 larvae, we ended up
with 90 nodes for this analysis. As before, we calculated the correlation between
time series pairs, and generated individual fish matrices for each loom presentation.

Dynamic community detection. The multilayer graphs and dynamic community
detection is based on previous work80 and was performed on the unthresholded
matrices using the MATLAB genlouvain.m function from the GenLouvain v2.2
toolbox116. The multilayer modularity quality function is given as follows:

Qmultilayer ¼
1
2μ

∑
ijlr

Aijl � γlPijl

� �
δlr þ δijωjlr

n o
δðCil ;CjrÞ ð2Þ

where µ is the total edge weight, A is an adjacency matrix and Aijl is its ijth element
at layer l. The element Pijl gives the expected weight connecting node i and node j
under a null model at layer l and δ is the Kronecker delta. The partition in a
number of communities at each time point was determined by the structural
resolution parameter γ. Smaller values of γ will generate fewer communities, while
higher values will increase the number of communities. The temporal resolution
parameter ω determines the strength of the connections between the nodes of
different time points, influencing the rate of community change. Low ω values
produce dynamic graphs with a high tendency to change while high values generate
more time rigid community partitions.

To find the optimal γ and ω values for our multilayer community detection, we
used a combination of two approaches. The first approach involved finding the
optimized maximization of the modularity quality function (Q), which are the Q
values that differ the most from a null model and have the smallest variability. In
this case, we used a comparison against a temporal null model112. The second
approach is bounding the γ and ω parameters to ensure that the community
detection results are informative. The goal was to identify a γ value that produced
an appropriate number of communities and a ω value that was neither too rigid nor
too dynamic.

For the first approach, we used the multilayer graph of each genotype and
performed 100 repetitions of the maximization of the modularity quality function
(Q) in a wide range of γ and ω values (0.1–2.5 and 0.1–2, respectively). We then
calculated the mean and variance of Q for each combination of parameters
generating matrices of these values. This same procedure was performed for a
temporal null model of each genotype in which the time points were randomly
permuted. The averaged Q values of the original graph were subtracted by the
respective averaged Q values of its temporal null model. These values were then
multiplied by the relative variance [-var-max(var)] to find the optimized Q values
at which the greatest difference from the null model and the minimum variance
across repetitions was observed. We then computed the average optimized Q for
the 3 genotypes data sets.

For the second approach, we performed the community detection 100 times
and then found the representative partitions using the Consensus Iterative.m
function112 for the previous range of γ and ω values (0.1–2.5 and 0.1–2,
respectively). We then established the following rules. Using the WT data set as a
reference, we did not include combinations of parameters that had more than 60 or
fewer than 4 communities. This first rule limited the lower and higher range of γ
values. We also set values such that at least a third of the nodes (30 for these data
sets) would change community between the pre-loom measurement and the first
loom and also between the 10th and the 11th loom. This rule established the higher
limits of the ω values. Finally, the consensus communities obtained with the 34
pairs of γ and ω values that had optimized Q values above the mean, and that
respected our dynamic community rules, were used for the analysis
(Supplementary Fig. 10).

To describe the roles of each node in their graphs, we used the previously
described community measures of flexibility, cohesion, and promiscuity84, which
are available online (http://commdetect.weebly.com/). The flexibility coefficient is a
simple yet important metric as it indicates the number of times a node changes
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community normalized by the total possible changes81, represented by the formula

ξi ¼
gi

L� 1
ð3Þ

where L is the number of layers and g the number of times a node changes
community.

The cohesion strength indicates the degree to which a node tends to change
communities mutually with another node. This is defined as

Ωi ¼ ∑
j≠i
Mij ð4Þ

where M is a cohesion matrix of edge weights indicating the ratio of times a pair of
nodes moves to the same community together:

Mij ¼
gmut
ij

L� 1
ð5Þ

Finally, the promiscuity measure is calculated based on the fraction of communities
to which the nodes belong across all time points117:

Ψi ¼
gdifi

K � 1
ð6Þ

where K is the total number of communities and gdifi is the number of changes to
new communities of node i. Therefore, this metric is relevant to determine if a
node with high flexibility is just changing between a few possible communities or if
it is actually joining a wide range of them.

These measures were calculated for the selected combinations of γ and ω for the
data set of each genotype and the results were analyzed using the MATLAB
functions friedman and multcompare. As we assumed non-normal distribution, a
Friedman’s test was performed followed by a multiple comparisons test of the
average column ranks between the results of the 3 genotypes using a Bonferroni
adjusted alpha for those comparisons. To select the significance values we applied a
Bonferroni correction for the 13 tests (9 brain regions and 4 cluster types) and
looked for p < 0.05/13 = 0.0038. The results can be seen in the Supplementary
Table 3.

Topological analysis. To identify topological differences between fmr1 and WT
fish, we used the leave-one-out approach to generate one 90 × 90 correlation matrix
for each loom and each fish left out. We computed the persistent homology in
dimensions 0 through 2, of the filtered clique complex of each correlation matrix,
using the open-source Eirene package118. We set the correlation value as the fil-
tration parameter. The output of the persistent homology calculation is a barcode
in which each bar corresponds to a persistent cavity, and the bar spans from the
persistent cavity birth (the highest correlation value in which the cavity exists) to
the death (the correlation value at which the persistent cavity is tessellated). The
absolute value of the difference between the death and birth values is called the
persistent cavity lifetime. Summing over all persistent cavities in dimension n of a
barcode yields the lifetime sum. Please see refs. 88,119,120 for more details on the
mathematics of persistent homology.

Registration to a reference brain. We used Advanced Normalization Tools
(ANTs, https://github.com/ANTsX/ANTs) to register our results on the H2B-RFP
reference of Zbrain121–123. The high-definition stacks were used to build a common
template, before registering this template to the Zbrain atlas102. The resulting
warps were sequentially applied to the centroids of extracted ROIs to map them all
in the same frame of reference. The Warped ROI coordinates were then placed in
each of the 294 brain regions defined in the Zbrain atlas123.

Data visualization. We used Unity to represent each ROI centroid as a sphere.
Their diameter was adjusted based on the number of ROIs to be able to visualize
the different clusters (Strongly habituating = 2; Moderately habituating = 3,
Weakly habituating = 4; Inhibited = 6). An isosurface mesh of the zebrafish brain
was generated from the Zbrain masks for the diencephalon, mesencephalon,
rhombencephalon, telencephalon, and eyes using ImageVis3D124. The mesh was
imported in Unity (v2019.3.0a2) and overlaid to the ROIs.

The colormaps used for Figs. 2, 4–7 and Supplementary Figs. 2, 4–8 were
generated using two Matlab® functions: The cbrewer function, https://
au.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-
schemes-for-matlab (accessed in May 2019) which includes specifications and
designs developed by Cynthia Brewer (http://colorbrewer.org/), and the MatPlotLib
2.0 default colormaps ported to Matlab, https://au.mathworks.com/matlabcentral/
fileexchange/62729-matplotlib-2-0-colormaps-perceptually-uniform-and-beautiful
(accessed in May 2019).

The circular graphs (Fig. 6 and Supplementary Fig. 9) were made with a
modified version of the code from Matlab®’s circularGraph toolbox. https://
www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph/ (accessed
in May 2019).

The density plot in Supplementary Fig. 4b was made with dscatter function.
Made by Robert Henson and found in Flow Cytometry Data Reader and
Visualization (https://www.mathworks.com/matlabcentral/fileexchange/8430-flow-

cytometry-data-reader-and-visualization), MATLAB Central File Exchange.
(accessed in November 2020).

Figures were produced using Matlab R2018b and GraphPad Prism v8.3.1 and
assembled in Adobe Illustrator CS6.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this paper are stored in the University of Queensland’s Research Data Manager
repository, and are publicly available in the “MarquezLegorreta_et_al_2021_Datasets”
database, available at https://doi.org/10.48610/9549fdc. Source data are provided with
this paper.

Code availability
All scripts can be found at the emarquezUQ/ZF_Loom_Habituation_MarquezLegorreta_
et_al_2021 github repository (https://github.com/emarquezUQ/ZF_Loom_Habituation_
MarquezLegorreta_et_al_2021).
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