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Abstract: Estrogen receptor-α (ERα) is a ligand-inducible protein which mediates estrogenic
hormones signaling and defines the luminal BC phenotype. Recently, we demonstrated that even in
absence of ligands ERα (apoERα) binds chromatin sites where it regulates transcription of several
protein-coding and lncRNA genes. Noteworthy, apoERα-regulated lncRNAs marginally overlap
estrogen-induced transcripts, thus representing a new signature of luminal BC genes. By the analysis
of H3K27ac enrichment in hormone-deprived MCF-7 cells, we defined a set of Super Enhancers
(SEs) occupied by apoERα, including one mapped in proximity of the DSCAM-AS1 lncRNA gene.
This represents a paradigm of apoERα activity since its expression is largely unaffected by estrogenic
treatment, despite the fact that E2 increases ERα binding on DSCAM-AS1 promoter. We validated the
enrichment of apoERα, p300, GATA3, FoxM1 and CTCF at both DSCAM-AS1 TSS and at its associated
SE by ChIP-qPCR. Furthermore, by analyzing MCF-7 ChIA-PET data and by 3C assays, we confirmed
long range chromatin interaction between the SE and the DSCAM-AS1 TSS. Interestingly, CTCF
and p300 binding showed an enrichment in hormone-depleted medium and in the presence of
ERα, elucidating the dynamics of the estrogen-independent regulation of DSCAM-AS1 expression.
The analysis of this lncRNA provides a paradigm of transcriptional regulation of a luminal specific
apoERα regulated lncRNA.
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1. Introduction

Estrogen Receptor α (ERα) is the key transcriptional factor of the luminal breast cancer subtype,
which comprises three quarter of breast cancer cases [1], by mediating estrogen signaling in breast
cancer cells. Nowadays, current endocrine treatments that block estrogen action include Selective
Estrogen-Receptor Modulators (SERMs), Fulvestrant (pure anti-estrogen that degrades ERα protein)
and Aromatase Inhibitors (AI) [2]. SERMs are synthetic compounds that function as agonists or
antagonists for estrogen receptors in a tissue-specific manner. The first SERM that has been used
successfully in the clinic is tamoxifen (TAM) which functions as cell type-specific anti-estrogens [3].
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The most common endocrine treatments today are AIs, which block the biosynthesis of estrogens [4].
However, this therapy fails in one-fourth of ERα+ breast cancer cases because of de-novo or acquired
endocrine resistance, which is generally characterized by accelerated tumor growth and increased
aggressive behavior [5].

ERα regulates biological processes in breast cancer cells by ligand-dependent (estrogen-ERα
complex) or ligand-independent action (apoERα) [6]. Whereas estrogen dependent signaling was
deeply studied in the last decades [7], few works were based on understanding apoERα mechanism in
BC. It was reported that apoERα acts in cooperation with FOXA1 and AP2γ to maintain the luminal
epithelial enhancer landscape and when one of these factors are suppressed, enhancers progressively
collapse [6]. As previously demonstrated for E2-bound ERα genomic action [8], gene expression
regulation by apoERα seems dependent on long range interaction between apoERα-bound enhancers
and promoters.

Recently, Super-Enhancers (SEs) emerged as a novel class of distal cis regulatory elements, defined
as large clusters of putative enhancers in close genomic proximity which drive gene expression to define
cell lineage identity [9]. SEs tend to span large genomic regions with unusually strong enrichment of
lineage-specific TFs and co-activators binding. These stitched enhancers have additive and synergistic
functions allowing them to drive high levels of tissue-specific gene expression. Commonly, SEs
were predicted by identification of genomic regions enriched in H3K27ac ChIP-Seq signal compared
to input or control experiment [10]. SEs represent the core of the transcription regulation for
cell-type-specific gene expression and play a key role in cellular development and dynamic response
to environmental stimuli [11,12]. Deciphering the active SEs in a specific context is helpful for the
identification of key cis-regulation of coding and non-coding genes expression [13]. In MCF-7 cells,
it was recently demonstrated that ERα is required for SEs formation upon binding to canonical response
elements and in presence of FoxA1 pioneering factor [14]. This study elucidated SEs assembly in
an estrogen-dependent manner, but the mechanism of SEs modulation by ligand-independent ERα
remains unclear.

A full collection of lncRNAs has emerged during the last decade, stressing on their importance
as regulators of cellular development and differentiation. They are expressed at lower levels than
protein-coding transcripts, but compared to the latter, their pattern of expression is remarkably
cell type-specific [15,16]. Indeed, to achieve a comprehensive annotation, lncRNAs expression has
been quantitatively analyzed in several tissues and cell types by high-throughput RNA sequencing
(RNA-seq) [17]. In BC research, lncRNAs have been involved in regulation of mammary epithelial
cells homeostasis [18] and several studies focused on lncRNAs regulated by estrogen [8,19,20]. Finally,
we recently identified for the first time a set of apoERα-regulated lncRNAs [21]. Comparison with
publicly available data showed that these lncRNAs are highly specific for the luminal BC subtype
and therefore very promising in defining peculiar BC features. Among this set, DSCAM-AS1 is the
most abundantly expressed lncRNA in BC cell lines and tissue samples. Expression of DSCAM-AS1
has a very peculiar dependence over ERα: the increased ERα binding at DSCAM-AS1 promoter
upon estradiol stimulus does not lead to a concordant up-regulation of gene transcription over at
least 24 h indicating a necessary and sufficient apoERα action for the regulation of DSCAM-AS1
transcription [21]. It has been reported that ERα binding to DSCAM-AS1 promoter is high in tumor
tissues from patients unresponsive to Tamoxifen treatment and that DSCAM-AS1 expression is
upregulated in Tamoxifen-resistant cellular models [22], contrary to typical estrogen-responsive genes
that are strongly downregulated. These results suggest that actually distal putative enhancer or SE
regions might be responsible for this peculiar transcriptional regulation and might be more generally
involved in transcriptional regulation of cell-specific lncRNAs.

In the present study, we extended the analysis of apoERα-regulated transcriptome in MCF-7,
characterized apoERα binding at SEs (SE-aERBSs) and defined apoERα-regulated lncRNAs that are
associated and regulated by SE activation. In particular, we focused our attention on DSCAM-AS1
associated SE which is stabilized in a hormone-independent manner and whose regulation depends on



Int. J. Mol. Sci. 2018, 19, 593 3 of 19

the presence of apoERα. It represents a paradigmatic example of how luminal lncRNAs are regulated
by specific SEs activated through unliganded ERα, which is extremely important to understand luminal
breast tumor growth and progression, in view of the fact that common endocrine treatments today
(AIs) deplete the organism of estrogenic hormones.

2. Results

2.1. A Comprehensive List of apoERα Regulated Genes through SE Binding

To define a comprehensive set of apoERα gene targets, we performed a long RNA-Seq analysis
in triplicate of MCF-7 cultured in Hormone Deprived medium (HD) for 96 h and transfected with
control siRNA (siCTR) or against ERα (siERα). Differential expression analysis revealed a set of
2487 differentially expressed (DE) coding and non-coding genes of which 1376 were down-regulated
and 1110 up-regulated upon ERα silencing (Supplementary Table S1). Excluding ESR1, the most
significant down-regulated protein coding genes were CALCR, ARL1, and TFF1 while KLF6, ZNF469,
and TP53INP1 were the most significant up-regulated protein coding genes (Figure 1a). We identified
also 317 DE lncRNAs of which 128 up-regulated and 189 down-regulated by ERα silencing. The most
significant down-regulated lncRNAs were RP11-68L18.1, MIR9-3HG, and LINC01016, whereas NKILA,
AC144831.1, and LINC00657 were the most significant up-regulated lncRNAs (Figure 1b).

Functional enrichment analysis of biological processes for the DE genes evidenced mitotic cell
cycle (GO:0000278), mitotic nuclear division (GO:0007067), and cell cycle phase transition (GO:0044770)
as the most enriched processes (Supplementary Table S2). Interestingly, different processes were
enriched when up-regulated and down-regulated genes were considered separately. Specifically,
siERα up-regulated genes were enriched for neuron projection guidance (GO:0097485), axon guidance
(GO:0007411), and epithelium development (GO:0060429) while down-regulated genes were enriched for
cell cycle- and DNA replication-related processes (Figure 1c).

To correlate apoERα genomic Binding Sites (aERBS) with gene regulation, we took advantage
from our ERα ChIP-seq experiment performed in hormone-deprived MCF-7 cells [6]. As previously
reported [6,21], analysis of apoERα binding mapped within 100 Kbp from a DE gene TSS
revealed a clear bias in receptor binding close to down-regulated as compared to up-regulated
genes (Supplementary Figure S1a). Specifically, 485 down-regulated genes (35.2%) compared to
300 up-regulated genes (27.0%) were associated to an apoERα Binding Site (aERBS).

To verify whether the apoERα binding involved in DE gene regulation occurs within SEs in MCF-7
cells, we have applied a bioinformatics strategy that is summarized in Supplementary Figure S1b.
In detail, starting from H3K27ac ChIP-seq data of MCF-7 cultured in HD medium for 48 h
and treated with “vehicle” as control for E2 treatment (GSE40129) [23], we predicted 438 SEs
(Supplementary Table S3) characterized by a significant and wide H3K27ac enrichment as previously
reported [24]. Then, we associated SE to the first proximal gene TSS and we ranked SEs based on
the H3K27ac/input enrichment. Interestingly, among the top 50 SEs associated with the highest
H3K27ac signal, we found pivotal luminal BC protein-coding genes, including ESR1, GATA3,
and FOXA1. Furthermore, lncRNA genes were also associated with this SEs set, including MALAT1
and DSCAM-AS1.

A subset of 227 SEs showed an overlap with aERBSs, hereafter referred to as “SE-aERBS”.
Considering the DE genes mapped within 100 kbp from a SE-aERBS center, we associated 117 DE
genes including protein coding genes like ESR1, SPDEF, ZNF217, and RARA (Supplementary Table S4).
35 lncRNA genes were also associated to an SE-aERBS and they were subdivided in the following
biotypes: 17 antisense, 9 lincRNAs, three processed pseudogenes, two processed transcripts, two
transcribed unprocessed pseudogenes, one snoRNA, and one lncRNA lacking experimental evidence
but annotated in Gencode database (To be Experimentally Confirmed, TEC). Interestingly, 77% of DE
genes associated to an aERBSs-SE were down-regulated upon apoERα silencing.
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Figure 1. ApoERα regulated genes through SE binding. (a,b) Volcano plots reporting the adjusted 
p-value and the log2 Fold Change (FC) of (a) the protein-coding genes and (b) lncRNAs computed 
from RNA-seq data comparing MCF-7 cells transfected with siERα and siCTR in hormone-deprived 
(HD) medium; (c) Bar plot reporting the -log10 adjusted p-value of the most significant Gene 
Ontology Biological Processes enriched for the genes down-regulated (top) or up-regulated (down) 
upon ERα silencing in HD; (d) Heat map illustrating differential expression of Super-Enhancer 
(SE)-associated lncRNAs upon siERα transfection and upon nine-hours E2 treatment; (e) Heat map 
illustrating expression values of SE-associated lncRNAs as FPKM; (f) Bar plot reporting the log2 
relative expression of ERα mRNA and eight candidate SE-associated lncRNAs upon ERα silencing in 
HD; p-value of three biological replicates by unpaired t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; (g) Bar 
plot reporting the relative expression of eight candidate SE-associated lncRNAs and GREB1 (positive 
control) in a time-course experiment of 17β-estradiol (E2) or vehicle (Veh) treatment; SD of three 
biological replicates; p-value by unpaired t-test: * p < 0.05; ** p < 0.01; *** p < 0.001. 

To understand whether SE-associated lncRNAs may represent a subset of the 
estrogen-responsive noncoding genes, we considered RNA-seq data from a time-course E2 
experiment that is, an RNA-Seq experiment performed on MCF-7 cells collected after vehicle or  
E2 treatment (nine experimental time points: from 5 to 1280 min) (Supplementary Table S5; 
GSE62789) [25]. The heat map shown in Figure 1d represents the lncRNA log2FC differential 
expression upon apoERα silencing or during E2 treatment. This analysis uncovered 21 

Figure 1. ApoERα regulated genes through SE binding. (a,b) Volcano plots reporting the adjusted
p-value and the log2 Fold Change (FC) of (a) the protein-coding genes and (b) lncRNAs computed
from RNA-seq data comparing MCF-7 cells transfected with siERα and siCTR in hormone-deprived
(HD) medium; (c) Bar plot reporting the -log10 adjusted p-value of the most significant Gene Ontology
Biological Processes enriched for the genes down-regulated (top) or up-regulated (down) upon ERα
silencing in HD; (d) Heat map illustrating differential expression of Super-Enhancer (SE)-associated
lncRNAs upon siERα transfection and upon nine-hours E2 treatment; (e) Heat map illustrating
expression values of SE-associated lncRNAs as FPKM; (f) Bar plot reporting the log2 relative expression
of ERα mRNA and eight candidate SE-associated lncRNAs upon ERα silencing in HD; p-value of
three biological replicates by unpaired t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; (g) Bar plot reporting
the relative expression of eight candidate SE-associated lncRNAs and GREB1 (positive control) in
a time-course experiment of 17β-estradiol (E2) or vehicle (Veh) treatment; SD of three biological
replicates; p-value by unpaired t-test: * p < 0.05; ** p < 0.01; *** p < 0.001.

To understand whether SE-associated lncRNAs may represent a subset of the estrogen-responsive
noncoding genes, we considered RNA-seq data from a time-course E2 experiment that is, an RNA-Seq
experiment performed on MCF-7 cells collected after vehicle or E2 treatment (nine experimental
time points: from 5 to 1280 min) (Supplementary Table S5; GSE62789) [25]. The heat map shown in
Figure 1d represents the lncRNA log2FC differential expression upon apoERα silencing or during
E2 treatment. This analysis uncovered 21 E2-responsive lncRNAs associated with an SE-aERBS.
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Specifically, eight lncRNAs down-regulated by E2 treatment were up-regulated by apoERα silencing;
conversely, only three lncRNAs were up-regulated by E2 and down-regulated by siERα. Interestingly,
the majority of lncRNA down-regulated by siERα were not significantly modulated by E2 treatment.
Since the genes expressed at lower levels are biased toward high absolute log2FC, we verified
the expression level of these lncRNAs in terms of Fragments Per Kilobase per Million (FPKM).
As shown in Figure 1e, DSCAM-AS1 was the lncRNA with the highest level of expression among
our set of apoERα-regulated lncRNAs and its expression was not significantly affected by the E2
treatment as previously reported [21]. Among the lncRNA associated to a SE-aERBSs, we verified
experimentally eight lncRNAs for their responsiveness to siERα or E2 treatment. As reported in
Figure 1f, five out of eight lncRNAs showed a significant reduction of expression level in siERα-treated
cells, while the lncRNA SRRM2-AS1 was significantly up-regulated. In E2-treated cells three lncRNAs
were up-regulated while two tested lncRNAs were down-regulated. DSCAM-AS1 was only slightly
significant up-regulated after 24 h of E2 treatment (Figure 1g).

2.2. DSCAM-AS1 SE Characterization in Hormone-Deprived MCF-7

We focused our analysis on DSCAM-AS1 in consideration of its unexpected abundance and
unresponsiveness to E2, which suggest a peculiar hormone-independent transcriptional regulation
involving SE regions.

In the SE mapped upstream of the DSCAM-AS1 locus, we observed nine different SE-aERBSs
(named E1-9). To identify which of these regions is involved in DSCAM-AS1 regulation, we used public
ERα Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET) data of MCF-7
grown in full medium condition (GSE39495) [26]. We observed that DSCAM-AS1 promoter interacts
directly with two SE-aERBSs, E6 and E8, in particular E6 was characterized by the higher number of
interactions (Supplementary Figure S1c). Overlap with aERBSs epigenetic classification performed
in [27] confirmed that these regions are classified as active and transcribed enhancer (EnhT). Known
long-range interactions were also confirmed using the TFF1 gene as positive control for the analysis.

Then, to explore the genomic and epigenomic context of the nine SE-aERBSs of the DSCAM-AS1
locus, we took advantage of public MCF-7 ChIP-Seq data obtained in HD condition. Using the
WashU genome browser, we integrated these data with the RNA-seq and ChIP-seq experiments of HD
MCF-7 transfected with siERα or control siRNA (Figure 2a). As expected, the nine SE-aERBSs were
characterized by an enhancer histone epigenetic pattern, with high DNaseI hypersensitivity, enhancer
RNA transcription measured by Global Run-On and sequencing (GRO-Seq) [28], and H3K27ac and
H3K4me1 enrichment. Conversely, the histone modifications at DSCAM-AS1 TSS show typical
promoter features, as H3K4me3 enrichment and high-level of RNA polymerase II (RNAPII) occupancy.
In addition, the SE-aERBSs (particularly E5 and E6) were characterized by the enrichment of Forkhead
Box A1 (FoxA1), Forkhead box protein M1 (FoxM1), histone acetyltransferase p300 and GATA Binding
Protein 3 (GATA3), confirming the active status of these regulatory regions. Interestingly, the RNAPII
ChIP-Seq signal at the DSCAM-AS1 locus decreases rapidly in the region downstream DSCAM-AS1,
where a CTCF binding sites is characterized by a ChIP-Seq enrichment of components of the cohesin
complex RAD21 and STAG1 (GSE25021) [29]. To further confirm the candidate long-range chromatin
interactions involving DSCAM-AS1 locus and the SE-aERBSs, ERα and CTCF ChIA-PET data were
visualized. This data confirms a consistent interaction between the DSCAM-AS1 promoter and E5, E6,
and E8 SE-aERBSs.
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Figure 2. Characterization of DSCAM-AS1 SE in MCF-7 cells. (a) WashU genome browser view of the 
DSCAM-AS1 genomic locus, which is reported in association with apoERα ChIP-Seq and RNA-Seq 
reads enrichment in siCTR-(red) or siERα-(blue) transfected MCF-7 cells; and with GRO-Seq, 
ChIP-Seq profiles of histone modifications and DNase hypersensitivity signals (yellow), RNA-Pol II 
and eight TFs (teal-blue) obtained from vehicle treated MCF-7 cells (see the Materials and Methods 
section for detailed data source). ERα and CTCF ChIA-PET data performed in MCF-7 grown in full 
medium from ENCODE project are also included [26]. The coordinates of the predicted SE and 
aERBSs are reported at the top as black and orange boxes, respectively. ChIP-Seq genomic signal 
profiles are reported as read count per million sequenced reads. (b,c) Bar plots reporting ERα fold 
enrichment over IgG signal by ChIP-qPCR at DSCAM-AS1 promoter and E5-E6-enhancers, TFF1 
promoter (positive control) and KCNQ1OT1 promoter (negative control), in MCF-7 cells grown in 
HD medium transfected with siERα or siCTR (b); treated for 45′ with 17β-estradiol (E2) or vehicle 
(veh) (c). Standard error of four biological replicates; p-value by unpaired t-test: ** p < 0.01; (d) Left. 
Qualitative PCR reactions with primers detecting DSCAM-AS1 promoter interaction with E5 or E6 
enhancer sites; primers detecting DSCAM-AS1 genomic region or non-interacting region; Right. 
Qualitative PCR reactions with primers detecting P2RY2 promoter-enhancer interaction;  
primers detecting P2RY2 genomic region or non-interacting region. All reactions were loaded on  
2% agarose gel. Undigested and Digested samples represent DNA controls recovered during 3C  
libraries production. 

Figure 2. Characterization of DSCAM-AS1 SE in MCF-7 cells. (a) WashU genome browser view of the
DSCAM-AS1 genomic locus, which is reported in association with apoERα ChIP-Seq and RNA-Seq
reads enrichment in siCTR-(red) or siERα-(blue) transfected MCF-7 cells; and with GRO-Seq, ChIP-Seq
profiles of histone modifications and DNase hypersensitivity signals (yellow), RNA-Pol II and eight
TFs (teal-blue) obtained from vehicle treated MCF-7 cells (see the Materials and Methods section for
detailed data source). ERα and CTCF ChIA-PET data performed in MCF-7 grown in full medium
from ENCODE project are also included [26]. The coordinates of the predicted SE and aERBSs are
reported at the top as black and orange boxes, respectively. ChIP-Seq genomic signal profiles are
reported as read count per million sequenced reads. (b,c) Bar plots reporting ERα fold enrichment over
IgG signal by ChIP-qPCR at DSCAM-AS1 promoter and E5-E6-enhancers, TFF1 promoter (positive
control) and KCNQ1OT1 promoter (negative control), in MCF-7 cells grown in HD medium transfected
with siERα or siCTR (b); treated for 45′ with 17β-estradiol (E2) or vehicle (veh) (c). Standard error of
four biological replicates; p-value by unpaired t-test: ** p < 0.01; (d) Left. Qualitative PCR reactions
with primers detecting DSCAM-AS1 promoter interaction with E5 or E6 enhancer sites; primers
detecting DSCAM-AS1 genomic region or non-interacting region; Right. Qualitative PCR reactions
with primers detecting P2RY2 promoter-enhancer interaction; primers detecting P2RY2 genomic region
or non-interacting region. All reactions were loaded on 2% agarose gel. Undigested and Digested
samples represent DNA controls recovered during 3C libraries production.
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To investigate the role of apoERα in the regulation of DSCAM-AS1 expression, we focused our
analysis on E5 and E6 SE-aERBSs characterized by the highest apoERα signal and co-factor co-occupancy.
By ChIP-qPCR we first evaluated ERα enrichment in MCF-7 cells maintained in HD medium and
transfected with siERα or control siRNA. Knockdown of ERα was monitored by western blot, observing
a reduced level of the protein (73.5%, Supplementary Figure S1d,e). The apoERα binding in E5, E6 and
DSCAM-AS1 promoter aERBSs was confirmed by ChIP-qPCR and it decreased significantly upon ERα
silencing (Figure 2b), indicating that these are bona fide aERBS in the absence of hormones. The TFF1 and
KCNQ1OT1 promoters were used as ERα-binding positive and negative controls, respectively. We also
observed a decreasing trend of ERα binding at promoter and SE-aERBSs of three lncRNAs and a significant
reduction of ERα binding at AC099850.1 and LINC00243 SEs upon ERα silencing (Supplementary Figure
S1f), suggesting a general ERα-SE controlled regulation of lncRNAs expression in absence of estrogens.

Next, we wanted to ascertain if SE-aERBSs of DSCAM-AS1 were also estrogen-responsive.
Thus, we evaluated ERα enrichment in MCF-7 cells grown in HD medium for four days and then
treated with 17β-estradiol (E2) or vehicle for 45 min, by ChIP-qPCR. We observed a significant
enrichment of ERα binding upon E2 treatment at the TFF1 gene promoter used as a positive
control, as well as on the DSCAM-AS1 promoter [21] (Figure 2c). Interestingly, we noticed no
significant enrichment of ERα signal upon E2 treatment at E5 and E6 SE-aERBSs regions suggesting
an estrogen-independent ERα action on this region.

To verify the physical interaction between DSCAM-AS1 promoter and SE, we performed
a Chromosome Conformation Capture (3C) analysis. Interestingly, we detected E6-promoter interaction
in vehicle-treated cells, whereas no interactions between the E5 site and DSCAM-AS1 promoter were
observed (Figure 2d). As a positive control, P2RY2 promoter-enhancer interaction was confirmed.
No signal was observed in either DSCAM-AS1 or P2RY2-negative controls. This result gave us a first
evidence of the direct interaction between ERα-bound enhancer and DSCAM-AS1 promoter in absence
of hormones.

To investigate if ERα knockdown also influences co-factors binding at the DSCAM-AS1 enhancer
region, we performed a ChIP-qPCR analysis against p300, Gata3 and FoxM1 proteins on MCF-7 cells
maintained in HD and transfected with control or siERα. ERα silencing induced a significant decrement
of GATA3 binding at both DSCAM-AS1 promoter and E6-enhancer regions, while p300 binding was
significantly downregulated only at E6 SE-aERBS (Figure 3a,b), suggesting that the activity of this SE
critically depends on the presence of ERα. Since p300 and GATA3 protein levels did not change upon
ERα silencing (Supplementary Figure S1d,e), we concluded that the observed reduced binding of these
co-factors depends rather on the presence of ERα in the region than on a transcriptional regulation.
On the contrary, FoxM1 binding was not significantly affected by ERα silencing.
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GATA3 and FoxM1 fold enrichment over IgG signal at DSCAM-AS1 promoter (a) and E6-enhancer
(b) by ChIP-qPCR in MCF-7 cells grown in HD and transfected with siCTR or siERα; (c,d) Bar plots
reporting p300, GATA3 and FoxM1 fold enrichment over IgG signal at DSCAM-AS1 promoter (c) and
E6-enhancer (d) by ChIP-qPCR in MCF-7 cells grown in HD and treated for 45′ with 17β-estradiol (E2)
or vehicle (veh). Standard error of three biological replicates; p-value by unpaired t-test: * p < 0.05;
** p < 0.01.
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Interestingly, we observed significant decrease of p300 occupancy within DSCAM-AS1 SE-aERBS
upon E2 treatment (Figure 3c,d), suggesting a hormone-independent activation of DSCAM-AS1 SE.
By contrast, p300 binding on DSCAM-AS1 promoter region showed no change upon E2 treatment.

Since CTCF binding sites were mapped downstream the DSCAM-AS1 gene and a long-range
interaction between this site and a site farther upstream to the SE was identified by ChIA-PET
(Figure 2a), we asked whether CTCF binding could be involved in the DSCAM-AS1 enhancer-promoter
regulatory interactions. We studied CTCF binding downstream the DSCAM-AS1 region and upstream
the associated SE by ChIP-qPCR. Noteworthy, CTCF binding dropped significantly upon ERα-silencing
in the upstream region of DSCAM-AS1 SE (Supplementary Figure S1g), without any change of the
CTCF protein level (Supplementary Figure S1d,e), strengthening again the central role of ERα in the
maintenance of an active SE. Interestingly, we found that CTCF occupancy tends to decrease upstream
the DSCAM-AS1 SE and significantly diminishes downstream the DSCAM-AS1 gene after E2 treatment,
suggesting an hormone-independent CTCF insulation of DSCAM-AS1 enhancer-promoter interaction.

2.3. DSCAM-AS1 SE Characterization in Drug-Resistant BC Cell Lines

Since chromatin binding of luminal BC-specific TFs (ERα, Gata3, FoxM1) is enriched at
DSCAM-AS1-SE, we verified whether the same genomic regions were predicted as an active SE
in other BC cell lines. For this analysis, we used H3K27ac ChIP-Seq data from [30] in which the
authors created different somatic cell fusions between luminal and basal BC cell lines. As reported in
Supplementary Figure S2a the analysis of SEs in these cell lines revealed that DSCAM-AS1 SE was
predicted only in luminal MCF-7 and T-47D cell lines but not in any of the basal or basal/luminal
fusion cell lines. The H3K27ac signal at SE is lower in T-47D cells, as compared to MCF-7, and almost
absent in ZR-75.1 cells; surprisingly, we observed that DSCAM-AS1 expression is up-regulated by E2
in these cell lines (Supplementary Figure S2b,c).

To further explore the relationship between DSCAM-AS1 expression and the activity of the
associated SE, we analyzed public ERα and H3K27ac ChIP-Seq data obtained in Long-Term Estrogen
Deprived (LTED) models and Tamoxifen resistant model from [31]. As reported in Figure 4a, ERα
binding at DSCAM-AS1 SE occurs as well in wild-type as in Tamoxifen resistant and in LTED models.
Only in a LTED model, which is resistant also to Tamoxifen, is the binding absent, despite the high
H3K27ac ChIP-Seq signal still measured in this region. Noteworthy, the highest ERα ChIP-Seq signal
at E6 SE-aERBS was observed in the LTED model.

Analysis of ERα and H3K4me3 ChIP-Seq data of primary tumor tissues from patients who respond
or not to AI treatment [32] showed an higher H3K4me3 signal in AI-resistant than in AI-responder
patients (Figure 4b); in particular, in four out of six cases of AI-resistant patients a clear H3K4me3
signal at DSCAM-AS1 promoter and gene locus combines with a low but evident ERα ChIP-Seq signal
at both E6 and DSCAM-AS1 promoter (Figure 4b and Figure S2d).

Analysis of ERα and H3K4me3 ChIP-Seq data of primary tumor tissues from patients responding
or not to AI treatment [32] showed higher H3K4me3 signal in AI-resistant than in AI-responder
patients (Figure 4b); in particular, in four out of six cases of AI-resistant patients a clear H3K4me3
signal at DSCAM-AS1 promoter and gene locus combines with a low but evident ERα ChIP-Seq signal
at both E6 and DSCAM-AS1 promoter (Supplementary Figure S2d).
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Figure 4. DSCAM-AS1 SE characterization in drug-resistant BC cell lines. (a) WashU genome browser
view of DSCAM-AS1 genomic locus reporting at top the ChIP-Seq genomic signal profile of ERα
and H3K27ac ChIP-Seq experiments performed in wild type MCF-7, MCF-7 resistant to Tamoxifen
(MCF-7T), MCF-7 resistant to Fulvestrant (MCF-7F), Long Term Estrogen Deprived (LTED) MCF-7
cells, and LTED MCF-7 resistant to Tamoxifen (LTEDT) [31]. (b) Box plot reporting the normalized
number of ERα and H3K4me3 ChIP-Seq reads counted at DSCAM-AS1 E6 enhancer (left) and promoter
(right) considering data from patient responsive (Good prognosis, Good) or not (Negative prognosis,
Negative) to Aromatase Inhibitors treatment (AI) [32]. Black dots represent outliers.

3. Discussion

In this work, we have presented novel results that help understanding the role of Estrogen
Receptor α in absence of hormones (apoERα), which is a critical issue for Breast Cancer (BC)
patients given adjuvant treatment with Aromatase Inhibitors (AIs). We performed a deep triplicate
RNA-Seq in hormone-depleted MCF-7 cells upon ERα silencing and, specifically, we were interested
to understand whether Super Enhancers (SEs) were involved in sustaining the basal expression of
a group of luminal-specific lncRNAs. Our study indicates that a set of apoERα dependent lncRNAs
lie close to SEs, suggesting a strict dependence on these regions. Focusing on a representative
lncRNA gene, DSCAM-AS1, we observed that aERBSs within the major SE in this region are active
enhancers, also displaying long-distance contacts with the DSCAM-AS1 promoter, even in the absence
of hormones. Moreover, our data suggests that the chromatin domain confining this interaction
may depend upon the estrogen-independent CTCF binding in proximity of DSCAM-AS1. Finally,
comparison of SE activity in different BC cell lines revealed a relationship between ERα expression level
and SE activity as well as DSCAM-AS1 responsiveness to E2 treatment. Noteworthy, we confirmed the
active epigenetic status of DSCAM-AS1 locus in BC patients unresponsive to AI, but low ERα binding
at SE was observed in these samples.

The identification of SEs helped us to understand the peculiar transcriptional program regulating
cell-type specific gene expression. Recently, several evidences demonstrated that cell-specific enhancers
play an important role in tumorigenesis [11]. Indeed, the study of SEs driving the expression of specific
cancer associated lncRNAs may delineate an additional informative layer on cancer development.
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One important limitation of our results is represented by the fact that the possible targets of SE
were identified only based on the distance, i.e., we attributed to each SE the closest apoERα-regulated
lncRNA gene. While on the basis of the reported frequency of enhancer-promoter interaction this is
justified, the ENCODE project and other studies have reported that in a number of cases enhancers
interact with promoters jumping over several genes [26]. Clearly, the matter would require direct
long-range interaction studies using the Hi-C technology [33] and derivatives. Nevertheless, at least in
the case of DSCAM-AS1, the prediction appeared correct and could be confirmed by our ChIA-PET
network model.

The expression of the carcinoma-specific DSCAM-AS1 is particularly interesting due to its
abundance and close association with unliganded ERα activity. DSCAM-AS1 loss impairs indeed
BC cells proliferation and its expression is somehow implicated in Tamoxifen-resistance [21,22].
Here, we confirmed and extended previous results of our group [21] by validating ERα binding
both in the promoter region and in putative enhancer elements that was very high in absence of
estrogen, demonstrating only a slight increase after estradiol stimulation, and confirmed that this
increase is not paralleled by transcriptional activation, whereas down-regulation of ERα by RNA
interference led to significant transcriptional inhibition. On the contrary, low levels of the coding
DSCAM transcript are detectable in breast cancer cells and no function of DSCAM in mammary tissues
has been described to date. DSCAM mRNA slightly decreases upon ERα-silencing but it appears
induced by estrogen [21,34], suggesting that the estrogen-induced re-localization of aERBSs might
differentially regulate the expression of these sense and antisense transcripts in BC cells. Altogether,
this data indicates a specific ligand-independent ERα program to sustain DSCAM-AS1 expression in
BC cells.

The presence of apoERα bound to an intronic element, which can increase quantitatively in
response to estrogen but not transcriptionally, is not novel: a similar situation was reported for
an intronic site in the retinoic acid receptor alpha 1 gene (RARA) [35] suggesting that such regulatory
modality may be more frequent in lncRNA genes, but also present in protein-coding genes. Notably,
also the RARA gene has a very important developmental function in epithelial mammary cells.
One important novel finding in our data is represented by the state of activation of the aERBS within
the major SE upstream the DSCAM-AS1 gene. We evaluated p300 enrichment confirming the active
status of these regulatory regions. In particular, the transcriptional coactivator p300 possesses intrinsic
acetyltransferase activity and it was shown to play a critical role in transcriptional regulation [36].
Consistent with our results, p300 occupancy is a highly accurate method to identify enhancers and their
associated activities [37,38]. Interestingly, we observed that ERα depletion induced a decrease of p300
occupancy, suggesting that the activity of these enhancers requires the presence of ERα. Moreover, p300
binding to the DSCAM-AS1 enhancer is conserved rather in hormone-deprived medium than upon
estrogen treatment, indicating that this SE is not an early estrogen target site. However, the dynamic
distribution of p300 in BC cells in the presence or absence of estrogenic hormones and its effect on the
prognosis of BC are poorly understood [38].

Our analysis confirms the model where apoERα collaborates with other TFs to maintain the
luminal epithelial enhancer landscape [6]. These cooperation are underlined by the cross-regulatory
loop involving GATA-3 and ERα or AP2γ and ERα, which sustain each other’s expression in BC
cells [39,40]. Interestingly, we also observed that ERα depletion induced a decrease of GATA3
occupancy; therefore, the regulation of DSCAM-AS1 gene expression seems to be based on long
range interaction between apoERα-bound enhancer and the gene promoter as previously described for
some estrogen-dependent ERα target genes such as TFF1 and GREB1 [41]. Noteworthy, our analysis
suggests that only the E6 aERBS is involved in DSCAM-AS1 regulation. In fact, both ERα binding and
3C analysis show very low activity of E5, also reflecting public ChIA-PET data of MCF-7 cells grown
in full medium, i.e., under low hormone concentrations [26].

Therefore, we attempted DSCAM-AS1 promoter-enhancer interaction before and after estrogen
stimulation and we could detect at least the E6-promoter interaction, further demonstrating that this
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enhancer is active even in the absence of estrogen. However, it should be emphasized that this is a
preliminary and qualitative result, which should be confirmed by further experiments to quantify
the frequency of DSCAM-AS1 promoter-enhancer interaction in different experimental conditions.
This data will allow understanding if this interaction is more favored or stabilized in absence of
hormones, as we hypothesize.

The eukaryotic genome is organized into functionally and structurally distinct chromatin
domains which orchestrate spatial and temporal gene regulation. CTCF, the most characterized
insulator-binding protein, is directly involved in chromatin architecture by the formation of barriers
which limit the diffusion of chromatin states and promote tissue-specific local chromatin hubs. CTCF
binding to insulator sequences can partition the genome into distinct ERα-regulatory blocks [42]
defining sensitive and insensitive regions [43]. However, redistribution of CTCF binding sites after
E2 treatment was not generally observed [44]. Since CTCF binding sites were mapped around
DSCAM-AS1 and a long-range interaction was observed between a site close to DSCAM-AS1 3’ end
and a site farther upstream the SE, we asked whether CTCF binding could justify the peculiar mode of
action of the DSCAM-AS1 enhancer/promoter regulatory system. Noteworthy, we found that CTCF
occupancy upstream DSCAM-AS1 decreases after ERα silencing in HD medium, whereas it decreases
significantly downstream the DSCAM-AS1 gene region after estradiol stimulation, suggesting that
estrogen, or its absence, may induce a redistribution of long-range interactions. Taken together, these
results suggest a non-trivial regulatory model at this site, which may involve channeling SE action on
the DSCAM-AS1 promoter in cancer cells overexpressing ERα due to strict domain definition by CTCF.
We also supposed that the reduction of CTCF signal upon estradiol stimulation indicate that these
enhancers might regulate distal genes surmounting the protein insulator. Interestingly, the analysis of
public RNA-Seq data MCF-7 transfected with siCTCF and treated with E2 for 3 h show a reduction of
DSCAM-AS1 level in siCTCF-treated cells (Supplementary Figure S2e).

Our data suggest a model in which CTCF protein acts by insulating the interaction between
DSCAM-AS1 and associated SE. Within the SE a hierarchical ERα binding starting from E6 aERBS
maintains the long-range chromatin contact even in hormone-deprived cells. A similar hierarchical
model was recently proposed by different groups [14,45], however, if this model can apply to the
regulation of other ERα-dependent lncRNAs is not known at present and will require extension of
these studies in the near future.

Finally, analysis of the DSCAM-AS1 locus in several BC cell lines suggested a direct correlation
between the level of ERα expression and the DSCAM-AS1 SE activation status. Indeed, in MCF-7,
(the BC cell line characterized by the highest ERα expression), the DSCAM-AS1 SE is completely
active, while only the DSCAM-AS1 promoter region is active in ZR-75.1 (characterized by a lower
ERα expression). Furthermore, the LTED cell model system, which is characterized by an elevated
ERα expression [46], were also characterized by the highest ERα SE occupancy among all the cell lines
analyzed. However, given the extensive genetic and epigenetic heterogeneity driving the acquisition
of a hormone-independent phenotype in the different LTED models [31], limited general conclusion
can be translated to the clinical settings.

Analysis of ERα and H3K4me3 ChIP-Seq data clearly show extensive heterogeneity among
patients. Using these data, we were not able to confirm a strong ERα binding at DSCAM-AS1 SE,
but we clearly observed that DSCAM-AS1 locus is active in four out six patients non-responsive to
AI treatments. Since patients with a good prognosis present no H3K4me3 signal at DSCAM-AS-SE,
its activated-status is correlated with a negative prognosis, suggesting it as epigenetic-predictor of
AI-treatment response. As far as the other common endocrine treatment is concerned, i.e., Tamoxifen,
Niknafs and coworkers reported that Tamoxifen-resistant patients display ERα binding to DSCAM-AS1
promoter, as opposed to Tamoxifen responders [22]. Using the same data [47], we additionally
examined ERα binding at the DSCAM-AS1 SE, confirming that ERα binding is limited to non-responder
patients (Supplementary Figure S2d,f). Altogether, these data support the fact that DSCAM-AS1 does
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not behave as a typical estrogen-responsive gene, since its active transcriptional status is maintained
both in absence of estrogen (AI) and in the presence of antagonistic ERα ligands (Tamoxifen).

Moreover, DSCAM-AS1 genes was included in the gene classifier of drug responsiveness proposed
by Jansen and colleagues [32].

In our lab, we are actively exploring DSCAM-AS1 expression in tissues of BC patients to
demonstrate it possible role as hormone-responsiveness marker. At the same time, several other
lncRNA loci are being studied to understand unliganded ERα action in luminal breast cancer.

4. Materials and Methods

4.1. Cells Culture and Treatment

MCF-7 and ZR-75.1 cells were routinely grown in DMEM medium supplemented with 10%
heat-inactivated FBS, 2 mM L-glutamine, 50 U/mL penicillin and 50 µg/mL streptomycin. T-47D cells
were routinely grown in RPMI medium supplemented with 10% heat-inactivated FBS, 2 mM
L-glutamine, 50 U/mL penicillin and 50 µg/mL streptomycin. Hormone-deprived medium (HD) was
obtained from phenol red-free DMEM supplemented with 5% charcoal-dextran-treated serum. MCF-7
cells were grown at least 4 days in HD medium before 17β-estradiol treatment (E2). 17β-estradiol
(Sigma -Aldrich, St. Louis, MO, USA) was added at a final concentration of 10–8 M.

4.2. Small Interfering RNA (siRNA)

MCF-7 cells were grown in HD medium (for two days in this conditioned medium) before being
transfected with siRNAs using Lipofectamine2000 (Life Technologies, Carlsbad, CA, USA), according
to the reverse transfection protocol. Stealth RNAi™ siRNAs from Invitrogen were used to target
ERα mRNA (ESR1HSS103376, ESR1HSS103377, ESR1HSS176619); stealth RNAi™ siRNA Negative
Control medium GC was used as a control (siCTR). Any experiment was carried out 48 h after siRNA
transfection in order to achieve the maximum efficiency of RNA interference.

4.3. RNA-Seq

MCF-7 cells were grown for 2 days in HD medium before siRNAs transfection (siCTR or
siERa). RNA was harvested after 48 h from transfection by RNA isolation kit (RNeasy Mini Kit,
Qiagen 74104). RNA quality check (RNA integrity number (RIN) > 8) was achieved with Fragment
Analyzer (Advanced Analytical Technologies, Inc, Ankeny, IA, USA) and quantified with Qubit
(Qubit™ RNA HS Assay Kit, ThermoFisher Scientific, Waltham, MA, USA;Q32852). Two µg of RNA
were polyA+ selected and RNA-Seq libraries were constructed using Illumina TruSeq RNA sample
prep kit (TruSeq™ RNA Sample Prep Kit v2-Set B, Illumina, RS-122-2002). Paired-end (PE) cluster
generation was performed using cBot on Flow Cell v3 (TruSeq PE Cluster Kit v3-cBot-HS, Illumina,
PE-401-3001). Sequencing of libraries was performed on the HiSeq sequencing system (Illumina,
San Diego, CA, USA).

Raw and processed RNA-Seq data were deposited at GSE108693.

4.4. RNA-Seq Data Analysis

Raw RNA-Seq reads were aligned using TopHat v2 [48]. Gencode v24 was used as reference set of
gene annotations. Read count was performed using featureCounts algorithm [49] and read count tables
were normalized with DESeq2 package [50]. Normalized read counts were converted to fragments per
kilobase of exons per million fragments mapped (FPKM) considering the length of the longest isoform
of each gene and the millions of reads counted by featureCounts.

Differentially expression between siCTR and siERα-treated MCF-7 was performed using DESeq2
in default settings. A gene was considered as differentially expressed if associated with an adjusted
p-value < 0.001. To identify genes differentially expressed in the time-course E2-treatment experiment,
maSigPro R package [51] was applied in default setting by considering the adjusted p-value computed
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using the p.vector function of the package. A gene was considered as differentially expressed if
associated with an adjusted p-value < 0.05. Gene to SEs association was performed by computing the
distance between gene TSSs and each SE center. Only genes mapped within 100 kbp from a SE region
were considered for the analysis.

Gene set functional analysis was performed using Enrichr algorithm [52].
Analysis of GRO-Seq datasets from GSE45822 was performed using Bowtie v2.1.0 [53] in default

settings and the local option.

4.5. Super Enhancer Prediction

A H3K27ac ChIP-Seq dataset performed on 48-h hormone-deprived MCF-7 cells treated with
vehicle (GSM986079) was used for the identification of SE regions. Raw ChIP-Seq reads were aligned
using Bowtie 2.0 algorithm in default settings [53]. Significant H3K27ac ChIP-Seq peaks were called
with MACS 2.1.0 [54]. The input ChIP-Seq experiment was used as background for the analysis
(GSM986091). These peaks were used as input for the ROSE algorithm [24] analysis applied in default
settings. Only SEs overlapped against apoERα ChIP-Seq peaks defined in [6] were selected for the
analysis. The set of SEs predicted in other BC cell lines were retrieved from [30] supplemental material.
These SE coordinates were converted in hg38 using LiftOver algorithm (https://genome.ucsc.edu/cgi-
bin/hgLiftOver).

4.6. Long Range Chromatin Interaction Network

The network model of Gene-aERBSs chromatin interaction was generated using the ChIA-PET
data from GSE39495. Each pair of interacting genomic regions was overlapped with the aERBSs and
gene promoter coordinates. A promoter was defined as a region of −2 kbp and +500 bp around the
gene TSS. Each aERBS was equally extended by 1 kbp in each size. The average number of interacting
region between each aERBS-gene, gene-gene, or aERBS-aERBS pair was computed and represented as
link width between the connected nodes. Gene were color-coded according to their expression log2FC
in the siERα RNA-Seq experiment while aERBS nodes were colored according to their epigenetic
classification defined in [27].

4.7. DSCAM-AS1 Locus Analysis

The analysis of DSCAM-AS1 locus and upstream enhancer regions was performed using the
Washu Genome Browser [55]. ChIP-Seq genomic signals from public experiments performed in
hormone-deprived MCF-7 were defined by realignment of raw ChIP-Seq reads using Bowtie 2.0
algorithm in default settings. Then, alignment bam files were converted to bedgraph files using
BEDTools algorithm [56]. Each ChIP-Seq genomic signal was converted in count per millions by
dividing the read coverage data by the million number of sequencing reads in each experiment. In the
analysis data from a ChIP-Seq performed against H3K27ac (GSM1115993), H3K4me3 (GSM1382470),
H3K4me1 (GSM1382469), RNAPII (GSM1116656), FoxA1 (GSM588929), FoxM1 (GSM1001003), Gata3
(GSM986074), p300 (ERR045733), AP2γ (GSM588927), CTCF (GSM822308), Rad21 (GSM614613),
and Stag1 (GSM614616) were considered. ERα ChIP-Seq and RNA-Seq data from siCTR or
siERα-transfected MCF-7 (GSE53533) were also considered in the analysis. DNase-seq were obtained
from GSM1024764. ERα and H3K4me3 ChIP-Seq data from AI-treated patients were obtained from
GSE40867 while data from Tamoxifen-treated patients were retrieved from GSE32222.

Data from ENCODE long-range chromatin interaction experiments were analyzed by considering
the ERα and CTCF ChIA-PET experiments performed in complete-medium grown MCF-7.
The processed data of these experiments were provided by the public track hub “long-range chromatin
interaction experiments” of the Washu Genome Browser.

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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4.8. Protein EXTract and Western Blot Analysis

Whole-cell lysate was harvested from organic-phenol phase after RNA purification in Purezol™
reagent (Bio-Rad, Hercules, CA, USA). 70 µg of protein extracts were denatured by boiling in
6x Loading Dye, fractionated by SDS-PAGE electrophoresis in 6% polyacrylamide gel and finally
transferred on PVDF membrane (Millipore). Antibodies used were designed against ERα (Santa Cruz
Biotechnology, Dallas, TX, USA; sc543 and sc-7207), CTCF (Merck-Millipore, Burlington, MA, USA;
07-729), GATA3 (Santa Cruz Biotechnology, Dallas, TX, USA; sc-268), p300 (Santa Cruz Biotechnology
Dallas, TX, USA sc-585), FOXM1 (Santa Cruz Biotechnology Dallas, TX, USA sc-376471) and Hsp90
(Cell Signaling Technology, Danvers, MA, USA; 4874) proteins. Proteins quantitation was performed
with Volume Analysis Tool from Quantity One™ software, version 4.6.6 (Bio-Rad).

4.9. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

RNA was isolated from MCF-7 cells using Purezol™ reagent (Bio-Rad). All total isolated RNAs
were subjected to DNase treatment to remove contaminating genomic DNA (ezDNase™ Enzyme,
Invitrogen, Carlsbad, CA, USA; 11766051). First strand cDNA synthesis from 250 ng of total RNA
template was performed with SensiFAST cDNA Synthesis Kit (Bioline, London, UK; BIO-65054),
followed by SYBR-green qRT-PCR amplification (iTaq UniverSYBR Green, Bio-Rad 1725124). Real-time
PCR primers for human 18S, ERα, GREB1 RNAs were purchased from Qiagen (Hilden, Germany;
QuantiTect™ Primer Assay). Custom expression-primer pairs are reported in Supplemental Table S6.

4.10. Chromatin Immunoprecipitation Assay (ChIP)

MCF-7 cells were grown for 2 days in HD medium before siRNAs transfection or 45 min of E2
treatment. ChIP experiments were then performed as follows: cells were cross-linked by addition of
formaldehyde at 1% final concentration (Formaldehyde solution, Sigma-Aldrich 252549) and incubated
10 min at 37 ◦C. Cross-linking was stopped by addition of glycine solution to a final concentration of
0.125 M for 5 min on a shaker at room temperature. Cross-linked cells were then washed twice with
ice-cold PBS supplemented with complete protease inhibitors cocktail and collect by scraping (Protease
Inhibitor Cocktail, Sigma-Aldrich P2714-1). Cell pellets were subjected to lysis on ice for 10 min with
Lysis Buffer 1 (5 mM Pipes pH 8, 85 mM KCl, 0.5 % NP40) supplemented with complete protease
inhibitors cocktail. Subsequently, nuclei pellets, obtained by a 5 min spin cycle at 4 ◦C (4000 rpm)
were exposed once again to 10 min lysis in Lysis Buffer 2 (1% SDS, 5 mM EDTA, 50 mM Tris-HCl
pH 8.1) supplemented with complete protease inhibitors cocktail. Total extracted chromatin was
sonicated to an average size of 250–500 bp by using an immersion sonicator device. The desired
fragments size was checked on 1.2% agarose-gel and quantified by Nanodrop spectrophotometer at
280 nm, in order to use 50 µg of chromatin per IP. 10 µL (1%) of chromatin extracts was recovered as
input normalization-control for each experimental condition. Chromatin extracts were diluted with
IP-buffer (1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl of pH 8.1, 150 mM NaCl, supplemented with
complete protease inhibitors) and incubated overnight with the specific antibody or IgG at 4◦ C on
a rotating platform. Protein A and G sepharose-beads (GE Healthcare Life Sciences; Little Chalfont,
UK; 17-5280-01 and 17-0618-01 respectively) were pre-coated with IP buffer supplemented with 5%
BSA, in order to reduce nonspecific antibody binding. Upon 2 h of Protein A or G sepharose-beads
incubation (depending on antibody source, i.e., rabbit or mouse respectively), samples were washed
sequentially for 5 min, on a rotating platform with 1 mL of three different Washing Buffer (Washing
buffer 1: 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris HCl pH 8, 150 mM NaCl; Washing buffer
2 : 0.1 SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris HCl pH 8, 500 mM NaCl; Washing buffer 3: 0.25 M
LiCl, 1% NP40, 1% Na DOC, 1 mM EDTA, 10 mM Tris HCl pH8) and twice with TE buffer (10 mM Tris
HCl pH8, 1 mM EDTA). After complexes elution at RT with elution buffer (1% SDS, 0.1 M NaHCO3),
DNA fragments were de-crosslinked at 65 ◦C overnight with NaCl 5 M and by 1 h of proteinase
K treatment. DNA purification was achieved with Phenol:Chloroform:IAA (25:24:1 UltraPure™
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formulation, Ambion AM9730) according to the manufacturer’s instructions. Quantitative Real-time
PCR was carried out on ChIP-enriched DNA using SYBR Green Master Mix. ChIP enrichment was
normalized on input samples (1% of total chromatin used per IP) and expressed as fold-enrichment of
specific binding over the control nonspecific IgG binding. Antibodies against human ERα (Santa Cruz
Biotechnology, Dallas, TX, USA; sc534X, sc7207X), p300 (Santa Cruz Biotechnology, Dallas, TX, USA;
sc-585X), CTCF (Merk-Millipore, Burlington, MA, USA; 07-729), GATA3 (Santa Cruz Biotechnology,
Dallas, TX, USA; sc-268X), FOXM1 (Santa Cruz Biotechnology, Dallas, TX, USA; sc-376471X) and
normal rabbit IgG (Merk-Millipore, Burlington, MA, USA; 12-370) were used in this assay. Custom
ChIP primer pairs are reported in Supplementary Table S6.

4.11. Qualitative Chromosome Conformation Capture (3C-PCR)

MCF-7 cells were grown for 2 days in HD medium before 45 min of E2 treatment. 3C procedure
was performed essentially as described by [8] with some modifications: Step: Crosslinking reaction.
As well as for ChIP experiments, cells were cross-linked by addition of formaldehyde (1% final
concentration) and incubated 10 min at 37 ◦C. Cross-linking was stopped by addition of glycine
solution to a final concentration of 0.125 M for 5 min on a shaker at room temperature. Cross-linked
cells were then washed twice with ice-cold PBS supplemented with complete protease inhibitors
cocktail and collect by scraping. Cell pellets were subjected to lysis on ice for 10 min with ChIP
Lysis Buffer 1 supplemented with complete protease inhibitors cocktail. Subsequently, nuclei pellets,
obtained by a 5 min spin cycle at 4 ◦C (4000 rpm) were resuspended with 100 µL of 3C buffer (50 mM
Tris-HCl pH 8.0; 50 mM NaCl; 10 mM MgCl2; 1 mM DTT). Step 2: Permeabilization and digestion.
SDS (final concentration 0.2%) was added and samples were incubated at 37 ◦C for 1 h while shaking
at 300 rpm. Then, Triton X-100, diluted in 1X ligase buffer (NEB, B0202S), was added at 1.2% final
concentration and samples were incubated at 37 ◦C for 1 h while shaking at 300 rpm. A 10 µL aliquot
was taken by pipetting on the wall of the tube (without mixing before). This sample corresponds
to undigested DNA. DNA digestion will be done by adding a total of 450 U of restriction enzyme
(BglII and NsiI, NEB R0144L and R0127L respectively) overnight at 37 ◦C while shaking at 300 rpm.
A 4.5 µL aliquot was taken by pipetting on the wall of the tube (without mixing before). This sample
corresponds to digest DNA. Step 3: Restriction enzyme inactivation and ligation of chimerical products.
SDS (final concentration 0.2%) was added and samples were incubated at 37 ◦C for 30 min while
shaking at 300 rpm. Samples were then diluted 4 times in 1X ligase buffer and Triton X-100, diluted in
1X ligase buffer, was added at 1% final concentration. Finally, samples were incubated at 37 ◦C for 2 h
while shaking at 200 rpm. After a centrifugation of 1 min/2200 g/4 ◦C, 3.27 mL of supernatant were
taken off such as 500 µL remain in the tube. On ice, 195 U of ligase (T4 DNA ligase, NEB M0202L) were
carefully mixed and re-suspended with the pellet, then incubated overnight at 16 ◦C. After incubation
this sample corresponds to 3C library. Step 4: Reversal of crosslinking. 3C libraries were 7 times
diluted in 2X Proteinase K buffer (5 mM EDTA pH 8.0; 10 mM Tris-HCl pH 8.0; 0.5% SDS) and water.
Undigested and digested samples were supplemented with 500 µL of 1xPK buffer. 100 µg or 20 µg
of proteinase K (20 mg/mL) were mixed to the 3C libraries or to the undigested and digested DNA,
respectively. All samples were incubated during 1 h at 50 ◦C and then during 4 h at 65 ◦C to reverse
the crosslinking reaction. Step 5: DNA purification. 1 volume of Phenol:Chloroform:IAA was added
to each sample (i.e., 4 mL to 3C library and 500 µL to the undigested and digested samples) and
vigorously mixed. Following a centrifugation 10 min/16,100 g/RT, the supernatant aqueous phase
was recovered in a new tube. 2 volumes of absolute ethanol and NaCl to a final concentration of
250 mM were added to each sample, mixed and let at −20◦ overnight to precipitate DNA. Following
a centrifugation 20 min/16,100 g/4 ◦C, pellets were washed with 70% ethanol and finally re-suspended
in water (150 µL for 3C libraries; 60 µL for the undigested and digested samples). Step 6: Qualitative
PCR. After quantification at Nanodrop spectrophotometer, qualitative PCR (HiFi-Taq polymerase™
kit, Life Technologies, 11304-011) was carried out on 50 ng DNA of each samples by using the
following primer pairs: Promoter-Gene, to detect genomic DNA (loading control); Promoter-Enhancer
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site, to detect the predicted interaction (3C products); Promoter-Enhancer nearby genomic region,
as a negative control (non-interacting regions). Validated primers on P2RY2 gene-enhancer interaction
were used as a technique positive control [41] and custom primers were used to study DSCAM-AS1
promoter-enhancer interaction. Primers are reported in Supplemental Table S6. PCR products were
checked on 2% agarose-gel.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/2/593/s1.
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TSS Transcription Start Site
ERα Estrogen Receptor α
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ChIA-PET Chromatin Interaction Analysis with Paired-End-Tag sequencing
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HD Hormone Deprived Medium
E2 17β-estradiol
DE Differentially Expressed
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