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Abstract
An organism’s life history is closely interlinked with its allocation of energy between 
growth and reproduction at different life stages. Theoretical models have established 
that diminishing returns from reproductive investment promote strategies with simul-
taneous investment into growth and reproduction (indeterminate growth) over strate-
gies with distinct phases of growth and reproduction (determinate growth). We extend 
this traditional, binary classification by showing that allocation-dependent fecundity 
and mortality rates allow for a large diversity of optimal allocation schedules. By ana-
lyzing a model of organisms that allocate energy between growth and reproduction, 
we find twelve types of optimal allocation schedules, differing qualitatively in how 
reproductive allocation increases with body mass. These twelve optimal allocation 
schedules include types with different combinations of continuous and discontinuous 
increase in reproduction allocation, in which phases of continuous increase can be 
decelerating or accelerating. We furthermore investigate how this variation influences 
growth curves and the expected maximum life span and body size. Our study thus 
reveals new links between eco-physiological constraints and life-history evolution and 
underscores how allocation-dependent fitness components may underlie biological 
diversity.
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1  | INTRODUCTION

Simple life-history models often predict that it is optimal to allocate all 
surplus energy to growth early in life, before switching to allocate all 
energy to reproduction. This allocation pattern is often referred to as a 
“bang-bang control” and leads to determinate growth. Yet, simultane-
ous investment into growth and reproduction, leading to indeterminate 
growth, is common in nature. Much theoretical research on reproduc-
tive allocation has therefore investigated mechanisms and conditions, 
which can promote evolution of indeterminate growth, for example, 
stochastic environments (King & Roughgarden, 1982), diminishing 

returns of reproductive investments (Sibly, Calow, & Nichols, 1985; 
Taylor, Gourley, Lawrence, & Kaplan, 1974), or structural constraints 
(Kozłowski & Ziólko, 1988). This research (reviewed in Heino & Kaitala, 
1999; Kozłowski, 1991; Perrin & Sibly, 1993) has established that si-
multaneous investment into growth and reproduction can be optimal, 
at least during some period of an organism’s life. Less research has 
focused on investigating the shape and nature of the resulting mixed 
allocation patterns. Whereas bang-bang control strategies can simply 
be characterized by the ages or sizes at which the switch from growth 
to reproduction occurs, it is less clear how to characterize and un-
derstand allocation schedules that cause reproductive investment to 
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change gradually over a lifetime. Which shapes can we expect? What 
conditions favor different features in these shapes? How do particular 
optimal allocation schedules affect key life-history features, such as 
growth curves, average life spans, or asymptotic body sizes?

Here, we pursue these questions for life-history strategies that 
evolve under allocation-dependent fecundity and mortality. We will 
specifically consider cases where fecundity and mortality rates in-
crease with reproductive allocation, but at rates that may be either 
faster (henceforth referred to as accelerating) or slower (henceforth 
referred to as decelerating) than proportional. It is theoretically well 
established that simultaneous investment into growth and reproduc-
tion is favored when there are diminishing returns of reproductive in-
vestments. This occurs when fecundity increases at a decelerating rate 
with the fraction of surplus energy invested into reproduction or when 
mortality increases at an accelerating rate with the reproductive-
investment fraction (León, 1976; Sibly et al., 1985; Taylor et al., 1974).

There are many biological reasons why fecundity may depend 
nonlinearly on reproductive allocation. Competition between the off-
spring or between the gametes produced by an individual may cause 
diminishing returns from energy invested into reproduction. Eggs from 
a single mother may compete for resources, and sperm competition 
is common for both animals and plants (Andersson & Iwasa, 1996; 
Scharer, 2009). Structural constraints within an organism, for example, 
limited size of brood chambers in cladocerans (Perrin, Ruedi, & Saiah, 
1987), can also lead to diminishing returns by impeding efficient use 
of surplus energy (cf. Kozłowski & Ziólko, 1988).

Accelerating returns from investment into reproduction may occur 
among plants in which increasing investments attract more seed-dis-
persing or pollinating animals. For example, Sallabanks (1992) found 
that the proportion of seeds dispersed per plant increased with fruit 
abundance in hawthorn, Crataegus monogyna. By a similar token, 
Schaffer and Schaffer (1979) found accelerating returns produced by 
pollinators preferring the larger flowers in Agavaceae. Significant parts 
of the total energy invested into reproduction may not be channeled 
directly to offspring body mass but rather into organs or capacities 
which facilitate reproduction, for example, ovaries, inflorescences, 
or shells. Accelerating returns may then occur due to economies of 
scale, as the efficiency of such supportive features, in terms of cost 
per offspring, may increase with the size of the operation, for exam-
ple, via reduced volume-surface ratios or because the same facilities 
can be used many times. The finding by Greene and Johnson (1994) 
that trees with larger seeds invest a smaller proportion of energy into 
structures for protection and dispersal supports this idea (but see Lord 
& Westoby, 2012). Another example is learning in seabirds, whereby 
the probability that a breeding attempt is successful increases with the 
number of attempts, that is, with experience (Goodman, 1974).

Mortality is generally expected to increase with investment into 
reproduction (Calow, 1979; Calow & Woollhead, 1977; Sletvold & 
Ågren, 2015). Animals may, for example, be more vulnerable to pre-
dation when they are breeding or searching for partners, or be more 
susceptible to disease during the reproductive phase (Orton, 1929). As 
with fecundity, there are several reasons why also mortality may be a 
nonlinear function of reproductive allocation.

Mortality will increase at an accelerating rate with reproduc-
tive allocation if survival costs increase sharply when reproductive-
investment levels pass a threshold. For example, many systems of 
defence to diseases in plants require a minimal production of second-
ary tissue (Feeny, 1976; Fraenkel, 1959). If investment into growth is 
reduced as a result of surplus energy being channeled into reproduc-
tion, production of those tissues will decrease and lead to a sharply 
increased mortality rate. Further, as discussed by Bell (1980), growth 
of gonads in fish may have little effect on mortality as long as they 
are relatively small, but exert a strong negative effect if they exceed 
a critical proportion of the total body size and start compromising the 
functionality of organs necessary for survival. By contrast, mortality 
may increase at a decelerating rate with reproductive allocation when 
initial investments to reproduction are riskier for adults than additional 
investments. As an example, the mortality rate of zooplankton often 
increases during reproduction, as carrying eggs increases the chance 
to be detected by visual predators (e.g., Svensson, 1997). Because the 
risk of being detected is related to surface area rather than volume 
(e.g., Aksnes & Giske, 1993), one may expect that predation risk will 
increase at a less than proportional rate with the total number of eggs 
carried by a female. Other organisms that initially suffer high mortal-
ity risks are those that undertake long migratory journeys before re-
producing, such as anadromous fish (cf. Bell, 1980; Gadgil & Bossert, 
1970). For them, producing the first few eggs confers a high mortality 
risk, whereas continued egg production likely confers only little added 
risk.

Important qualitative insights into how the shape of optimal 
reproductive-allocation schedules depends on fecundity and mortality 
rates have been obtained through mathematical investigations (León, 
1976; Sibly et al., 1985; Taylor et al., 1974). However, although these 
studies are of a general nature, they do not give an overview of ex-
pected shapes of nonbang–bang reproductive-allocation schedules. 
Numerical investigations in early pioneering studies (e.g., Gadgil & 
Bossert, 1970) are instructive in suggesting different possible shapes, 
but these investigations are limited to scenarios with a small number 
of age classes. Here, we attempt a systematic overview of the diversity 
of life-history types that can arise from variation in the shape of fe-
cundity and mortality functions, and of the consequences that differ-
ent optimal reproductive schedules have for the growth, expected life 
span, and ultimate size of organisms. We shall focus on gradually in-
creasing, accelerating, and decelerating fecundity and mortality func-
tions, both because we believe these cases are biologically relevant, 
as described above, and for continuity with previous theory (e.g., Bell, 
1980; Gadgil & Bossert, 1970; Sibly et al., 1985).

The remainder of this article is structured as follows. First, we 
introduce and describe a general life-history model of ontogeny and 
procreation. Using dynamic programming, we determine optimal 
reproductive-allocation schedules for each combination of generic fe-
cundity and mortality regime. We systematically classify the emerging 
allocation schedules into twelve different classes depending on their 
characteristic shapes. We then study growth patterns and life spans 
associated with the twelve different types of optimal allocation sched-
ules. We proceed by showing how our results can be understood at 
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least in part by studying the marginal value of reproductive investment 
at different life stages. Finally, we synthesize our findings into a gen-
eral, conceptual framework and discuss how they connect to empirical 
patterns.

2  | MODEL

Our model builds on an established tradition in earlier studies of op-
timal allocation to reproduction (Cohen, 1971; Kozłowski & Ziólko, 
1988; Perrin, Sibly, & Nichols, 1993; Sibly et al., 1985). An individual 
is assumed to produce energy at a mass-dependent rate E. A fraction 
u of this energy is allocated to reproduction and the remaining frac-
tion, 1 − u, is allocated to somatic growth. The mass m of an individual 
increases as

The probability P of an individual surviving until age t decreases as

In the above equation, q(u) denotes the instantaneous mortality rate, 
which we assume to be an increasing function of the fraction u of 
available energy allocated to reproduction. This assumption is in line 
with Calow (1979) who argued that among several traditional alterna-
tives, energy invested into reproduction as a proportion of the total 
energy income is the most suitable predictor of reproductive costs, 
such as mortality, and best reflects that these costs typically arise 
because reproduction competes for energy with other important 
physiological processes or activities. It also forms the basis for previ-
ous theory by, for example, Myers and Doyle (1983) and Sibly et al. 
(1985). The energy devoted to reproduction, uE, is converted into 
offspring biomass at a rate b(uE). Unlike the mortality rate q, which 
depends on the fraction invested into reproduction, the fecundity 

rate b is assumed to depend on the total amount of energy invested 
into reproduction.

In adherence to the existing tradition, we describe the dependence 
of vital rates on reproductive allocation using power functions 
(Figure 1). Specifically, we assume that the mortality rate is given by

and the potential fecundity rate by

As described below, we determine from the potential fecundity rate 
a realized fecundity rate b that determines the expected number 
of offspring of an individual. The two exponents kq and kb control 
whether the mortality rate and fecundity rate increase at an acceler-
ating (ki > 1), proportional (ki = 1), or decelerating (ki < 1) rate with u 
(see Figure 1).

The potential fecundity rate, Equation (4), has the unrealistic and un-
desirable feature that the slope becomes infinite at zero reproductive 
investment when kb < 1. This means that a small increase in energy al-
located to reproduction can convey an unrealistically large increase in 
the rate at which offspring are produced, potentially causing improbable 
evolutionary predictions. We avoid this problem by assuming a physio-
logical limit such that whenever kb < 1 the realized fecundity is always 
less than a factor p times the energy allocated (Figure 1c). Next, we con-
struct a continuous and differentiable realized fecundity rate as a smooth 
minimum of the potential fecundity and the physiological limit by setting 
b(uE)= (b̂

(

uE)s+ (puE)s
)1∕s for some value of s < 0, with increasingly neg-

ative values of s implying a closer approximation of the minimum.
Following the common assumption that biomass intake scales with 

mass according to a power law (e.g., Kozłowski & Wiegert, 1986; Reiss, 
1989; Roff, 1992), the organism is assumed to acquire energy at a rate 
that depends on its current mass as

(1)dm∕dt=
(

1−u(m)
)

E(m), m(0)=mbirth.

(2)dP∕dt=−Pq(u), P(0)=1.

(3)q(u)= c1+c2u
kq ,

(4)b̂(uE)= c3(uE)
kb .

(5)E(m)= c4m
ke .

F IGURE  1 Fecundity and mortality rates as functions of reproductive investment. The panels illustrate how different parameters affect the 
shapes of these functions. The curvatures of the mortality functions in (a) depend on kq and the curvatures of the fecundity functions in (b) 
depend on kb. (c) shows how the realized fecundity function (b, black line) is constructed as a smooth minimum of the potential fecundity (b̂, gray 
line) and the physiological limit (dashed line)

(a) (b) (c) 
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The expected lifetime reproduction of the individual is then given by

We aim to determine optimal mass-dependent allocation sched-
ules that maximize expected lifetime reproduction as given by 
Equation (6). This control problem is solved by applying the method 
of dynamic programming to a time-discrete version of the ordinary 
differential equations (Equations [1 and 2]; see, e.g., Bertsekas, 
1987 or Houston & McNamara, 1999 for an outline of the standard 
procedures used). Primarily, we vary the parameters kq, kb and the 
physiological limit p, because they influence the curvatures of the 
fecundity and mortality functions. In line with previous studies (e.g., 
Charnov, 1993; Kozłowski & Uchmanski, 1987), we set the produc-
tion exponent ke to 3/4. Without loss of generality we reduce the 
model dimensionality by adjusting the timescale so that the baseline 
mortality rate, c1, equals 1. The remaining parameters are assigned 
values motivated by simplicity or chosen for illustrative purposes. 
We conduct a robustness check (see Appendix B) to clarify how vari-
ation of parameter settings and selected model assumptions influ-
ence optimal allocation schedules.

The optimal mass-dependent allocation schedules are represented 
by the proportions u*(m) (where the asterisk denotes optimality) of 
energy invested into reproduction for any individual body mass m. We 
divide allocation schedules into different categories by considering the 
curvature of the function u*(m) for early and late life stages. To cover 
most of the biologically relevant life span, we calculate the trajecto-
ries of u* and m from t = 0 to a time-point of low survival probabil-
ity, P = 10−6. If u has not reached 1 within this time span, growth is 
considered to be indeterminate. We also estimate the maximum life 
span and maximum body size corresponding to the optimal schedules. 
Following a common practice in animal studies (e.g., Benedetti et al., 
2008; Satoh et al., 2016), we define the maximum life span as the av-
erage age at death of the 10% most long-lived individuals in a cohort. 
We then define maximum body size as the average final size of these 
individuals.

3  | RESULTS

3.1 | Types of optimal allocation schedules

By exploring the salient parameter space, we identify twelve 
qualitatively different types of optimal allocation schedules u*(m). 
Figure 2a shows examples of each of the twelve types with parame-
ter combinations selected for visual clarity. Reproductive allocation 
increases with mass either stepwise or gradually. As a consequence, 
the optimal allocation schedules consist of intervals with continu-
ous increase and points with discontinuous increase (denoted D). 
Intervals of continuous increase can furthermore be divided into 
accelerating (denoted a) or decelerating (denoted d) functions of 
body mass. We also note that the optimal allocation schedules can 
have a different shape during the onset of reproduction (when u*(m) 

increases from zero) and during the completion phase (when u*(m) 
approaches 1 or an asymptotic value).

Four of the twelve types of allocation schedules (top row in 
Figure 2a) exhibit a discontinuous onset of reproduction, whereas 
the other eight are continuous in the beginning, increasing gradually 
from zero. In the completion phase, full reproductive allocation (u = 1) 
is approached discontinuously in three of the twelve types (leftmost 
column in Figure 2a). In the other nine types, the allocation curve in-
tersects with u = 1 as a continuous curve that is either accelerating 
or decelerating (with the completion phase denoted a or d). In three 
types (rightmost column in Figure 2a), the allocation curve is decel-
erating without ever reaching full reproduction (u = 1), and this spe-
cial case is categorized as indeterminate growth (with the completion 
phase denoted i).

Combinations of the three categories of shapes in the onset phase 
(D, a, or d) and the four categories of shapes in the completion phase 
(D, a, d, or i) constitute the twelve qualitatively different reproductive-
allocation schedules shown in Figure 2. In the following, we will use 
these onset- and completion-phase shape categories to describe the 
different optimal mass-dependent reproductive-allocation sched-
ules in abbreviated form. As an example, the string Dd refers to a 
reproductive-allocation schedule with a discontinuous onset phase 
and a continuous, decelerating completion phase.

3.2 | Growth patterns of the optimal types

Determined according to using Equation (1), the growth curves of the 
twelve numerically obtained optimal types described above are shown 
in (Figure 2b). The growth curves all have an accelerating phase in the 
beginning, since then investment into reproduction is low and almost 
all energy is used for growth. The growth curves differ more in the 
later stages. The types with a discontinuous completion phase stop 
growing suddenly (growth type I, first column in Figure 2b). The types 
with a continuous completion phase that reach maximal investment 
into reproduction, u = 1, before the survival probability falls below 
the stipulated threshold of P = 10−6 (growth type II, second column in 
Figure 2b), grow asymptotically toward a final mass. Growth curves 
for the types that do not reach u = 1 within this time frame are either 
decelerating (growth type III, third column in Figure 2b) or acceler-
ating (growth type IV, fourth column in Figure 2b). In summary, the 
twelve qualitatively different types of reproductive-allocation sched-
ules correspond to four qualitatively different modes of growth late 
in life.

3.3 | How optimal allocation schedules depend on 
fecundity and mortality curvature parameters

To find all twelve types of optimal allocation schedules in Figure 2a, it 
is necessary to vary more than two parameters at a time. It is there-
fore not straightforward to give a full overview of where in the param-
eter space different types are optimal. However, several types can be 
found by varying kb and kq while keeping the other parameters fixed 

(6)R0=∫
∞

0

P(t) b(u[m(t)] E[m(t)]) dt.
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(Figure 3a). We use this as a starting point for elucidating which condi-
tions favor different types.

First, the two curvature parameters kb and kq determine whether 
the optimal allocation schedule is continuous, discontinuous, or a 
combination of the two. The four quadrants in Figure 3a correspond 
to combinations of accelerating (convex) and decelerating (concave) 
fecundity and mortality rates. In the top-left quadrant, mortality is ac-
celerating and fecundity is decelerating. These conditions are known 
to favor gradually increasing allocation to reproduction (see Sibly 
et al., 1985). Therefore, exclusively types with continuously increasing 
reproductive investment (aa, ad, ai, and di) are present there. In the 
opposite, lower-right quadrant, none of these conditions are fulfilled, 
and thus, only the bang-bang control strategy (DD) occurs there. In 
the top-right and bottom-left quadrants, one of the conditions for in-
termediate allocation is fulfilled, but not the other. It is only in these 
two quadrants that we find types with mixed discontinuous and con-
tinuous phases (Dd, Di, and Da). Heuristically, the combination of a 
curvature parameter that favors reproductive allocation of bang–bang 
type and a curvature parameter that favors graded allocation may yield 
types that are a mixture of the two. A more technical understanding 
can be gained by considering the marginal values of reproductive in-
vestment at different life stages, as we will detail in Section 3.5.

Second, the curvature parameters kb and kq determine whether 
optimal allocation schedules with gradually increasing reproductive al-
location have accelerating or decelerating phases. This variation can 

be explained by the magnitude of the curvatures. Note, for example, 
that decreasing the curvature parameter kb of the fecundity function 
and moving from (kb, kq) = (1, 1) to (kb, kq) = (0.5, 1) in Figure 3 induces 
a transition from an accelerating to a decelerating completion phase, 
and finally to indeterminate growth, which is a strongly decelerating 
completion phase. Similarly, increasing kq in the three leftmost types 
in the middle row of Figure 2 leads from accelerating to increasingly 
decelerating completion phases.

In many cases, the shapes in the onset and completion phases do 
not coincide (all types except DD, aa, and dd). Consider, for example, 
the Dd and the dD types. Both exhibit continuously and discontin-
uously increasing allocation, but the Dd type has the discontinuous 
phase first and the dD type has the discontinuous phase last. The 
variation in the order by which different shape categories appear 
can be understood by observing how the curvatures of the fecundity 
and mortality functions vary with the level of investment. For exam-
ple, the physiological-limit parameter p affects the curvature of the 
fecundity function at low levels of investment (Figure 1c). Therefore, 
variation in p mainly affects the shape of the reproductive-allocation 
schedule in its early phases. This explains why the early phases of the 
reproductive-allocation schedules in the second and the third row in 
Figure 2a, which differ only in the parameter p, have different shapes 
(accelerating and decelerating, respectively). Next, consider the types 
aa, ad, da, and dd in Figure 2. These differ in the physiological-limit pa-
rameter p and in the kq parameter only. Variation in p causes a change 

F IGURE  2 Different types of optimal reproductive-allocation schedules (a) and corresponding growth curves (b). Letters indicate the shapes 
of the allocation schedules in the onset phase (rows) and in the completion phase (columns) of reproductive investment. For each allocation 
schedule shown in (a), the corresponding growth curve is shown in (b). The type of growth curve is indicated by the roman numbers I–IV in (b). 
The circles represent the mean age or mean size of the 10% oldest individuals. With some exceptions detailed below, we assume the following 
parameter settings: kq = 0.95, 1.25, 3.5, and 10 in the columns from left to right, kb = 1.02, 0.92, and 0.92 in the rows from top to bottom, p = 15, 
15, and 1.2 in the rows from top to bottom, c2 = 0.04, c1 = c3 = c4 = 1, mbirth = 0.01, and ke = 3/4. The exceptions are that for Da we set c2 = 1.15 
and kb = 1.1; for Di, we set c2 = 0.8; for aD, we set c1 = c3 = 2 and kb = kq = 0.95; and for dD, we set c1 = c3 = 2, kb = kq = 0.95, and p = 2.5

(b) (a) 
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between accelerating and decelerating curves in the early phases 
of investment, while variation in kq causes the change between ac-
celerating and decelerating curves in the later phases of investment 
(Figure 1a). Hence, by changing these parameters independently, all 
combinations aa, ad, da, and dd can be obtained.

In Appendix B we describe how variation in the other model pa-
rameters (c1, …, c4, ke, P, and s) qualitatively influence the shapes of 
the optimal schedules. We generally find that the diversity of optimal 
types is robust to moderate variation in these parameter values, but 
can be reduced if they take on very large or very small values. For ex-
ample, several types in our scheme appear because of an interaction 
between the mortality and the fecundity functions. We might there-
fore get a lower diversity when effects from one of these dominate for 
example, if c2 is small compared to c3 such that variation in u will affect 
fecundity much more than mortality.

We also study how the optimal allocation schedules are affected 
by fixed costs of reproduction and size-dependent mortality (see 
Appendix B). We find that fixed costs of reproduction, such that fe-
cundity is zero until a minimum amount of energy is allocated to repro-
duction, have very similar effects on the shapes of optimal schedules 
as assuming accelerating fecundity. With regard to size-dependent 
mortality, we find that if mortality is initially very high and decays only 
slowly with size we can get extreme and unrealistic outcomes where 
it is optimal to invest all energy to reproduction already from birth. 
However, if mortality drops relatively fast with size or is not too large 
overall, the effects on the shapes of the optimal allocation schedules, 
and thus also on overall diversity, should be relatively mild.

3.4 | How growth-curve types and life-history 
attributes depend on fecundity and mortality 
curvature parameters

The allocation schedule determines the growth curve and, conse-
quently, also the maximum life span and maximum body size of an 
organism. For example, the maximum body size increases as the al-
location schedule becomes increasingly decelerating (e.g., second 
row in Figure 2b). In order to give a more systematic overview, we 
investigate how salient life-history characteristics are affected by the 
shapes of optimal reproductive allocation under variation of the cur-
vature parameters kb and kq (Figure 3b-d). When moving toward the 
upper left corner (low kb and high kq) in the parameter space, the types 
of growth (Figure 3b) change from ending abruptly (I) or asymptoti-
cally (II) to continued, indeterminate growth (III, IV). When compar-
ing Figure 3a,b, it is also apparent that there is no complete overlap 
between the optimal types and the growth curves in the parameter 
space. Only the growth type that stops abruptly (I) exclusively cor-
responds to the DD type in Figure 3. However, with other parameter 
settings, this type of growth curve may also arise with an aD or a dD 
type (Figure 2b).

Variation in growth curves is associated with variation in maximum 
life span and maximum body size. As shown in Figure 3d, the bang-
bang control strategies (DD) and nonbang-bang control strategies are 
affected differently by variation in the curvature parameters. For bang-
bang control strategies, the switch from none to full reproductive in-
vestment occurs at increasingly larger sizes when kb is increased. The 

F IGURE  3 Overview of how the 
curvature parameters (kb, kq) of the 
fecundity and mortality functions affect 
the shape of the optimal reproductive-
allocation schedule and their properties. 
In (a) and (b), the lines indicate borders 
between different types. The types are 
classified as in Figure 2. (c) and (d) are 
contour plots. In (b–d) the dashed line 
indicates the border between bang-bang 
control strategies (DD) and others. The 
gray lines in (a) and (b) correspond to kb = 1 
and kq = 1, respectively. The inset in panel 
(d) shows the optimal allocation schedules 
u*(m) at the parameter values indicated by 
X and Y in the contour plot. Parameters: 
c1 = c2 = c3 = c4 = 1, mbirth = 0.01, ke = 3/4, 
and p = 15

(a) (b) 

(c) (d) 
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reason is that the stronger accelerating fecundity returns make it op-
timal to wait longer to reproduce. Hence, both maximum life span and 
maximum body size increase with kb. The bang-bang control strategies 
are, however, not affected by kq, as they only take the values u* = 0 
and u* = 1, and are therefore independent of kq according to Equation 
(3). For nonbang-bang control strategies, the effect of increasing kb is 
that u* decreases at lower sizes and increases at higher sizes (moving 
from points X to Y in Figure 3d, inset), and as a consequence, individ-
uals with the optimal allocation schedule experience lower mortality 
and grow faster when young, and experience higher mortality and 
grow slower when old. The net effect on maximum life span (maximum 
body size) depends on whether or not the increased survival (growth) 
in the earlier stages is compensated by the reduced survival (growth) 
in later stages.

3.5 | The marginal values of reproductive investment

Qualitative insights into how fecundity and mortality functions affect 
the shape of the optimal allocation schedule can be gained by studying 
the returns of a short change in reproductive investment for the life-
time reproductive success of an individual. Following Metz, Staňková, 
and Johansson (2016) and in the spirit of the marginal-value theorem 
(Charnov, 1976; see also Williams, 1966), we derive an expression for 
such fitness returns, denoted r for short (Appendix A). For the pur-
poses of our arguments, r can be written as

Here, the first term gives the instantaneous return from reproduc-
tion if the reproductive allocation is increased from u(t) to ũ at time 
t and the second and third term correspond to the future reduction 

in reproduction from the associated decrease in future sizes and de-
crease in survival probability, respectively. The expression allows us 
to compare the fitness return from changing the level of reproductive 
investment from u to ũ at a given mass m of an individual. Here, ũ can 
take on any value between 0 and 1, in contrast to the expression de-
rived by Metz, Staňková, and Johansson (2016) that gives the marginal 
fitness returns, i.e. is, effects of small deviations from u. The factors 
y1(t, u) and y2(t, u) depend on the strategy u as a whole; explicit ex-
pressions are given in Appendix A. A reproductive-allocation schedule 
u* is optimal if and only if the fitness return is maximized at ũ=u∗(m) 
for any m ≥ mbirth. Any deviation from the optimal strategy will thus 
either decrease lifetime reproduction or leave it unchanged, and the 
fitness return for the optimal strategy is always zero.

By analyzing the expression for fitness return, we see that the cur-
vature of the fitness return r depends on the curvatures of the fecun-
dity function b and the mortality function q. In fact, r has one term 
that is equal to b(ũE) and one term that is proportional to −q(ũ). The 
future fitness returns can be seen as a weighted mean of these two 
components. For example, when both b and −q are accelerating (i.e., 
have increasing slopes), their weighted mean, and thus r, will also be 
accelerating (Figure 4a). Likewise, when both b and −q are decelerating 
(i.e., have decreasing slopes), r will be decelerating too (Figure 4b,c). 
Finally, when b and −q have different curvatures, r may take on a sig-
moidal shape (Figure 4d).

Based on these observations, we can make qualitative predictions 
about the optimal allocation schedules when b and −q have the forms 
in Figure 4a–d. With an accelerating r (Figure 4a), there cannot be an 
interior maximum, so when its slope changes, changes in allocation 
must occur in the form of a sudden, discontinuous shift (Figure 4e). 
With a decelerating r (Figure 5b,c), there can be an interior maximum. 
As the slope of r changes in these cases, the maximum will increase 

(7)

r(ũ,t;u)=
[

b(ũE(m))−b(uE(m))
]

(t)−
[

(ũ−u)E(m)
]

(t)y1(t,u)

−
[

q(ũ)−q(u)
]

(t)y2(t,u).

F IGURE  4  Illustration of how shapes of the optimal reproductive-allocation schedules can be deduced using the fitness-return approach. 
For an individual in a given state, the fitness return (r in Equation (7) of changing the allocation level from u to ũ corresponds to a weighted 
mean (grey lines) of the functions for fecundity (b(ũE), continuous lines) and negative mortality (−q(ũ), dashed lines). Panels (a–d) show how the 
weighted mean qualitatively depends on the shape the fecundity and mortality functions. Panels (e–h) illustrate how the shape of the optimal 
allocation schedule (u*, thick solid lines) depends on the shape of the fitness-return function (r(ũ,t;u∗), grey lines) at different ages t. The fitness-
return functions in each panel (e–h) correspond to the weighted mean in the panels (a-d) above

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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gradually from 0 to 1, rendering a continuous allocation schedule 
(Figure 4f,g). Finally, with a sigmoidal r (Figure 4d), we may get a mix-
ture of discontinuous and continuous allocation schedules (Figure 4h). 
Notice that in this example, the weighted mean is accelerating for low 
values of ũ and decelerating for high values of ũ (Figure 4d), which ex-
plains why the optimal allocation schedule first exhibits a discontinu-
ous increase to then increasing continuously.

Whether a gradually increasing optimal allocation schedule will 
be accelerating or decelerating as a function of mass (e.g., types 
aa or dd) depends on more subtle properties of the fitness compo-
nents. Consider the weighted mean of the fecundity and mortality 
in Figure 4b. Here, the birth rate b is nearly linear in ũ and q is more 
curved for higher values of ũ. The weighted mean will therefore have 
most curvature at higher values of ũ. As the slope changes with age 
in this case, the maximum will increase relatively much at young ages 
and relatively little at older ages, thus giving rise to a decelerating 
shape. In Figure 4c, by contrast, b has higher curvature than q, and the 
weighted mean has highest curvature for low values of ũ. Therefore, 
the maximum will increase slowly at young ages and fast at old ages, 
resulting in an accelerating shape of the optimal allocation schedule. 
Note, however, that whether the accelerating function of time also 
will be an accelerating function of mass, in addition depends on the 
growth curves (which describe mass as a function of time). Thus, the 
relationship between early and late curvature of the weighted mean 
and accelerating and decelerating shape of u*(m) should be seen more 
as a tendency than as a strict rule.

3.6 | Summary and synthesis

Three key observations from numerical investigations (Figures 2 
and 3) and from studying the fitness returns of reproductive 

investments (Figure 4) can be used to summarize our results. First, 
an interval of a fitness-return curve that is accelerating leads to an 
optimal reproductive-allocation schedule with discontinuous in-
crease (cf. Figure 4a,e), while decelerating intervals lead to an optimal 
reproductive-allocation schedule with gradually increasing allocation 
(cf. Figure 4b,f). Second, the slope of a decelerating fitness-return 
curve affects the shape of gradually increasing optimal reproductive-
allocation schedules, such that more deceleration causes a transition 
from an accelerating to a decelerating gradual increase (cf. Figure 4b,f 
with c,g). Third, the shape of the fitness-return curve for low (high) lev-
els of reproductive investment affects the shape of optimal reproduc-
tive-allocation schedules at low (high) ages or masses (cf. Figure 4d,f).

We synthesize these relationships into the general classifica-
tion scheme of optimal allocation schedules shown in Figure 5 
(corresponding to the numerically obtained allocation schedules 
in Figure 2). Variation in fitness-return curvatures in the early 
stages (small investment levels) leads to three different catego-
ries of shape in the onset phase (rows in Figure 5). The onset of 
reproduction may be discontinuous (D) or continuous depending 
on whether the fitness-return curve at early stages is accelerat-
ing or decelerating. Depending on how strong the deceleration 
is, a continuous onset can be decelerating (d) or accelerating (a). 
Variation in fitness-return curvatures in the later stages (high in-
vestment levels) leads to four different categories of shape in the 
completion phase (columns in Figure 5). Depending on whether 
the fitness-return curve at these investment levels is accelerating 
or decelerating, full reproductive allocation may be approached 
discontinuously (D) or gradually by a continuous curve (a, d, or i). 
Depending on how strong the deceleration is, the continuous allo-
cation curve may be accelerating (a), decelerating (d), or decelerat-
ing without ever reaching u = 1 (i).

FIGURE  5 Conceptual map from allocation-dependent fitness returns to optimal allocation schedules. The curves within the boxes framed in 
grey represent the shape of the fitness return (vertical axes) as a function of reproductive allocation u (horizontal axes) for early ages (left column) 
and late ages (top row), respectively. These shapes in turn map to shapes of the optimal reproductive-allocation schedule, at the onset and 
completion of reproductive investment, respectively, as indicated by the grey arrows. The twelve types of optimal allocation schedules (boxes filled 
with grey) are then obtained as combinations of the three types of shapes at the onset phase and the four types of shapes at the completion phase. 
As in Figure 2a, optimal allocation schedules are shown as functions describing how the allocation level u* (vertical axes) depends on the of size m 
(horizontal axes)
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Compared to the traditional classification of life histories into 
types with determinate growth and types with indeterminate growth, 
three types (DD, dD, and aD) clearly exhibit determinate growth and 
three types (Di, di, and ai) clearly exhibit indeterminate growth. For 
the remaining six types, however, it is a somewhat arbitrary judgment 
whether they could be said to exhibit determinate or indeterminate 
growth (cf. Figure 3a,b).

4  | DISCUSSION

Our results show that variation in the shape of allocation-dependent 
fecundity and mortality rates can give rise to a surprising diversity in 
optimal allocation schedules, hitherto not appreciated in the literature. 
Below we discuss how our findings are linked to previous theory. We 
also discuss how the results can be used to interpret empirical pat-
terns in allocation and growth strategies and to understand how eco-
logical and physiological constraints influence life-history evolution.

4.1 | Relation to other theoretical approaches

Our results extend the more qualitative results reported in earlier 
analytic studies (e.g., Sibly et al., 1985; Taylor et al., 1974). For ex-
ample, Sibly et al. (1985) discussed which combinations of curvatures 
in fecundity and mortality rates render graded allocation schedules 
optimal, without going into further detail about the shapes of these 
schedules. By contrast, our results give concrete insights into what 
kind of diversity we can expect to arise from these mechanisms. We 
also show how this diversity can be understood by studying the fit-
ness returns of reproductive investment (Equation [7], Figure 5, 
Appendix A) and thus shed light on how specific features of fecundity 
and mortality rates influence optimal allocation schedules.

The fitness return, which can be determined for any u, is in many 
ways similar to the fitness gradient in adaptive-dynamics theory for 
the evolution of function-valued traits (Dieckmann, Heino, & Parvinen, 
2006; see also Metz et al., 2016). This connection provides an inroad 
to study allocation problems under the influence of environmental 
feedback (see also Parvinen, Dieckmann, & Heino, 2013). This is an 
interesting possibility for extensions of our present model, as opti-
mization approaches inherently are directly applicable to a relatively 
narrow range of competitive scenarios, such as nursery competition 
(Metz, Mylius, & Diekmann, 2008). With an environmental feedback 
loop in place, we have to distinguish between primary parameters 
and parameters modified by the environmental feedback, like the 
full range of possible fertilities and that of fertilities in environments 
depleted by the corresponding equilibrium populations. If we allow 
maximal freedom in the primary parameters, up to natural physiologi-
cal restrictions, the modified parameters can only be more restricted. 
Hence, incorporating an environmental feedback can only decrease 
the possible variation in outcomes of the optimization problem. We 
also note that the use of fitness returns together with an associated 
marginal-value theorem to solve allocation problems methodologically 
connects our work to a large range of other problems in evolutionary 

theory, including mating behavior (Parker, 1974) and optimal foraging 
(Charnov, 1976).

While we have studied the influence of allocation-dependent fe-
cundity and mortality rates on optimal allocation schedules, similar 
types and similar diversity may result from other mechanisms as well. 
King and Roughgarden (1982) found, for example, that a discontinu-
ous onset of reproduction followed by a continuous completion phase 
can be optimal for annual species when season lengths fluctuate sto-
chastically. As another example, Janczur (2009) found that a qualita-
tively similar allocation schedule can be optimal for plants affected by 
herbivory, and furthermore, that the exact allocation level during the 
completion phase depended on the costs and  efficiencies of chemical 
defense substances.

Theoretical studies have also predicted optimal reproductive-
allocation schedules with qualitatively different shapes compared to 
those we identify here. One example is given by McNamara, Houston, 
Barta, Scheuerlein, and Fromhage (2009), who investigated a model in 
which damage accumulated over an organism’s lifetime make simul-
taneous allocation to growth and reproduction optimal. In contrast to 
our model, in which reproductive allocation always increases with age 
or remains constant, they showed that reproductive allocation could 
decrease at later stages of an organism’s life when physiological con-
ditions deteriorate. As another example, models taking into account 
seasonal variation in the environment predict that it may be optimal 
for perennial life histories to switch between phases of growth and 
reproduction every year (e.g., Kozłowski & Uchmanski, 1987) instead 
of simultaneously allocating to growth and reproduction, as we have 
studied here. Seasonally varying survival prospects for the offspring 
can further influence the optimal shape of such indeterminate growth 
patterns and affect whether it is optimal to invest into reproduction 
before or after growth within a single season (Ejsmond, Czarnołeski, 
Kapustka, & Kozłowski, 2010).

Because different alternative mechanisms may favor indetermi-
nate growth, it would be of interest to know how our predictions 
regarding shapes of optimal allocation schedules and their diversity 
might be affected by alternative mechanisms, which also may ex-
plain indeterminate growth. Some insights into this question were 
provided in Klinkhamer, Kubo, and Iwasa (1997) who considered 
seasonal variation as well as allocation-dependent fecundity and 
mortality functions (corresponding to kb and kq being nonzero) in 
a model of perennial plants. Note that other studies (e.g., Ejsmond 
et al., 2010; Kozłowski & Uchmanski, 1987) of optimal reproduc-
tive allocation in seasonal environments assume that fecundity is 
proportional to reproductive allocation (kb = 1). In line with our 
conclusions, Klinkhamer et al. (1997) found that the optimal yearly 
allocation to reproduction increased gradually with age when there 
were diminishing returns from investment into fecundity. However, 
when mortality increased at a decelerating rate with reproductive 
allocation, in which case our model predicts bang-bang control is 
optimal, they instead found that it was optimal to reproduce only 
in certain years, with nonreproductive years in between, a pat-
tern comparable to masting. As noted by Klinkhamer et al. (1997), 
such patterns of intermittent reproduction in practice correspond 
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to bang-bang control if survival after the first reproductive year is 
very low. These comparisons show that some of our results can be 
carried over to more complex scenarios, but that additional mech-
anisms, e.g. associated with the presence of storage organs, can 
yield qualitatively different predictions.

Previous theoretical studies have mostly focused on studying 
whether or not, or under which conditions, a certain mechanism can 
give rise to indeterminate growth. By contrast, exploring the effects 
of variation in parameters that are structurally important for the shape 
of reproductive schedules, as we have done here, clarifies which 
potential a given mechanism has to generate diversity in life histo-
ries. An interesting avenue for future research is to compare which 
patterns of life-history variation are generated by which alternative 
mechanisms. It would also be interesting to study more systematically 
interactions among different mechanisms that independently may 
favor indeterminate growth (cf. Klinkhamer et al., 1997).

4.2 | Predictions about empirical patterns

Our analysis reveals links between ecological and physiological con-
straints on life-history evolution, on the one hand, and shapes and 
characteristics of the expected reproductive-allocation and growth 
strategies, on the other hand. In particular, our model bridges between 
the allocation patterns expected from evolution and the curvatures of 
vital rates that affect fitness returns. If these curvatures are known, 
the type of optimal allocation schedule can be predicted. Similarly, the 
shape of an optimal type can be used to infer aspects of the shape of 
the underlying fitness-return function.

The usefulness of establishing these links depends on how well the 
curvatures of the fitness-return functions and the features of the al-
location patterns can be observed empirically. Empirical studies have 
identified reproductive-allocation schedules, that can be related to 
those found in our study. For example, Wenk and Falster (2015) eval-
uated the existing empirical evidence for diversity of reproductive-
allocation schedules among perennial plants. Among the 32 species 
included in their review for which reproductive-allocation schedules 
had been quantified or could be inferred, they identified six distinct 
types. Specifically, their types corresponded to DD, Dd, dd, two ver-
sions of di (depending on whether reproductive allocation approached 
an asymptote or continued to increase), and one type, not present in 
our model, characterized by a completion phase with declining repro-
ductive allocation. As another example, Ware (1980) estimated how 
much surplus energy was allocated to either growth or reproduction 
in Atlantic populations of different fish species using allometric func-
tions of size. The study reported that the functions describing energy 
devoted to reproduction (corresponding to uE in our model) for the 
different species had larger exponents than the functions describing 
surplus energy (corresponding to E in our study). If we assume that re-
productive effort u in our study for each population corresponds to the 
ratio between the two functions, and because the difference between 
the estimated exponents in all cases were above 0 and below 1 (Table 3 
in Ware, 1980), we can deduce that u should be a decelerating function 
of mass (corresponding to the dd or di types in our framework).

For some species, researchers have also put forward empirical ev-
idence for why fecundity is a nonlinear function of energy devoted to 
reproduction and have used this to explain why a certain reproductive 
strategy might be optimal. For example, Schaffer and Schaffer (1979) 
related pollination-driven accelerating returns of reproductive invest-
ments to the bang–bang strategy (DD) of Yucca wipplei and Miller, 
Tenhumberg & Louda (2008) related diminishing returns of reproduc-
tion owing to insect herbivory to a graded allocation pattern (corre-
sponding to the dd or di types in our framework) in a species of cactus 
(Opuntia imbricata).

Estimating energy allocated to growth and reproduction during 
the lifetime of an organism can be complicated and expensive, 
which may explain why such observations are rare (cf. Myers & 
Doyle, 1983; Wenk & Falster, 2015). Estimating shapes of fecundity 
and mortality functions is perhaps even more challenging owing to 
the temporal decoupling between the allocation decision and final 
effect on lifetime reproduction. However, even if it may be hard to 
get a firm grip on these key features from data, they correlate with 
other patterns, that may be easier to observe. To start with, our 
model predicts connections between different types of allocation 
schedules and qualitatively different growth curves. Our model also 
predicts how the curvatures of mortality and fecundity functions 
relate to maximum life span and maximum body size (Figure 3c,d). 
Predictions from our model about variation in energy-allocation 
patterns can therefore be connected to data on growth curves, 
body sizes, and age. For example, Myers and Doyle (1983) used a 
model similar to ours to reconstruct mortality curvatures from data 
on the growth and reproductive success on different fish species. 
As the curvatures of mortality and fecundity functions ultimately 
depend on ecological and physiological constraints on life-history 
evolution, variation in these functions can be assumed to vary with 
factors,  that influence the relevant constraints. It would, for exam-
ple, be interesting to study whether life histories vary along gradi-
ents of sibling competition (cf. Stockley & Parker, 2002) or depend 
on reproductive constraints (cf. Shine, 1988) in line with our model 
predictions. In sum, even if some components of our model may 
be hard to validate, the multitude of connections between model 
predictions and accessible data make us believe that there are many 
ways the model predictions usefully generate empirically testable 
hypotheses about patterns of diversity in life histories.

One specific possibility for future research derives from our result 
that the properties of bang–bang types and types with continuous in-
crease in reproductive allocation depend very differently on variation 
in curvature parameters. For example, with settings as in Figure 3c,d, 
there would be a strong positive correlation between maximum life 
span and maximum body size among randomly sampled bang–bang 
types, but not among nonbang–bang types. It would be interesting to 
investigate whether such patterns can be observed in empirical data 
(cf. Blueweiss et al., 1978; Hendriks, 2007) by grouping species ac-
cording to life-history type and seeing if correlations between life span 
and body size differ between these groups.

Our investigation here goes beyond the traditional perspective of 
dividing allocation patterns into those leading to either determinate 
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or indeterminate growth. Our findings thereby offer a conceptual 
foundation for studying intermediate cases, enabling the systematic 
exploration of richer and more nuanced variation in life histories. Our 
results also provide links between ecological and physiological con-
straints and these life-history types. By establishing a new and wider 
scope for testable predictions, we hope these results will inspire con-
tinued research into understanding the full variation of life histories 
encountered in nature.
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constant value ũ starting at t > 0 for a short duration of time, with 
the difference that we here consider changes in u that are not nec-
essarily small. We assume that the control u, as a function of time, is 
piecewise continuously differentiable, which means that our analy-
sis allows for controls of bang–bang type (DD) and other types with 
discontinuous increase in reproductive allocation. As the value of 
the control at finitely many points does not matter for the analysis, 
we assume that the time t > 0 does not correspond to a discontinu-
ity of the control u.

We consider a change of the relative allocation to reproduction, u(τ), 
for τ ∊ [t, t + δ), say, to ũ, while leaving the rest of u unchanged. We 
denote by Δm the difference that this makes in mass m, and by ΔP the 
difference that this makes in survival probability P. During the period 
when the perturbation is active, between ages t to t + δ (with u denot-
ing the allocation function to which we make the change), we have

The first equation holds as m is differentiable at t and therefore 
m(τ) = m(t) + O(δ) for τ ∊ [t, t + δ). Now, as a direct consequence of 
Equation (A1), we have

We use these intermediate results to derive an expression for the 
fitness return, proceeding in four steps. First, we note that the imme-
diate fitness gain from this strategy change for an individual that 
already has survived until time t is given by

Second, by linearizing the integrand in the expression for lifetime 
reproduction, i.e., P(t)b(u(t)E(m(t))) in Equation (6), we approximate the 
future fitness loss resulting from this change in strategy as

Note that we here divide with P(t) because we again consider the fit-
ness effects for an individual that has survived until time t.

Third, we determine linear approximations of ΔP(τ) and Δm(τ) for 
the time period after the perturbation, i.e. for τ > t + δ. To this end, we 
use that the differential equation for P(τ)/P(t + δ) with respect to τ is 
the same as that for ΔP(τ), except for a difference in initial conditions. 
We define ̂P(τ;t) and m̂(τ;t) by

where ̂P and m̂ are functions of both τ and t. However, we shall from  
now on hide the latter argument. Using Equations (A2) and (A5),  
we get ΔP(τ)=ΔP(t+δ) ̂P(τ)=−P(t) (q(ũ)−q(u(t))) δ ̂P(τ)+O(δ2) and 

Δm(τ)=Δm(t+δ)m̂(τ)=−E(m(t))(ũ−u(t))δm̂(τ)+O(δ2). We also note 
that P(τ)=P(t) ̂P(τ)+O(δ) and we will use this below to express all sur-
vival rates in terms of ̂P(τ).

Fourth we express the fitness return r as the difference between 
the immediate fitness gain (Equation [A3]) and the future fitness loss 
(Equation [A4] with ΔP(τ) and Δm(τ) replaced by the approximations 
above), divided by δ. We will also ignore higher-order terms. Thus, we 
find

In our comparison (Figure 4), we focus on how the fitness returns 
through the different vital rates affect the form of the optimal alloca-
tion u*. In order to facilitate reading, we rename the first and second 
integral in Equation (A6), which both are independent of ũ, as y1(t, u*) 
and y2(t, u*) in Equation (7). At ũ(t)=u∗(t), the total return r(t) is 0 when 
0 < u*(t) < 1, nonpositive when u*(t) = 0, and non-negative when 
u*(t) = 1. As shown by Metz et al. (2016), it may be noted that for the 
optimal allocation strategy, the functions y1(t, u*) and y2(t, u*) corre-
spond to the so-called costates from Pontryagin’s maximum principle 
from optimal control theory (Intrilligator, 1971; Pontryagin, 1962). As 
in the present article we aim at providing biological insight, we have 
opted for a biologically inspired argument in terms of fitness returns 
and a marginal-value consideration, instead of falling back on the tra-
ditions of mathematical control theory.

APPENDIX B

Robustness and sensitivity of numerical results
In order to evaluate the robustness of our approach, we study here 
how the shapes of the optimal allocation schedules are affected by 
(1) variation in model parameters, (2) explicit fixed costs of reproduc-
tion, and (3) size-dependent mortality. We mainly consider the ef-
fects on the diversity of optimal types, which is main focus of this 
study.

Effects of variation in model parameters
We identify two major effects of varying the parameters c1, …, c4 
and ke. First, variation in these parameters can make it optimal to 
switch to reproduction earlier or later in life. Specifically, earlier in-
vestments to reproduction are optimal when mortality increases 
(increased c1 or c2) or when fecundity or growth efficiency de-
creases (increased c3 or c4), all in line with general expectations. 
These changes do not necessarily affect the shapes of the optimal 
allocation schedules, but in extreme cases, it may become optimal 
not to grow at all and invest all surplus energy to reproduction from 
birth onward (e.g., for very high c1). Close to such unrealistic 
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q(ũ)−q(u(t))
)

∞∫
t

[

̂Pb
(

uE(m)
)]

(τ)dτ. (A6)

(A1)



     |  3185JOHANSSON et al.

conditions, the model will exhibit a lower diversity of types. 
Increasing ke may either increase or decrease fecundity returns de-
pending on body mass (note, e.g., that E in Equation (5) will decrease 
with ke if m < 1, but increase otherwise), such that u*(m) decreases 
(increases) for small (large) body masses, potentially resulting in a 
rather flat u*(m). If the latter effect is strong, the potential for diver-
sity to arise through other mechanisms naturally decreases.

Second, variation in the parameters c2, …, c4 influences whether the 
shape of the optimal allocation schedule is mainly determined by 
allocation-dependent mortality or by allocation-dependent fecundity. 
If c2 is large compared to c3 and c4, the shape of the optimal type will 
mainly depend on the mortality curvature kq, and in the opposite situ-
ation, the shape will mainly depend on the fecundity curvature kb. 
Because several types in our scheme (e.g., dD, aD, and ad) appear be-
cause of an interaction between the mortality and the fecundity func-
tion, we get low diversity when effects from one of these dominate 
over effects from the other.

The overarching result from these observations is that the diver-
sity of optimal types may be constrained if these general model pa-
rameters take on relatively large or small values. Extreme values of 
the parameters p and s, which are introduced by us to control the 
physiological limit (Figure 1c), may also reduce diversity or have un-
desired effects. As noted in the Results section, high values of the 
parameter p favor types with accelerating (a) onset of reproduction 
and lower values favor types with decelerating (d) onset. In addition, 
if p is set to a very low value, fecundity will be a linear function 
(b(uE) = puE), which causes the onset to be discontinuous (D). It fol-
lows that variation in the parameter p may reduce the diversity of 
optimal types if it is made too small or too large. The parameter s 

controls how close the smooth minimum function fits the standard 
minimum function. With very large negative values of s, the fecun-
dity function will have a sharp transition from a linear to a nonlinear 
section, which causes numerical instability when determining the 
optimal allocation schedule. When s has values close to zero, on the 
other hand, the smooth minimum function starts deviating a lot from 
the standard minimum function and is hence not a meaningful ap-
proximation anymore. We also examine the survival probability 
(P = 10−6) according to which growth is classified as indeterminate. 
Specifically, we considered effects on the line in Figure 3a that sepa-
rates indeterminate from determinate growth. Decreasing P dis-
places this line upwards and to the left, but only relatively little, as 
many optimal allocation schedules in the top-left corner seem never 
to reach full reproduction (u* has an asymptote below 1). Increasing 
P, however, can move this line arbitrarily far down and right, which is 
expected, as organism then have less time to reach full reproductive 
allocation (u = 1) before their survival probability falls below the 
critical level.

Effects of fixed costs reproduction
While in this study we assume accelerating fecundity functions 
(kb > 1), which may represent a need for initial investments to be made 
before energy can be diverted into offspring directly, we also explore 
an alternative way to model such situations Following Charnov (1979), 
we assume a fixed cost c5 for reproduction by specifying the energy 
devoted to offspring as f(uE) = max (0, uE − c5) and assuming the fe-
cundity b(uE)= c3f(uE)

kb. As illustrated by Figure B1a, where we use 
the type ad as a baseline, these costs cause the onset of reproduction 
to be discontinuous. When the fixed cost is increased, reproduction 

F IGURE  B1 Robustness to fixed costs of reproduction (a) or size-dependent mortality (b,c). We vary parameters in the modified functions 
for fecundity (a) or mortality (b,c) as described in the text; otherwise, parameter settings correspond to those of type ad in Figure 2a, which 
serves as a reference type. (a) Compared to the reference type (gray continuous line, c5 = 0), assuming fixed costs of reproduction (c5 > 0) causes 
the optimal reproductive-allocation schedule to exhibit a discontinuous onset of reproduction (black continuous and dotted lines with c5 = 0.01 
and 0.02, respectively) or be of bang–bang type (black dashed line, c5 = 0.1). (b,c) Compared to the reference type (gray continuous line, c6 = 0), 
size-dependent mortality can displace the optimal allocation schedule to the left (black continuous line, c6 = 0.75, km = 0.5), to the right (black 
dashed line, c6 = 5, km = 1.5), or make it u-shaped (black dotted line, c6 = 5, km = 0.8). The effects of increasing constant mortality by 25% with 
25% compared to the baseline are shown for comparison as a gray dashed line (c6 = 0.25, km = 0). In (b) we set u = 0 to illustrate the effect of the 
size-dependent mortality component only

(b) (c)(a)
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starts later and the discontinuous jump becomes larger, eventually 
making a bang–bang strategy optimal. The same occurs when apply-
ing fixed costs to the other types with continuous onset in Figure 2a. 
Fixed costs modeled in this way thus have effects similar to increasing 
kb in our model. Notice, for example, that when moving toward the 
right in Figure 3a, the optimal types typically first develop a discon-
tinuous onset of reproduction (Da or Dd) and then turn into bang–
bang strategies (DD).

Effects of size-dependent mortality
As a further robustness test, we explore the effects of assuming size-
dependent mortality, given its common occurrence in nature (e.g., 
Paine, 1976). To this end, we add a size-dependent term to 
Equation (1), representing increased mortality for juveniles. 
Specifically, we assume q(u,m)= c1+c2u

kq +c6m
km (cf. Sibly et al., 

1985). We explore the effects of varying c6 and km on the optimal al-
location schedules in Figure 2a. As in the previous section, we use the 
type ad from Figure 2a for reference. The results are nevertheless 
representative for the remaining types there as well.

In three scenarios with size-dependent mortality, we observe 
relatively small changes in the shapes of the optimal allocation 
schedules. Firstly when mortality is initially moderate and then de-
clines relatively slowly with size (black continuous line in 
Figure B1b), the optimal allocation schedule is displaced to the left, 
that is, reproduction occurs earlier (black continuous line in 
Figure B1c). This can be interpreted as an effect of increased aver-
age mortality, similar to the effect of an increased size-independent 
mortality (gray dashed lines in Figure B1b,c). Secondly, if mortality 
is initially high and then drops relatively fast with size (black dashed 
line in Figure B1b), the optimal allocation schedule is displaced to 
the right, that is, reproduction is delayed (black dashed lines in 
Figure B1c). This occurs because by growing as fast as possible 
when young, individuals can avoid the high juvenile mortality. 
Thirdly, when km is sufficiently large, the optimal allocation sched-
ule remains virtually unchanged (i.e., it is nearly identical to the 

gray continuous line in Figure B1c and thus not shown). This occurs 
because the size-dependent component of mortality quickly van-
ishes as the individual grows, and it thus remains optimal to grow 
fast (low u*) at small sizes.

Although the size-dependent mortality functions discussed so far 
(e.g., the black continuous and dashed lines in Figure B1b) are qualita-
tively different from the constant mortality function in the baseline 
case (gray continuous line in Figure B1b), their effects on the optimal 
allocation schedules are comparable to the effects of relatively minor 
variation of the parameters of the original model. Note, for example, 
that increasing the (size-independent) mortality of the original model 
by 25% (i.e., moving from the gray continuous to the gray dashed line 
in Figure B1b) has a larger effect on the size at which full reproduction 
is reached (u* = 1) than any of the three scenarios discussed so far. 
Also, none of these scenarios causes a change in the shape of the op-
timal allocation schedules according to our classification system (i.e., 
for the type ad in Figure B1b and the remaining 11 types in Figure 2b 
in the main text).

In two other scenarios, we observe more drastic effects of including 
size-dependent mortality in our model. Firstly, the optimal allocation 
schedule can become u-shaped (dotted line in Figure B1b,c). This oc-
curs when mortality is initially very high and drops relatively slowly, 
such that low survival prospects initially make it optimal to invest in 
reproduction from birth onward and it pays off to grow only starting at 
larger sizes. Such a strategy is, however, not biologically feasible, as 
growth would stop immediately upon birth. Secondly the extreme and 
unrealistic strategy of devoting all energy to reproduction from birth 
onward (u*(m) = 1 for all m), is optimal when mortality is high for all sizes 
(when c6 is large and km small).

In sum, adding a mortality component, that decays with size only 
slowly, can lead to extreme situations in which it is optimal to invest all 
energy into reproduction already from birth. However, if mortality 
drops relatively fast with size or is not too large overall, we expect 
relatively mild effects on the shapes of the optimal allocation sched-
ules, and thus also on overall life-history diversity.


